
CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Instructor: Dr. Jianer Chen Senior Grader: William Kang
Office: PETR 428 Phone: (979) 575-9987
Phone: (979) 845-4259 Email: rkdvlfah1018@tamu.edu
Email: chen@cse.tamu.edu Questions: via phone and email
Office Hours: MW 1:30 pm–3:00 pm and by appointments

Assignment #7
(Due April 28)

1. Let Q1, Q2, and Q3 be decision problems. Prove: if Q1 ≤p
m Q2 and Q2 ≤p

m Q3,
then Q1 ≤p

m Q3. You should explain why your reduction from Q1 to Q3 runs in time
polynomial of the length of the instances of Q1.

2. Prove: if an NP-hard prolem is solvable in polynomial time, then P = NP.

3. Using the fact that the independent set problem is NP-complete, prove that
the following problem is NP-complete:

Clique: Given a graph G and an integer k, is there a set C of k vertices
in G such that for every pair v and w of vertices in C, v and w are
adjacent in G?

Hints for Question 3:

1. To prove that a problem is NP-complete, you need to prove (1) the problem
is in NP, and (2) the problem is NP-hard.

2. To reduce independent set to Clique, consider the ”completment graph”
co-G of a graph G, where co-G and G have the same set of vertices, and there
is an edge between vertices v and w in co-G if and only if there is no edge
between vertices v and w in G.

1



Definitions.
1. P is the collection of all (decision) problems that can be solved in polynomial

time. Thus, P is the collection of all “easy” problems.

2. NP is the collection of all (decision) problems whose solutions, though per-
haps not easy to construct, but can be checked in polynomial time. NP contains
many problems that are not known to be in P. Examples include traveling sales-
man, satisfiability, and independent set. Huge amount of efforts has been paid
trying to develop polynomial-time algorithms for these problems, but all failed. A
common belief is that these problems are hard and do not belong to P, i.e., P ≠ NP.

3. Q1 ≤p
m Q2 means that up to polynomial-time computation, Q1 is not harder

than Q2.

4. NP-hard problems are those that are not easier than any problems in NP
(up to polynomial-time computation). Based on the common belief given in 2, an
NP-hard problem cannot be solved in polynomial time.

Some things you may want to remember.
1. To show Q1 ≤p

m Q2, you need to construct a polynomial-time algorithm that
computes a function f such that x is a yes-instance of Q1 if and only if f(x) is a
yes-instance of Q2.

2. To prove that a problem Q is in NP, you need to construct a polynomial-
time algorithm A(x, y) such that for any yes-instance x1 of Q, there is a y1 such
that A(x1, y1) = 1, and for any no-instance x2 of Q, A(x2, y) = 0 for all y.

3. To prove that a problem Q is NP-hard, you need to pick a problem Q0 that
is known to be NP-hard, and show Q0 ≤p

m Q.

4. To prove that a problem Q is NP-complete, you need to prove both that Q
is NP-hard and that Q is in NP.

5. You should remember of the definitions of at least the following NP-complete
problems: satisfiability, independent set, vertex cover, and partition.

2


