CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Instructor: Dr. Jianer Chen Office: PETR 428 Phone: (979) 845-4259 Email: chen@cse.tamu.edu Office Hours: MW 1:30 pm-3:00 pm Senior Grader: William Kang Phone: (979) 575-9987 Email: rkdvlfah1018@tamu.edu Questions: via phone and email and by appointments

Assignment #7 (Due April 28)

1. Let Q_1 , Q_2 , and Q_3 be decision problems. Prove: if $Q_1 \leq_m^p Q_2$ and $Q_2 \leq_m^p Q_3$, then $Q_1 \leq_m^p Q_3$. You should explain why your reduction from Q_1 to Q_3 runs in time polynomial of the length of the instances of Q_1 .

2. Prove: if an \mathcal{NP} -hard prolem is solvable in polynomial time, then $\mathcal{P} = \mathcal{NP}$.

3. Using the fact that the INDEPENDENT SET problem is \mathcal{NP} -complete, prove that the following problem is \mathcal{NP} -complete:

CLIQUE: Given a graph G and an integer k, is there a set C of k vertices in G such that for every pair v and w of vertices in C, v and w are adjacent in G?

Hints for Question 3:

- 1. To prove that a problem is \mathcal{NP} -complete, you need to prove (1) the problem is in \mathcal{NP} , and (2) the problem is \mathcal{NP} -hard.
- 2. To reduce INDEPENDENT SET to CLIQUE, consider the "completiment graph" co-G of a graph G, where co-G and G have the same set of vertices, and there is an edge between vertices v and w in co-G if and only if there is no edge between vertices v and w in G.

Definitions.

1. \mathcal{P} is the collection of all (decision) problems that can be solved in polynomial time. Thus, \mathcal{P} is the collection of all "easy" problems.

2. \mathcal{NP} is the collection of all (decision) problems whose solutions, though perhaps not easy to construct, but can be checked in polynomial time. \mathcal{NP} contains many problems that are not known to be in \mathcal{P} . Examples include TRAVELING SALES-MAN, SATISFIABILITY, and INDEPENDENT SET. Huge amount of efforts has been paid trying to develop polynomial-time algorithms for these problems, but all failed. A common belief is that these problems are hard and do not belong to \mathcal{P} , i.e., $\mathcal{P} \neq \mathcal{NP}$.

3. $Q_1 \leq_m^p Q_2$ means that up to polynomial-time computation, Q_1 is not harder than Q_2 .

4. \mathcal{NP} -hard problems are those that are not easier than any problems in \mathcal{NP} (up to polynomial-time computation). Based on the common belief given in 2, an \mathcal{NP} -hard problem cannot be solved in polynomial time.

Some things you may want to remember.

1. To show $Q_1 \leq_m^p Q_2$, you need to construct a polynomial-time algorithm that computes a function f such that x is a yes-instance of Q_1 if and only if f(x) is a yes-instance of Q_2 .

2. To prove that a problem Q is in \mathcal{NP} , you need to construct a polynomialtime algorithm A(x, y) such that for any yes-instance x_1 of Q, there is a y_1 such that $A(x_1, y_1) = 1$, and for any no-instance x_2 of Q, $A(x_2, y) = 0$ for all y.

3. To prove that a problem Q is \mathcal{NP} -hard, you need to pick a problem Q_0 that is known to be \mathcal{NP} -hard, and show $Q_0 \leq_m^p Q$.

4. To prove that a problem Q is \mathcal{NP} -complete, you need to prove both that Q is \mathcal{NP} -hard and that Q is in \mathcal{NP} .

5. You should remember of the definitions of at least the following \mathcal{NP} -complete problems: SATISFIABILITY, INDEPENDENT SET, VERTEX COVER, and PARTITION.