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Assignment #5 Solutions

1. Find a big-O estimate for the function f(n) that satisfies the recurrence relation

f(2) = 1; and for n > 2, f(n) = 2f(
√
n) + log2 n.

(Hint: Make the substitution m = log2 n. You can assume that m is a power of 2.)

Solution. Let m = log2 n, i.e., n = 2m. Define F (m) = f(n) = f(2m). We have

F (1) = f(21) = f(2) = 1, and

for m > 1,

F (m) = f(2m) = f(n) = 2f(
√
n) + log2 n = 2f(

√
2m) +m = 2f(2m/2) +m

= 2F (m/2) +m.

Solving F (1) = 1 and for m > 1, F (m) = 2F (m/2) + m is not difficult, as we
have done similar recurrence relations. For a general k ≤ m, we can verify

F (m) = 2kF (m/2k) + k ·m.

Letting k = log2m gives

F (m) = m · F (1) + log2m ·m = m+m log2m.

Recall that m = log2 n and n = 2m. We have, for a general n ≥ 2,

f(n) = f(2m) = F (m) = m+m log2m = log2 n+ log2 n · log2 log2 n
= O(log2 n · log2 log2 n).

2. A coin is flipped n times where each flip comes up either heads or tails. How
many possible outcomes (assuming that n is even and that k ≤ n)

(a) are there in total?
(b) contain exactly k heads?
(c) contain at least k heads?
(d) contain the same number of heads and tails?

Give an explanation to your answer to each of the questions.
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Solution. If we treat head H as the bit 0 and tail T as the bit 1, then each outcome
of n coin-flippings uniquely corresponds to a binary string of length n. This gives a
one-to-one correspondence between the set of outcomes of n coin-flippings and the
set of binary strings of length n.

(a) As we know, the total number of binary strings of length n is 2n. Thus,
there are totally 2n possible outcomes for n coin-flippings.

(b) Each outcome with exactly k heads corresponds uniquely to k positions in
the binary string of length n at which the bit is 0 (and all other bits are 1). Since
there are

(n
k

)
different ways to pick k positions in a binary string of length n, the

total number of outcomes that contain exactly k heads is equal to
(n
k

)
.

(c) As given in (b), for each h, k ≤ h ≤ n, the number of outcomes that contain
exactly h heads is equal to

(n
h

)
. The total number of outcomes that contain at least

k heads is equal to the sum of the numbers of outcomes that contain exactly h heads
for all k ≤ h ≤ n. That is, the total number of outcomes that contain at least k
heads is equal to

∑n
h=k

(n
h

)
.

(d) Since n is even, n/2 is an integer. An outcome containing the same number
of heads and tails contains exactly n/2 heads. As a consequence of (b), the total
number of outcomes that contain the same number of heads and tails is equal

( n
n/2

)
.

3. Suppose that k are n are integers with 1 ≤ k ≤ n. Prove the hexagon identity:(
n− 1

k − 1

)(
n

k + 1

)(
n+ 1

k

)
=

(
n− 1

k

)(
n

k − 1

)(
n+ 1

k + 1

)
.

Solution. We prove the equality using the formula
(n
k

)
= n!/(k! · (n− k)!).

LHS =

(
n− 1

k − 1

)(
n

k + 1

)(
n+ 1

k

)

=
(n− 1)!

(n− k)!(k − 1)!
· n!

(n− k − 1)!(k + 1)!
· (n+ 1)!

(n− k + 1)!k!

=
(n− 1)! · n! · (n+ 1)!

(k − 1)! · k! · (k + 1)! · (n− k − 1)! · (n− k)! · (n− k + 1)!
,

and

RHS =

(
n− 1

k

)(
n

k − 1

)(
n+ 1

k + 1

)

=
(n− 1)!

(n− k − 1)!k!
· n!

(n− k + 1)!(k − 1)!
· (n+ 1)!

(n− k)!(k + 1)!

=
(n− 1)! · n! · (n+ 1)!

(k − 1)! · k! · (k + 1)! · (n− k − 1)! · (n− k)! · (n− k + 1)!
.

Thus, we have LHS = RHS. The equality is proved.
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4. Prove that if E and F are independent events, then E and F are also independent
events.

Proof. Recall that E and F are independent means that Pr[E∩F ] = Pr[E] ·Pr[F ].
Thus, the question asks to prove Pr[E ∩ F ] = Pr[E] ·Pr[F ]. We have

Pr[E ∩ F ] = Pr[E ∪ F ]

= 1−Pr[E ∪ F ]

= 1− (Pr[E] +Pr[F ]−Pr[E ∩ F ])

= 1− (Pr[E] +Pr[F ]−Pr[E] ·Pr[F ])

= 1−Pr[E]−Pr[F ] +Pr[E] ·Pr[F ]

= (1−Pr[E]) · (1−Pr[F ])

= Pr[E]) ·Pr[F ].

The first equality used De Morgan’s law (note that E and F are sets), the second and
seventh equalities used the formula for the probability of event complements, the
third equality used the formula for the probabililty of union of non-disjoint events,
and the fourth equality used the given condition that E and F are independent
events.

This proves that the events E and F are also independent.

5. Suppose that we roll a fair die until a 6 comes up.

(a) What is the probability that a 6 comes up in our n-th rolling?
(b) What is the expected number of times we roll the die? (Hint: You need to

find the value for the sum 1 + 2(5/6) + 3(5/6)2 + · · ·+ k(5/6)k−1 + · · ·.)

Solution. Note that when rolling a fair die, the probability that 6 comes up is 1/6,
and the probability that 6 does not come up is 5/6.

(a) According to the question statement, the game will stop when 6 comes up.
Thus, that 6 comes up in the n-th rolling implies that 6 did not come up in the first
(n − 1)st rollings. Thus, the probability that a 6 comes up in the n-th rolling is
(5/6)n−1(1/6).

(b) For each integer n ≥ 1, define a random variable Xn such that Xn = n if a
6 comes up in the n-th rolling, and Xn = 0 otherwise. By (a), the probability that
Xn = n is equal to (5/6)n−1(1/6), so the probability thatXn = 0 is 1−(5/6)n−1(1/6).
Therefore, the expected value of the random variable Xn is

Ex[Xn] = n ·Pr[Xn = n] + 0 ·Pr[Xn = 0]

= n · (5/6)n−1(1/6) + 0 · (1− (5/6)n−1(1/6))

= n · (5/6)n−1(1/6).
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Define a new random variable X =
∑∞

n=1Xn. Since in every case, there is at
most one Xn that is not equal 0 (i.e., when a 6 comes up in the n-th roll, we have
Xn = n, and for all i ̸= n, Xi = 0), X is the number of times we roll the die to have
a 6 comes up. Therefore, question (b) is asking the expected value of X. We have

Ex[X] = Ex

[
X =

∞∑
n=1

Xn

]
=

∞∑
n=1

Ex[Xn]

=
∞∑
n=1

n · (5/6)n−1(1/6) = (1/6)
∞∑
n=1

n · (5/6)n−1, (1)

where the second equality has used the linearity of expectations.
To get the final value of Ex[X], we need to find the value of

∞∑
n=1

n · (5/6)n−1 = 1 + 2(5/6) + 3(5/6)2 + · · ·+ n(5/6)n−1 + · · · .

For this, we have

∞∑
n=1

n · (5/6)n−1 = 1 + 2(5/6) + 3(5/6)2 + 4(5/6)3 + · · ·+ n(5/6)n−1 + · · ·

= 1 + (5/6) + (5/6)2 + (5/6)3 + · · ·+ (5/6)n−1 + · · ·
+ (5/6) + 2(5/6)2 + 3(5/6)3 + · · ·+ (n− 1)(5/6)n−1 + · · ·

= 1 + (5/6) + (5/6)2 + (5/6)3 + · · ·+ (5/6)n−1 + · · ·

+ (5/6)

( ∞∑
n=1

n · (5/6)n−1

)
(2)

By the formula for the summation of geometric sequences, we have

1 + (5/6) + (5/6)2 + (5/6)3 + · · ·+ (5/6)n−1 + · · · = 1/(1− (5/6)) = 6.

Therefore, from the above equations in (2), we have

∞∑
n=1

n · (5/6)n−1 = 6 + (5/6)
∞∑
n=1

n · (5/6)n−1.

Solving this for
∑∞

n=1 n · (5/6)n−1, we get

∞∑
n=1

n · (5/6)n−1 = 36.

Bringing this into (1) gives

Ex[X] = (1/6)
∞∑
n=1

n · (5/6)n−1 = (1/6) · 36 = 6.

4


