
CSCE 222-200 Discrete Structures for Computing

Fall 2024

Instructor: Dr. Jianer Chen Teaching Assistant: Evan Kostov
Office: PETR 428 Office: EABC Cubicle 6
Phone: (979) 845-4259 Phone: (469) 996-5494
Email: chen@cse.tamu.edu Email: evankostov@tamu.edu
Office Hours: T+R 2:00pm–3:30pm Office Hours: MW 4:00pm-5:00pm

Assignment #4 Solutions

1. Give a recursive algorithm for finding the maximum value in an array A[1..n],
making use of the fact that the maximum in A[1..n] is the larger of A[n] and the
maximum in A[1..n− 1]. What is the time complexity of your algorithm in terms of
big-O notation?

Solution. The recursive algorithm Largest(k) is given as follows.

Largest(k) //return the largest value in A[1..k]

1. if (k < 1) return (’the array is empty’);
2. if (k == 1) return(A[1]);
3. m = Largest(k − 1);
4. if (m > A[k]) return (m) else return (A[k]).

The main algorithm calls Largest(n), which returns the largest value in A[1..n].
To get the time complexity of the algorithm, let T (k) be the running time of the

algorithm Largest(k) on the array A[1..k] of k elements. Steps 1, 2, and 4 take time
O(1), and step 3 takes time T (k − 1). Thus, the recurrence relation for T (k) is

T (1) = O(1), and T (k) = T (k − 1) +O(1) for k > 1.

To solve this recurrence relation, we first convert it to

T (1) ≤ C, and T (k) ≤ T (k − 1) + C for k > 1.

Replacing k in the inequality T (k) ≤ T (k− 1)+C with k− 1 and k− 2, we get

T (k) ≤ T (k − 1) + C ≤ (T (k − 2) + C) + C = T (k − 2) + 2C

≤ (T (k − 3) + C) + 2C = T (k − 3) + 3C.

From this, it is easy to verify (and formally prove) that for a general h < k, we
have T (k) ≤ T (k−h)+h·C. Letting h = k−1, we get T (k) ≤ T (1)+(k−1)C ≤ k ·C.
Since C is a constant, we get T (k) = O(k). In conclusion, the running time of the
main algorithm on the array A[1..n] of n values is O(n).

1



2. Consider the following two recursive algorithms for computing the function H(n)
for Hanoi Tower, where n is a positive integer and the function H(n) is defined as
H(1) = 1, and H(n) = 2H(n − 1) + 1 for n > 1. What is the time complexity of
each of these algorithms in terms of big-O notation?

Function H1(n) Function H2(n)
1. if (n == 1) then return(1); 1. if (n == 1) then return(1);
2. h = H1(n− 1) +H1(n− 1) + 1; 2. h = 2 ·H2(n− 1) + 1;
3. return(h). 3. return(h).

Solution. First consider the algorithm H1(n). Let T1(n) be the running time of
the algorithm H1(n) on n disks. Since step 2 of the algorithm H1(n) (recursively)
calls the algorithm H1(n− 1) twice, we have the following recurrence relation:

T1(1) = O(1), and T1(n) = 2T1(n− 1) +O(1) for k > 1.

Converting it into

T1(1) ≤ C, and T1(n) ≤ 2T1(n− 1) + C for k > 1,

and replacing n in the inequality T1(n) ≤ 2T1(n− 1)+C with n− 1 and n− 2 give

T1(n) ≤ 2T1(n− 1) + C ≤ 2 (2T1(n− 2) + C) + C = 22T1(n− 2) + 2C + C

≤ 22 (2T1(n− 3) + C) + 2C + C = 23T1(n− 3) + 22C + 2C + C.

From this, it is easy to formally prove that for a general k < n, we have

T1(n) ≤ 2kT1(n− k) + (2k−1 + 2k−2 + · · ·+ 2 + 1)C = 2kT1(n− k) + (2k − 1)C.

Letting k = n− 1, we get

T1(n) ≤ 2n−1T1(1) + (2n−1 − 1)C ≤ 2n−1C + (2n−1 − 1)C = (2n − 1)C = O(2n),

where the last equality is because C is a constant. In conclusion, the running time
of the algorithm H1(n) on n disks is O(2n).

Similarly, we can find the time complexity T2(n) of the algorithm H2(n). The
major difference here is that instead H2(n) recursively calls H2(n − 1) only once.
Thus, from the recurrence relation

T2(1) ≤ C, and T2(n) ≤ T2(n− 1) + C for k > 1,

replacing n with n− 1 and n− 2 gives T2(n) ≤ T2(n− 3) + 3C, from which we get,
for a general k < n, T2(n) ≤ T2(n− k) + k · C. Finally, letting k = n− 1 gives

T2(n) ≤ T2(1) + (n− 1)C ≤ C + (n− 1)C = n · C = O(n).

In conclusion, the running time of the algorithm H2(n) on n disks is O(n).
We remark that this question shows the significance of developing “good” al-

gorithms for a problem. Under the current computer power, algorithm H2(n) of
running time O(n) runs in less than a second for very large n (e.g., n is a million),
while algorithm H1(n) of running time O(2n) would take several weeks even for
small values of n such as n = 50 (see Question 3 in Homework #3).

2



3. In the following, n ≥ 2 is an integer.
(a) How many different binary strings are there of length n?
(b) How many different binary strings are there of length not larger than n?
(c) How many different binary strings are there of length n that start with 1?

Solution.
(a) There are 2n different binary strings of length n. This can be proved by

induction on n: for n = 1, there are exactly 2 = 21 binary strings of length 1, i.e.,
0 and 1. Assume the statement is true for n − 1. Now consider binary strings of
length n. Consider all binary strings of length n whose first bit is 0. Each of these
binary strings is given by the leading bit 0 followed by a binary string of length
n− 1. By the inductive hypothesis, there are 2n−1 different binary strings of length
n− 1, of which each plus the leading bit 0 gives a binary string of length n with the
leading bit 0. Thus, there are 2n−1 binary strings of length n whose leading bit is
0. Similarly, there are 2n−1 binary strings of length n whose leading bit is 1. Since
every binary string of length n has a leading bit either 0 or 1, and no two binary
strings can be the same if they have different leading bits, we conclude that there are
exactly 2n−1 + 2n−1 = 2n binary strings of length n. This completes the inductive
proof for the conclusion of our answer..

(b) The set of binary strings of length not larger than n consists of binary strings
whose length can be any of the values k for 1 ≤ k ≤ n. As proved in (a), for each
1 ≤ k ≤ n, there are exactly 2k binary strings of length k. Therefore, the number
of binary strings whose length is not larger than n is equal to

n∑
k=1

2k = 2n+1 − 2.

(c) As we have discussed in (a), each binary string of length n with a leading
bit 1 corresponds to a different binary string of length n− 1. By (a), there are 2n−1

different binary strings of length n − 1. We conclude that there are 2n−1 different
binary string of length n that starts with 1.

4. Give a formal proof for the following statement: for 145 people of different
heights standing in a line, it is always possible to find 13 people (not necessarily
consecutively) in the order they are standing in the line with heights that are either
increasing or decreasing.

Proof. The proof follows the same one we gave in class for general n: a sequence
of n2+1 distinct numbers contains either an increasing subsequence of length n+1
or a decreasing subsequence of length n+ 1.

Let ⟨a1, a2, a3, . . . , a144, a145⟩ be the heights of the people, in the order they are
standing in the line. Assume the contrary that there are no 13 people in the line
whose heights are either increasing or decreasing in the order they are standing in

3



the line. Thus, for each person ak in the line, we assign ak a pair (ik, dk), where ik
and dk, respectively, are the length of the longest increasing subsequence and longest
decreasing subsequence starting from ak in ⟨ak, ak+1, . . . , a145⟩.

By the assumption, 1 ≤ ik, dk ≤ 12 (note that both ik and dk are at least 1
because ak by itself is an incresing and decreasing subsequence of length 1). Thus,
there are at most 12 different values for each of ik and dk, so there are at most
12 · 12 = 144 different pairs of the form (ik, dk). Since there are totally 145 people
in the line, by the Pigeonhole principle, there are two different people ah and ak in
the line, h < k, such that the pairs (ih, dh) and (ik, dk) are the same (i.e., ih = ik
and dh = dk). However, this leads to a contradiction (note all ak are distinct):

(1) if ah < ak, then ah plus the increasing subsequence of length ik starting
from ak gives an increasing subsequence of length ik + 1 = ih + 1 starting from ah,
contradicting the definition that ih is the length of the longest increasing subsequence
from ah.

(2) if ah > ak, then ah plus the decreasing subsequence of length dk starting from
ak gives a decreasing subsequence of length dk + 1 = dh + 1 starting from ah, con-
tradicting the definition that dh is the length of the longest decreasing subsequence
from ah.

By the principle of proof by contradiction, this proves that there are 13 people
in the line whose heights are either increasing or decreasing in the order they are
standing in the line.

5. A circular permutation of n people is a seating of the n people around a circular
table, where seatings are considered to be the same if they can be obtained from
each other by rotating the table. How many different circular permutations are there
for n people? Give an explanation on your answer.

Solution. Let the n people be p1, p2, . . ., pn, and let the table seats be labeled
1, 2, . . . , n. Since two seatings are regarded the same if one can be obtained from the
other by rotating the table, we can assume that in all seatings, person p1 is always
sitting at seat 1 (otherwise, we can rotate the table to move p1 to seat 1).

Therefore, a seating of the n people is to assign the n−1 people p2, p3, . . ., pn to
the n − 1 seats 2, 3, . . . , n. There is an obvious one-to-one correspondence between
the set of permutations of the n − 1 people p2, p3, . . ., pn and the set of seatings
of the n people: a permutation ⟨pi2 , pi3 , . . . , pin⟩ of the n − 1 people p2, p3, . . ., pn
corresponds to the seating that assigns person p1 to seat 1, and assigns person pij to
seat j for all 2 ≤ j ≤ n. As a result, the number of different circular permutations
of the n people p1, p2, . . ., pn, i.e., the number of different seatings of the n people
p1, p2, . . ., pn around the circular table, is equal to the number of permutations of
the n− 1 people p2, p3, . . ., pn, which is (n− 1)!.

An interesting extension of the problem. If we assume the round table has
m seats, where m ≥ n, then how many different seatings are there for n people?

4


