
CSCE 222-200 Discrete Structures for Computing

Fall 2024

Instructor: Dr. Jianer Chen Teaching Assistant: Evan Kostov
Office: PETR 428 Office: EABC Cubicle 6
Phone: (979) 845-4259 Phone: (469) 996-5494
Email: chen@cse.tamu.edu Email: evankostov@tamu.edu
Office Hours: T+R 2:00pm–3:30pm Office Hours: MW 4:00pm-5:00pm

Assignment #3 Solutions

1. Give a big-O estimate for the number of number additions (i.e., the additions in
the fourth statement t = t+ i+ j) in the following algorithm.

t = 0;
for (i = 1; i ≤ n; i++)

for (j = 1; j ≤ n; j++)
t = t+ i+ j.

Solution. The for-loop “for (i = 1; i ≤ n; i++)” iterates over n values of i, for
i = 1, 2, . . . , n. For each iterated value of i, the algorithm iterates in the for-loop
“for (j = 1; j ≤ n; j++)” over n values of j, for j = 1, 2, . . . , n. As a result, for each
value of i, the for-loop “for (j = 1; j ≤ n; j++)” executes the statement “t = t+i+j”
exactly n times. Since the algorithm executes the for-loop “for (i = 1; i ≤ n; i++)”
for n values of i, it executes the statement “t = t+ i+ j” in total n · n = n2 times.
Since each execution of the statement “t = t+ i+ j” has two additions, we conclude
that the algorithm executes 2n2 = O(n2) additions.

2. Give a big-O estimate for the number of arithmetic operations (i.e., additions
and multiplications) in the following algorithm. What is the value of t at the end of
the algorithm?

i = 1; t = 0;
while (i ≤ n)

{ t = t+ i; i = 2i }

Solution. The only two arithemtic operations (one addition plus one multiplication)
occur in the statement “{ t = t+i; i = 2i }” in the while-loop in the algorithm. Thus,
we only need to count how many times the statement is executed. The value i in the
while-loop starts with i = 1, doubled in each execution of the statement “{ t = t+ i;
i = 2i }”, and ends when the condition i ≤ n no longer holds. Therefore, for the
following values of i: 1 = 20, 2 · 20 = 21, 2 · 21 = 22, . . ., 2r ≤ n, the statement

1



“{ t = t + i; i = 2i }” is executed, where r is the largest integer such that 2r ≤ n.
Taking the logarithms on both sides of 2r ≤ n, we get r ≤ log2 n. Therefore, the
largest integer satisfying 2r ≤ n is r = ⌊log2 n⌋.

Thus, the statement “{ t = t+ i; i = 2i }” is executed by the algorithm exactly
⌊log2 n⌋ times. Since each execution has two arithmetic operations, the total number
of arithmetic operations executed by the algorithm is 2 · ⌊log2 n⌋ = O(log2 n).

Now consider the value of t. As we discussed above, the while-loop is executed
for the values i = 1, 2, 22, . . . , 2⌊log2 n⌋, while the statement “{ t = t+i; i = 2i }” adds
each of these values to t, where t starts with an initial value 0 (by the statement
“t = 0” in the first line). Therefore, at the end of the algorithm, the value of t is
(using the summation formula of geometric sequences)

0 + 20 + 21 + · · ·+ 2⌊log2 n⌋ = (2⌊log2 n⌋+1 − 1)/(2− 1) = 2⌊log2 n⌋+1 − 1.

3. How much time does an algorithm take to solve a problem of size n if this
algorithm uses 2n2 + 2n operations, each requiring 10−9 seconds, with each of the
following values of n?

a) 20 b) 50 c) 100 d) 200

Solution. This question is to show that if the running time of an algorithm is of
order such as 2n, then even for reasonably small input sizes, the algorithm would
become impractical.

(a) For value n = 20, we have 2n2 + 2n = 2 · 202 + 220 = 1, 049, 376. Thus, the
required time is (2n2 + 2n) · 10−9 = 0.01049376 ≈ 0.01 seconds (very fast).

(b) For value n = 50, we have 2n2+2n = 2 ·502+250 = 1, 125, 899, 906, 847, 624.
Thus, the required time is (2n2 + 2n) · 10−9 ≈ 1, 125, 900 seconds ≈ 13 days (quite
long, but probably still doable).

(c) For value n = 100, we have 2n2+2n = 2 ·1002+2100 ≈ 1, 267, 650, 600 ·1021.
Thus, the required time is (2n2 + 2n) · 10−9 ≈ 1.268 · 1021 seconds ≈ 40 · 1012 years
= 40, 000, 000, 000, 000 years (can you wait for the algorithm to finish?).

(d) For value n = 200, we have 2n2+2n = 2 ·2002+2200 ≈ 1, 606, 938, 044 ·1051.
Thus, the required time is (2n2 + 2n) · 10−9 ≈ 1.6 · 1051 seconds ≈ 5.1 · 1043 years
= 51, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000 years (will the
Earth still exist?).

4. Devise an algorithm that on an array A[1..n] of n integers prints out (using a
statement print(i)) all indices i such that A[i] > A[1]+A[2]+ · · ·+A[i− 1]. What
is the time complexity of your algorithm in terms of big-O notation?

Solution. The algorithm is given as follows.

2



t = 0;
for (i = 1; i ≤ n; i++)

if (A[i] > t) print(i);
t = t+A[i].

The variable t is used to hold the value of A[1] +A[2] + · · ·+A[i− 1] when the
for-loop “for (i = 1; i ≤ n; i++)” reaches the current value of i. Thus,, t is initialized
to 0 (in the first line of the algorithm), and increased by A[i] when the element A[i]
is processed (in the fourth line of the algorithm, so to get ready for processing the
next element A[i+1]). Moreover, when the algorithm processes the element A[i], it
compares the values of A[i] and t, which is equal to A[1] +A[2] + · · ·+A[i− 1], and
prints the index i if A[i] is larger than t = A[1] +A[2] + · · ·+A[i− 1] (in the third
line of the algorithm), as required by the question. As a result, the algorithm does
exactly what the question asks for.

Now we consider the time complexity of the algorithm. Line 1 of the algorithm
takes constant time, i.e., runs in time O(1). For each value of i, the algorithm runs
in time O(1) in lines 3-4 (doing a comparison, a possible printing, and an addition).
Since the for-loop “for (i = 1; i ≤ n; i++)” iterates exactly n times, we conclude
that the time complexity of the algorithm is

O(1) + n ·O(1) = O(n).

5. Devise an algorithm for finding the first and second largest elements in an array
A[1, , n] of n integers. What is the time complexity of your algorithm in terms of
big-O notation?

Solution. The algorithm is given as follows (assuming n ≥ 2).

if (A[1] > A[2])
then { max 1 = A[1]; max 2 = A[2] }
else { max 1 = A[2]; max 2 = A[1] };
for (i = 3; i ≤ n; i++)

if (A[i] > max 1)
then { max 2 = max 1; max 1 = A[i]; }
else if (A[i] > max 2) then max 2 = A[i].

The algorithm uses two variables max 1 and max 2, which hold, respectively, the
largest and the second largest elements that have been processed so far. Initially for
i = 2, max 1 and max 2 hold, correctly and respectively, the larger and the smaller of
A[1] and A[2] (see lines 1-3 of the algorithm). The for-loop “for (i = 3; i ≤ n; i++)”
in line 4 starts with i = 3 and iterates n− 2 times.

In an iteration of the for-loop for a value i, if A[i] > max 1, then since max 1 is
the largest in {A[1], A[2], . . . , A[i − 1]}, A[i] is the largest and max 1 becomes the
second largest in {A[1], A[2], . . . , A[i − 1], A[i]}. The algorithm records this change

3



accordingly in line 6. On the other hand, if in line 7 the condition A[i] > max 2
is satisfied, then (because of line 5) we have both A[i] ≤ max 1 and A[i] > max 2,
so max 1 remains the largest but the element A[i] becomes the second largest in
{A[1], A[2], . . . , A[i − 1], A[i]}. This change is recorded by the algorithm in line 7.
Note that the condition that both (A[i] ≤ max 1 and A[i] ≤ max 2 hold needs no
change because in this case, max 1 and max 2 remain, respectively, as the largest
and the second largest in {A[1], A[2], . . . , A[i− 1], A[i]}.

This shows that the algorithm solves the given problem correctly.
The time complexity of the algorithm is obvious. Lines 1-3 of the algorithm take

time O(1) (doing one comparison and two value assignments). The for-loop in line
4 iterates n− 2 times, each again takes time O(1) for doing one or two comparisons
plus one or two value assignments. As a result, we conclude that the time complexity
of the algorithm is

O(1) + (n− 2) ·O(1) = O(n).

4


