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Assignment #2 Solutions

1. Determine whether each of the statements below is true or false. Give a one-
sentence explanation to your solution to each statement.

(a) ∅ ∈ {∅}; (b) ∅ ∈ {∅, {∅}}; (c) {∅} ∈ {∅}; (d) {∅} ∈ {{∅}};
(e) ∅ ⊂ {∅}; (f) ∅ ⊂ {∅, {∅}}; (g) {∅} ⊂ {∅}; (h) {∅} ⊂ {{∅}}.

Solution.
(a) ∅ ∈ {∅}: True, ∅ is an element in the set {∅}.
(b) ∅ ∈ {∅, {∅}}: True, ∅ is an element in the set {∅, {∅}}.
(c) {∅} ∈ {∅}: False, {∅} (the set that contains a single element ∅) is not

an element in the set {∅}.
(d) {∅} ∈ {{∅}}: True, {∅} is an element in the set {{∅}}.
(e) ∅ ⊂ {∅}: True, the empty set ∅ is a subset of every set and is a proper

subset of {∅} because {∅} is not an empty set.
(f) ∅ ⊂ {∅, {∅}}: True, the same reason as that for (e).
(g) {∅} ⊂ {∅}: False, {∅} ⊆ {∅} but {∅} is not a proper subset of {∅}.
(h) {∅} ⊂ {{∅}}: False, the element ∅ in {∅} is not an element of {{∅}}.

2. Prove or disprove that for all sets A, B, and C, we have

(a) A× (B ∪C) = (A×B)∪ (A×C); (b) A× (B ∩C) = (A×B)∩ (A×C).

Solution. Here we heavily use the fact that for any two sets S and T , we always
have S ⊆ S ∪ T .

(a) A× (B ∪ C) = (A×B) ∪ (A× C) holds true. The following is a proof.
Let t be an arbitrary element in A × (B ∪ C). By definition, t = (a, d), where

a ∈ A and d ∈ B ∪ C. If d ∈ B, then (a, d) ∈ A × B ⊆ (A × B) ∪ (A × C) so
(a, d) ∈ (A × B) ∪ (A × C). Similarly, if d ∈ C, then (a, d) ∈ A × C so (a, d) ∈
(A × B) ∪ (A × C). Thus, we always have t ∈ (A × B) ∪ (A × C). Since t is an
arbitrary element in A× (B∪C), this proves that A× (B∪C) ⊆ (A×B)∪ (A×C).
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Conversely, let s be an arbitrary element in (A×B)∪(A×C), then by definition,
s = (a′, d′) is either in A×B or in A×C. Thus, we must have a′ ∈ A, and d′ is either
in B or in C. Thus, d′ must be in B ∪ C. As a result, s = (a′, d′) ∈ A × (B ∪ C).
This proves that (A×B) ∪ (A× C) ⊆ A× (B ∪ C).

Summarizing the above results, we conclude that A×(B∪C) = (A×B)∪(A×C).

(b) A× (B ∩ C) = (A×B) ∩ (A× C) also holds true, as proved below.
Let t be an arbitrary element in A×(B∩C). By definition, t = (a, d), where a ∈ A

and d ∈ B∩C, so d ∈ B and d ∈ C. This gives (a, d) ∈ A×B and (a, d) ∈ A×C. As
a result, (a, d) is in (A×B)∩(A×C).This proves that A×(B∩C) ⊆ (A×B)∩(A×C).

Conversely, let s be an arbitrary element in (A×B)∩(A×C). Then by definition,
s is in both A × B and A × C. Thus, we must have s = (a′, d′), where a′ ∈ A and
d′ is in both B and C. Thus, d′ ∈ B ∩ C. As a result s = (a′, d′) is in A× (B ∩ C).
This proves that (A×B) ∩ (A× C) ⊆ A× (B ∩ C).

Summarizing the above results, we conclude that A×(B∩C) = (A×B)∩(A×C).

3. Find
⋃∞

i=1Ai and
⋂∞

i=1Ai if for each positive integer i,

(a) Ai = [0, i), that is, the set of real numbers x with 0 ≤ x < i;
(b) Ai = [i,∞), that is, the set of real numbers x with x ≥ i.

Solution.
(a) If Ai = [0, i) for all i ≥ 1, then by the definition, we have

⋃∞
i=1Ai = [0,∞),

and
⋂∞

i=1Ai = [0, 1).

(b) If Ai = [i,∞) for all i ≥ 1, then by the definition, we have
⋃∞

i=1Ai = [1,∞),
and

⋂∞
i=1Ai = ∅ (please make sure that you understand this solution).

4. Give an example of a function from N to N (where N is the set of natural
numbers, i.e., N = {0, 1, 2, 3, . . .}) that is

(a) one-to-one but not onto; (b) onto but not one-to-one;

(c) both onto and one-to-one; (d) neither one-to-one nor onto.

Solution.
(a) The function f1(n) = n+ 1 for all n ∈ N is an example of such a function:

f1 is obviously one-to-one because n1 ̸= n2 implies f1(n1) ̸= f1(n2), but is not onto
because 0 is not in the range of f1.

(b) The function f2(n) = ⌊n/2⌋ for all n ∈ N is an example of such a function:
f2 is onto because for each integer k in the co-domian N, f2(2k) = k, but is not
one-to-one because, for example, f2(2) = f2(3) = 1.

(c) The trivial function f3(n) = n is obviously both onto and one-to-one.

(d) The trivial function f4(n) = 0 is obviously neither onto nor one-to-one.
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5. Suppose that g is a function from A to B and f is a function from B to C.

(a) Prove that if f ◦ g is onto, then f must be onto;

(b) Prove that if f ◦ g is one-to-one, then g must be one-to-one;

(c) Prove that if both f and g are one-to-one, then f ◦ g must be one-to-one.

Proof. By the definition, f ◦ g is a function from A to C.
(a) We prove this by contraposition. Assume the contrary that f is not an onto

function from B to C, that is, there is an element c in C such that for all elements b
in B, f(b) ̸= c. Since g is a function from A to B, for all a in A, g(a) is an element
in B. Thus, for all a ∈ A, we must have f ◦ g(a) = f(g(a)) ̸= c, i.e., f ◦ g is not onto
from A to C, contradicting the assumption of subquestion (a) that f ◦ g is onto.
This contradiction proves that if f ◦ g is onto, then f must be onto.

(b) Again we prove by contraposition. Assume the contrary that g is not a
one-to-one function from A to B, that is, there are two distinct elements a1 and a2
in A such that g(a1) = g(a2). However, this would lead to f ◦ g(a1) = f(g(a1)) =
f(g(a2)) = f ◦ g(a2), i.e., the function f ◦ g is not one-to-one, contradicting the
assumption of subquestion (b) that f ◦ g is one-to-one. This contradiction proves
that if f ◦ g is one-to-one, then g must be one-to-one.

(c) Suppose that both f and g are one-to-one. Then, since g is one-to-one, for
any two distinct elements a1 and a2 in A, g(a1) and g(a2) are both in B and g(a1) ̸=
g(a2). Now the fact that f is also one-to-one (from B to C), plus g(a1) ̸= g(a2),
shows that f ◦ g(a1) = f(g(a1)) ̸= f(g(a2)) = f ◦ g(a2). Since a1 and a2 are two
arbitrary elements in A, this shows that f ◦ g is one-to-one from A to C.

6. Prove the following statements.

(a) If n is an integer, then n = ⌈n/2⌉+ ⌊n/2⌋;
(b) For all integers n, ⌈n/2⌉ · ⌊n/2⌋ = ⌊n2/4⌋.

Proof. First note that if n is even, then ⌈n/2⌉ = ⌊n/2⌋ = n/2, while if n is odd,
then ⌈n/2⌉ = (n+ 1)/2 and ⌊n/2⌋ = (n− 1)/2.

(a) If n is even, then ⌈n/2⌉+ ⌊n/2⌋ = n/2 + n/2 = n. On the other hand, if n
is odd, then ⌈n/2⌉+ ⌊n/2⌋ = (n+1)/2+ (n− 1)/2 = 2n/2 = n. Thus, regardless of
the parity of n, we always have n = ⌈n/2⌉+ ⌊n/2⌋. This proves proposition (a).

(b) If n is even, then ⌈n/2⌉ · ⌊n/2⌋ = (n/2) · (n/2) = n2/4 = ⌊n2/4⌋. The last
equality is because when n is even, n2 is divisible by 4, i.e., n2/4 is an integer.

Now suppose that n is odd, i.e., n = 2k + 1 for an integer k. Then, n2 =
4k2 + 4k + 1, and (n2/4)− 0.25 = k2 + k is an integer that is obviously the largest
integer that is not larger than n2/4. This gives ⌊n2/4⌋ = (n2/4)− 0.25. Thus

⌊n2/4⌋ = (n2/4)− 0.25 = (n2 − 1)/4 = ((n+ 1)/2) · ((n− 1)/2) = ⌈n/2⌉ · ⌊n/2⌋.

This proves proposition (b) for odd n. Thus, regardless of the parity of n, we
always have ⌈n/2⌉ · ⌊n/2⌋ = ⌊n2/4⌋. This proves proposition (b).
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