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Assignment #2 Solutions

1. Determine whether each of the statements below is true or false. Give a one-
sentence explanation to your solution to each statement.

(@) 0e{0}; () 0e{0,{0}}; (o) {03 {0} (d) {0} {{0}}
() {0y (1) 0c{0,{0}}; (o) {0} {0} () {0} c {{0}}.

Solution.
(a) 0e{0}: True, () is an element in the set {0}.
(b) 0 e{0,{0}}: True, 0 is an element in the set {0, {0}}.
(c) {0} € {0}: False, {#} (the set that contains a single element (}) is not

an element in the set {0}.

(d) {0} € {{0}}: True, {0} is an element in the set {{0}}.

(e) 0 c{0}: True, the empty set () is a subset of every set and is a proper
subset of {(} because {(} is not an empty set.

(f) 0 c{0,{0}}: True, the same reason as that for (e).

(g) {0} Cc {0}: False, {0} C {0} but {0} is not a proper subset of {{}.

(h) {0} c {{0}}: False, the element () in {@} is not an element of {{(}}.

2. Prove or disprove that for all sets A, B, and C, we have
(a) Ax(BUC)=(AxB)U(AxC(C); (b) Ax(BNC)=(AxB)N(Ax0QO).

Solution. Here we heavily use the fact that for any two sets S and T, we always
have S C SUT.

(a) Ax (BUC)=(Ax B)U(A x C) holds true. The following is a proof.

Let t be an arbitrary element in A x (B U C). By definition, ¢ = (a,d), where
a € Aand d € BUC. If d € B, then (a,d) € Ax B C (Ax B)U(AxC) so
(a,d) € (A x B)U (A x C). Similarly, if d € C, then (a,d) € A x C so (a,d) €
(A x B)U (A x C). Thus, we always have t € (A x B) U (A x ). Since t is an
arbitrary element in A x (BUC), this proves that A x (BUC) C (Ax B)U(Ax ().



Conversely, let s be an arbitrary element in (A x B)U(A x C), then by definition,
s = (d',d') is either in Ax B or in Ax C. Thus, we must have o’ € A, and d' is either
in B or in C. Thus, d must be in BUC. As a result, s = (a/,d') € Ax (BUC).
This proves that (A x B)U(Ax C) CAx (BUC).

Summarizing the above results, we conclude that Ax (BUC) = (Ax B)U(AxC(C).

(b) Ax (BNC)=(Ax B)n(Ax () also holds true, as proved below.

Let t be an arbitrary element in Ax (BNC'). By definition, ¢t = (a,d), wherea € A
and d € BNC,sod € B and d € C. This gives (a,d) € Ax B and (a,d) € AxC. As
aresult, (a,d)isin (Ax B)N(AxC).This proves that Ax (BNC) C (AxB)N(AxC).

Conversely, let s be an arbitrary element in (Ax B)N(AxC'). Then by definition,
s is in both A x B and A x C. Thus, we must have s = (a’,d’), where a’ € A and
d' is in both B and C. Thus, d € BNC. Asaresult s = (¢/,d’) isin Ax (BNCQC).
This proves that (A x B)N(Ax C) CAx (BNCO).

Summarizing the above results, we conclude that Ax (BNC) = (Ax B)N(AxC).

3. Find U2, A; and ;2 4; if for each positive integer i,
(a) A; =[0,1), that is, the set of real numbers x with 0 < x < 4;
(b) A; = [i,00), that is, the set of real numbers z with = > i.

Solution.

(a) If A; =10,4) for all ¢ > 1, then by the definition, we have [J;2; 4; = [0, 00),
and ;2 A;i =0, 1).

(b) If A; = [i,00) for all ¢ > 1, then by the definition, we have [ J32; 4; = [1, 00),
and N2, A; = (0 (please make sure that you understand this solution).

4. Give an example of a function from N to N (where N is the set of natural
numbers, i.e., N ={0,1,2,3,...}) that is

(a) one-to-one but not onto; (b) onto but not one-to-one;
(c) both onto and one-to-one; (d) neither one-to-one nor onto.
Solution.

(a) The function fi(n) =n+ 1 for all n € N is an example of such a function:
f1 is obviously one-to-one because nj # ng implies fi(n1) # fi(n2), but is not onto
because 0 is not in the range of fi.

(b) The function fa(n) = |n/2] for all n € N is an example of such a function:
f2 is onto because for each integer k in the co-domian N, f2(2k) = k, but is not
one-to-one because, for example, f2(2) = f2(3) = 1.

(¢) The trivial function f3(n) = n is obviously both onto and one-to-one.

(d) The trivial function f4(n) = 0 is obviously neither onto nor one-to-one.



5. Suppose that g is a function from A to B and f is a function from B to C.
(a) Prove that if f o g is onto, then f must be onto;
(b) Prove that if f o g is one-to-one, then g must be one-to-one;

(c) Prove that if both f and g are one-to-one, then f o g must be one-to-one.

Proof. By the definition, f o g is a function from A to C.

(a) We prove this by contraposition. Assume the contrary that f is not an onto
function from B to C, that is, there is an element ¢ in C' such that for all elements b
in B, f(b) # c. Since g is a function from A to B, for all a in A, g(a) is an element
in B. Thus, for all a € A, we must have fog(a) = f(g(a)) # ¢, i.e., fog is not onto
from A to C, contradicting the assumption of subquestion (a) that f o g is onto.
This contradiction proves that if f o g is onto, then f must be onto.

(b) Again we prove by contraposition. Assume the contrary that g is not a
one-to-one function from A to B, that is, there are two distinct elements a1 and ao
in A such that g(a;) = g(az). However, this would lead to f o g(a1) = f(g(a1)) =
f(g(a2)) = f o g(az), ie., the function f o g is not one-to-one, contradicting the
assumption of subquestion (b) that f o g is one-to-one. This contradiction proves
that if f o g is one-to-one, then g must be one-to-one.

(c) Suppose that both f and g are one-to-one. Then, since g is one-to-one, for
any two distinct elements a; and ag in A, g(a1) and g(ag) are both in B and g(a1) #
g(a2). Now the fact that f is also one-to-one (from B to C), plus g(a1) # g(a2),

shows that f o g(a1) = f(g(a1)) # f(g(a2)) = f o g(az). Since a; and ag are two
arbitrary elements in A, this shows that f o g is one-to-one from A to C.

6. Prove the following statements.
(a) If n is an integer, then n = [n/2] + |n/2];
(b) For all integers n, [n/2] - [n/2] = [n?/4].

Proof. First note that if n is even, then [n/2] = [n/2] = n/2, while if n is odd,
then [n/2] = (n+1)/2 and |[n/2] = (n —1)/2.

(a) If nis even, then [n/2] + [n/2] = n/2 4+ n/2 = n. On the other hand, if n
is odd, then [n/2]+ [n/2] = (n+1)/2+ (n—1)/2 = 2n/2 = n. Thus, regardless of
the parity of n, we always have n = [n/2] + |n/2]. This proves proposition (a).

(b) If n is even, then [n/2]-|n/2] = (n/2) - (n/2) = n?/4 = |n?/4]. The last
equality is because when n is even, n? is divisible by 4, i.e., n?/4 is an integer.

Now suppose that n is odd, i.e., n = 2k + 1 for an integer k. Then, n?> =
4k% + 4k + 1, and (n%/4) — 0.25 = k? + k is an integer that is obviously the largest
integer that is not larger than n?/4. This gives [n?/4] = (n?/4) — 0.25. Thus

[n2/4] = (n?/4) = 0.25 = (n? — 1)/4 = (n +1)/2) - (n — 1)/2) = [n/2] - [n/2].
This proves proposition (b) for odd n. Thus, regardless of the parity of n, we
always have [n/2] - [n/2] = [n?/4]. This proves proposition (b).



