CSCE 222-200 Discrete Structures for Computing

Fall 2024

Instructor: Dr. Jianer ChenTeaching Assistant: Evan KostovOffice: PETR 428Office: EABC Cubicle 6Phone: (979) 845-4259Phone: (469) 996-5494Email: chen@cse.tamu.eduEmail: evankostov@tamu.eduOffice Hours: T+R 2:00pm-3:30pmOffice Hours: MW 4:15pm-5:15pm

Assignment #2 Solutions

1. Determine whether each of the statements below is true or false. Give a one-sentence explanation to your solution to each statement.

(a) $\emptyset \in \{\emptyset\};$	(b) $\emptyset \in \{\emptyset, \{\emptyset\}\};$	(c) $\{\emptyset\} \in \{\emptyset\};$	(d) $\{\emptyset\} \in \{\{\emptyset\}\};$
(e) $\emptyset \subset \{\emptyset\};$	(f) $\emptyset \subset \{\emptyset, \{\emptyset\}\};$	(g) $\{\emptyset\} \subset \{\emptyset\};$	(h) $\{\emptyset\} \subset \{\{\emptyset\}\}.$

Solution.

(a) $\emptyset \in \{\emptyset\}$:	True, \emptyset is an element in the set $\{\emptyset\}$.	
(b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$:	True, \emptyset is an element in the set $\{\emptyset, \{\emptyset\}\}$.	
(c) $\{\emptyset\} \in \{\emptyset\}$:	False, $\{\emptyset\}$ (the set that contains a single element \emptyset) is not	
	an element in the set $\{\emptyset\}$.	
(d) $\{\emptyset\} \in \{\{\emptyset\}\}$:	True, $\{\emptyset\}$ is an element in the set $\{\{\emptyset\}\}$.	
(e) $\emptyset \subset \{\emptyset\}$:	True, the empty set \emptyset is a subset of every set and is a proper	
	subset of $\{\emptyset\}$ because $\{\emptyset\}$ is not an empty set.	
(f) $\emptyset \subset \{\emptyset, \{\emptyset\}\}$:	True, the same reason as that for (e).	
(g) $\{\emptyset\} \subset \{\emptyset\}$:	False, $\{\emptyset\} \subseteq \{\emptyset\}$ but $\{\emptyset\}$ is not a proper subset of $\{\emptyset\}$.	
(h) $\{\emptyset\} \subset \{\{\emptyset\}\}$:	False, the element \emptyset in $\{\emptyset\}$ is not an element of $\{\{\emptyset\}\}$.	

2. Prove or disprove that for all sets A, B, and C, we have

(a)
$$A \times (B \cup C) = (A \times B) \cup (A \times C);$$
 (b) $A \times (B \cap C) = (A \times B) \cap (A \times C).$

Solution. Here we heavily use the fact that for any two sets S and T, we always have $S \subseteq S \cup T$.

(a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ holds true. The following is a proof.

Let t be an arbitrary element in $A \times (B \cup C)$. By definition, t = (a, d), where $a \in A$ and $d \in B \cup C$. If $d \in B$, then $(a, d) \in A \times B \subseteq (A \times B) \cup (A \times C)$ so $(a, d) \in (A \times B) \cup (A \times C)$. Similarly, if $d \in C$, then $(a, d) \in A \times C$ so $(a, d) \in (A \times B) \cup (A \times C)$. Thus, we always have $t \in (A \times B) \cup (A \times C)$. Since t is an arbitrary element in $A \times (B \cup C)$, this proves that $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$.

Conversely, let s be an arbitrary element in $(A \times B) \cup (A \times C)$, then by definition, s = (a', d') is either in $A \times B$ or in $A \times C$. Thus, we must have $a' \in A$, and d' is either in B or in C. Thus, d' must be in $B \cup C$. As a result, $s = (a', d') \in A \times (B \cup C)$. This proves that $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$.

Summarizing the above results, we conclude that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

(b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ also holds true, as proved below.

Let t be an arbitrary element in $A \times (B \cap C)$. By definition, t = (a, d), where $a \in A$ and $d \in B \cap C$, so $d \in B$ and $d \in C$. This gives $(a, d) \in A \times B$ and $(a, d) \in A \times C$. As a result, (a, d) is in $(A \times B) \cap (A \times C)$. This proves that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$.

Conversely, let s be an arbitrary element in $(A \times B) \cap (A \times C)$. Then by definition, s is in both $A \times B$ and $A \times C$. Thus, we must have s = (a', d'), where $a' \in A$ and d' is in both B and C. Thus, $d' \in B \cap C$. As a result s = (a', d') is in $A \times (B \cap C)$. This proves that $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

Summarizing the above results, we conclude that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

3. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for each positive integer *i*,

(a) $A_i = [0, i)$, that is, the set of real numbers x with $0 \le x < i$;

(b) $A_i = [i, \infty)$, that is, the set of real numbers x with $x \ge i$.

Solution.

(a) If $A_i = [0, i)$ for all $i \ge 1$, then by the definition, we have $\bigcup_{i=1}^{\infty} A_i = [0, \infty)$, and $\bigcap_{i=1}^{\infty} A_i = [0, 1)$.

(b) If $A_i = [i, \infty)$ for all $i \ge 1$, then by the definition, we have $\bigcup_{i=1}^{\infty} A_i = [1, \infty)$, and $\bigcap_{i=1}^{\infty} A_i = \emptyset$ (please make sure that you understand this solution).

4. Give an example of a function from N to N (where N is the set of natural numbers, i.e., $N = \{0, 1, 2, 3, ...\}$) that is

- (a) one-to-one but not onto; (b) onto but not one-to-one;
- (c) both onto and one-to-one; (d) neither one-to-one nor onto.

Solution.

(a) The function $f_1(n) = n + 1$ for all $n \in \mathbf{N}$ is an example of such a function: f_1 is obviously one-to-one because $n_1 \neq n_2$ implies $f_1(n_1) \neq f_1(n_2)$, but is not onto because 0 is not in the range of f_1 .

(b) The function $f_2(n) = \lfloor n/2 \rfloor$ for all $n \in \mathbf{N}$ is an example of such a function: f_2 is onto because for each integer k in the co-domian \mathbf{N} , $f_2(2k) = k$, but is not one-to-one because, for example, $f_2(2) = f_2(3) = 1$.

- (c) The trivial function $f_3(n) = n$ is obviously both onto and one-to-one.
- (d) The trivial function $f_4(n) = 0$ is obviously neither onto nor one-to-one.

- 5. Suppose that g is a function from A to B and f is a function from B to C.
 - (a) Prove that if $f \circ g$ is onto, then f must be onto;
 - (b) Prove that if $f \circ g$ is one-to-one, then g must be one-to-one;
 - (c) Prove that if both f and g are one-to-one, then $f \circ g$ must be one-to-one.

Proof. By the definition, $f \circ g$ is a function from A to C.

(a) We prove this by contraposition. Assume the contrary that f is not an onto function from B to C, that is, there is an element c in C such that for all elements b in B, $f(b) \neq c$. Since g is a function from A to B, for all a in A, g(a) is an element in B. Thus, for all $a \in A$, we must have $f \circ g(a) = f(g(a)) \neq c$, i.e., $f \circ g$ is not onto from A to C, contradicting the assumption of subquestion (a) that $f \circ g$ is onto. This contradiction proves that if $f \circ g$ is onto, then f must be onto.

(b) Again we prove by contraposition. Assume the contrary that g is not a one-to-one function from A to B, that is, there are two distinct elements a_1 and a_2 in A such that $g(a_1) = g(a_2)$. However, this would lead to $f \circ g(a_1) = f(g(a_1)) = f(g(a_2)) = f \circ g(a_2)$, i.e., the function $f \circ g$ is not one-to-one, contradicting the assumption of subquestion (b) that $f \circ g$ is one-to-one. This contradiction proves that if $f \circ g$ is one-to-one, then g must be one-to-one.

(c) Suppose that both f and g are one-to-one. Then, since g is one-to-one, for any two distinct elements a_1 and a_2 in A, $g(a_1)$ and $g(a_2)$ are both in B and $g(a_1) \neq g(a_2)$. Now the fact that f is also one-to-one (from B to C), plus $g(a_1) \neq g(a_2)$, shows that $f \circ g(a_1) = f(g(a_1)) \neq f(g(a_2)) = f \circ g(a_2)$. Since a_1 and a_2 are two arbitrary elements in A, this shows that $f \circ g$ is one-to-one from A to C.

6. Prove the following statements.

- (a) If n is an integer, then $n = \lfloor n/2 \rfloor + \lfloor n/2 \rfloor$;
- (b) For all integers n, $\lceil n/2 \rceil \cdot \lceil n/2 \rceil = \lceil n^2/4 \rceil$.

Proof. First note that if n is even, then $\lceil n/2 \rceil = \lfloor n/2 \rfloor = n/2$, while if n is odd, then $\lceil n/2 \rceil = (n+1)/2$ and $\lfloor n/2 \rfloor = (n-1)/2$.

(a) If n is even, then $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n/2 + n/2 = n$. On the other hand, if n is odd, then $\lceil n/2 \rceil + \lfloor n/2 \rfloor = (n+1)/2 + (n-1)/2 = 2n/2 = n$. Thus, regardless of the parity of n, we always have $n = \lceil n/2 \rceil + \lfloor n/2 \rfloor$. This proves proposition (a).

(b) If n is even, then $\lceil n/2 \rceil \cdot \lfloor n/2 \rfloor = (n/2) \cdot (n/2) = n^2/4 = \lfloor n^2/4 \rfloor$. The last equality is because when n is even, n^2 is divisible by 4, i.e., $n^2/4$ is an integer.

Now suppose that n is odd, i.e., n = 2k + 1 for an integer k. Then, $n^2 = 4k^2 + 4k + 1$, and $(n^2/4) - 0.25 = k^2 + k$ is an integer that is obviously the largest integer that is not larger than $n^2/4$. This gives $\lfloor n^2/4 \rfloor = (n^2/4) - 0.25$. Thus

$$\lfloor n^2/4 \rfloor = (n^2/4) - 0.25 = (n^2 - 1)/4 = ((n+1)/2) \cdot ((n-1)/2) = \lceil n/2 \rceil \cdot \lfloor n/2 \rfloor.$$

This proves proposition (b) for odd n. Thus, regardless of the parity of n, we always have $\lceil n/2 \rceil \cdot \lfloor n/2 \rfloor = \lfloor n^2/4 \rfloor$. This proves proposition (b).