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Assignment #1 Solutions

1. Prove by induction that 3n < n! if n is an integer greater than 6.

Proof. We prove the inequality by induction on the integer n > 6.

Basis Step. Since n > 6, the basis case is n = 7. In this case, we have LHS
= 37 = 2187, and RHS = 7! = 5040. Thus, LHS < RHS. The inequality holds true.

Inductive Step. Assume inductively that the inequality holds true for all n,
when 7 ≤ n ≤ k.

Now consider the inequality for n = k + 1. We have

LHS = 3n = 3k+1 = 3k · 3 < k! · 3 < k! · (k + 1) = (k + 1)! = n! = RHS,

where in the first inequality, we have used the inductive hypothesis 3k < k!, while
in the second inequality, we have used the fact that 3 < k + 1 (because 7 ≤ k). As
a result, for n = k + 1, we still have the inequality 3n < n! hold true.

By mathematical induction, this proves that 3n < n! holds true for all n > 6.

2. (a) Find a formula for 1
1·2 + 1

2·3 + · · · + 1
n(n+1) by examing the values of this

expression for small values of n.
(b) Prove by induction the formula you conjectured in part (a).

Proof. (a) You may try the formula in any way you like. On the other hand, if
you observe that 1

n(n+1) = 1
n − 1

n+1 (for all n ≥ 1), then the formula of the given
summation becomes obvious:

1
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1

2 · 3
+ · · ·+ 1
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1

1
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2
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1

2
− 1
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+ · · ·
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1
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n+ 1
.
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(b) Now we verify the above guessed equality

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
= 1− 1

n+ 1

by induction on the integer n ≥ 1.

Basis Step. For the basis case n = 1, we have LHS = 1
1·2 = 1

2 , and RHS
= 1− 1

1+1 = 1
2 . Thus, LHS = RHS. The equality holds true.

Inductive Step. Assume inductively that the equality holds true for all n,
when 1 ≤ n ≤ k.

Now consider the equality for n = k + 1. We have (note that n ≥ 2 because
k ≥ 1)

LHS =
1

1 · 2
+

1

2 · 3
+ · · ·+ 1
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+

1

n(n+ 1)

=
1

1 · 2
+
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2 · 3
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k(k + 1)
+

1

(k + 1)(k + 2)

=

(
1− 1

k + 1

)
+

1

(k + 1)(k + 2)

=

(
1− 1

k + 1

)
+

(
1

(k + 1)
− 1

(k + 2)

)
= 1− 1

(k + 2)

= 1− 1

n+ 1
= RHS,

where in the third equality, we have used the inductive hypothesis 1
1·2 + 1

2·3 + · · ·+
1

n(n+1) = 1 − 1
n+1 for n = k, and in the fourth equality, we have used the fact

1
(k+1)(k+2) = 1

k+1 − 1
k+2 . As a result, for n = k + 1, we also have the equality

1
1·2 + 1

2·3 + · · ·+ 1
n(n+1) = 1− 1

n+1 hold true.

By mathematical induction, this proves that 1
1·2 + 1

2·3 + · · · + 1
n(n+1) = 1 − 1

n+1
holds true for all n ≥ 1.

3. Prove by contradiction that if x3 is irrational, then x is irrational.

Proof. Assume the contrary that x is not irrational, i.e., x is a rational number.
Then x can be written as the ratio of two integers m and n: x = m/n. Take the third
power on both sides, we get x3 = (m/n)3 = m3/n3. Since m and n are integers, m3

and n3 are also integers. As a result, x3 = m3/n3 would also be a rational number,
contradicting the assumption that x3 is irrational.

This contradiction proves that x must be irrational.
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4. Prove by contradiction that
√
2 +

√
3 is irrational.

Proof. Assume the contrary that
√
2+

√
3 is a rational number, i.e.,

√
2+

√
3 = m/n,

where m and n are integers. Take square on both sides, we get

(
√
2 +

√
3)2 = m2/n2.

Since (
√
2 +

√
3)2 = 2 + 2 ·

√
2 ·

√
3 + 3 = 5 + 2 ·

√
6, we get

√
6 = (m2/n2 − 5)/2 = (m2 − 5n2)/(2n2).

Since m and n are integers, m2 − 5n2 and 2n2 are also integers. As a result,
√
6 =

(m2 − 5n2)/(2n2) is a rational number, which can be written as

√
6 = r/q, (1)

where r and q are integers with no common factor larger than 1. Square both sides
of equality (1) then multiply both sides by q2, we get

6q2 = r2. (2)

Since 6q2 is divisible by 2, r2 is divisible by 2, which, as we discussed in class, leads
to the conclusion that r is also divisible by 2. Write r = 2k, where k is an integer,
then r2 = 4k2. Replacing r2 in (2) by 4k2, then divide both sides by 2, we get

3q2 = 2k2. (3)

However, this implies that q2 is divisible by 2, which, again by our discussion in
class, will further leads to the conclusion that q is divisible by 2. Thus, we would
derive that both r and q are divisible by 2, contradicting our assumption that r and
q have no common factor larger than 1.

This contradiction proves that
√
2 +

√
3 is irrational.

5. Let p, q, and r be the propositions:

p: You get an A on the final exam;
q: You do every exercise in this book;
r: You get an A in this class.

Write each of the propositions below using p, q, r and logical operators:

(a) You get an A in this class, but you do not do every exercise in this book.
(b) You get an A on the final, you do every exercise in this book, and you get

an A in this class.
(c) To get an A in this class, it is necessary for you to get an A on the final.
(d) You get an A on the final, but you do not do every exercise in this book;

nevertheless, you get an A in this class.
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(e) Getting an A on the final and doing every exercise in this book is sufficient
for getting an A in this class.

(f) You will get an A in this class if and only if you either do every exercise in
this book or you get an A on the final.

Solution.

(a) r ∧ ¬q. (b) p ∧ q ∧ r. (c) r → p.

(d) p ∧ ¬q ∧ r. (e) (p ∧ q) → r. (f) r ↔ (p ∨ q).

6. For each of the compound propositions below, use the conditional-disjunction
equivalence to find an equivalent compound proposition that does not involve con-
ditionals:

(a) ¬p → ¬q. (b) (p∨q) → ¬p. (c) (p → ¬q) → (¬p → q).

Solution. The formula for the conditional-disjunction equivalence is p → q ≡ ¬p∨q.

(a) ¬p → ¬q ≡ ¬(¬p) ∨ (¬q) ≡ p ∨ ¬q.

(b) (p ∨ q) → ¬p ≡ ¬(p ∨ q) ∨ (¬p) ≡ (¬p ∧ ¬q) ∨ (¬p).

(c) (p → ¬q) → (¬p → q) ≡ (¬p∨¬q) → (p∨ q) ≡ ¬(¬p∨¬q)∨ (p∨ q) ≡
≡ (p∧q)∨(p∨q) ≡ (p∨(p∨q))∧(q∨(p∨q)) ≡ (p∨q)∧(p∨q) ≡ p∨q.

4


