CSCE 222-200 Discrete Structures for Computing

Fall 2024

Instructor: Dr. Jianer Chen Office: PETR 428 Phone: (979) 845-4259 Email: chen@cse.tamu.edu Office Hours: T+R 2:00pm-3:30pm Teaching Assistant: Evan Kostov Office: EABC Cubicle 6 Phone: (469) 996-5494 Email: evankostov@tamu.edu Office Hours: MW 4:15pm-5:15pm

Assignment # 2 (Due September 19)

1. Determine whether each of the statements below is true or false. Give a one-sentence explanation to your solution to each statement.

- (a) $\emptyset \in \{\emptyset\}$; (b) $\emptyset \in \{\emptyset, \{\emptyset\}\}$; (c) $\{\emptyset\} \in \{\emptyset\}$; (d) $\{\emptyset\} \in \{\{\emptyset\}\}$;
- (e) $\emptyset \subset \{\emptyset\};$ (f) $\emptyset \subset \{\emptyset, \{\emptyset\}\};$ (g) $\{\emptyset\} \subset \{\emptyset\};$ (h) $\{\emptyset\} \subset \{\{\emptyset\}\}.$

2. Prove or disprove that for all sets A, B, and C, we have

(a) $A \times (B \cup C) = (A \times B) \cup (A \times C);$ (b) $A \times (B \cap C) = (A \times B) \cap (A \times C).$

3. Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for each positive integer *i*,

- (a) $A_i = [0, i)$, that is, the set of real numbers x with $0 \le x < i$;
- (b) $A_i = [i, \infty)$, that is, the set of real numbers x with $x \ge i$.

4. Give an example of a function from N to N (where N is the set of natural numbers, i.e., $N = \{0, 1, 2, 3, ...\}$) that is

- (a) one-to-one but not onto; (b) onto but not one-to-one;
- (c) both onto and one-to-one; (d) neither one-to-one nor onto.
- 5. Suppose that g is a function from A to B and f is a function from B to C.
 - (a) Prove that if $f \circ g$ is onto, then f must be onto;
 - (b) Prove that if $f \circ g$ is one-to-one, then g must be one-to-one;
 - (c) Prove that if both f and g are one-to-one, then $f \circ g$ must be one-to-one.
- 6. Prove the following statements.
 - (a) If n is an integer, then $n = \lceil n/2 \rceil + \lfloor n/2 \rfloor$;
 - (b) For all integers n, $\lceil n/2 \rceil \cdot \lfloor n/2 \rfloor = \lfloor n^2/4 \rfloor$.