Limitations of First-Order Logic

- FOL is very expressive, but...consider how to translate these:
 - "most students graduate in 4 years"
 - $\forall x \text{ student}(x) \rightarrow \text{duration}(\text{undergrad}(x)) \leq \text{years}(4) \text{ (all???)}$
 - "only a few students switch majors"
 - ∃s,m1,m2,t1,t2 student(s)^major(s,m1,t1)∧major(s,m2,t2) ∧m1≠m2 ∧ t1≠t2 (exists???)
 - "all birds can fly, except penguins, stuffed birds, plastic birds, birds with broken wings..."
 - The problem(s) with FOL involve expressing:
 - default rules & exceptions
 - degrees of truth
 - strength of rules

Practical needs for modeling Uncertainty in KBS

- What happens if you do not know whether an antecedent is T or F?
- neither T nor F, but 'unknown' (not allowed in Boolean logic)
- FOL treats 'unasserted' facts as "could be either T or F" when determining entailment, e.g. { A∧B→C , A } does not entail C
- what we often want to do is assume the most likely state (B or ¬B) by default
- examples:
 - what if a doctor has to make a diagnosis before white blood cell count is available?
 - or treat a patient even if history of seizures is unknown (because they are unconscious)?

- We will show how to:
 - make default assumptions that are most likely, and derive inferences from them
 - utilize prior and conditional probabilities
 - marginalize over unknowns (which is like weighted averaging by conditional probability of T or F)

Limitation of First-Order Logic

- FOL is not good at handling exceptions
 - universal quantifier means ALL; can't say "most" birds fly
 - $\forall x \ bird(x) \rightarrow flies(x)$
 - asserting *bird(opus)* ∧¬*flies(opus*) in the KB would cause it to be inconsistent
 - FOL is *monotonic*: if $\alpha \models \beta$, then $\alpha \land \omega \models \beta$
 - adding new facts does not undo conclusions
- we could say: $\forall x \ bird(x) \land \neg penguin(x) \rightarrow flies(x)$
- but we can't enumerate all possible exceptions
 - what about a robin with a broken wing?
 - what about birds that are made out of plastic?
 - what about Big Bird?

- Uncertainty in reasoning about <u>actions</u>:
 - If a gun is loaded and you pull the trigger, the gun will fire, right?
 - ...unless it is a toy gun
 - ...unless it is defective
 - ...unless it is underwater
 - ...unless the barrel is filled with concrete

Possible Solutions

- Add rule *strengths* or *priorities*
 - common in early Expert Systems
 - ...an old ad-hoc approach (with unclear semantics)
 - penguin(x) $\rightarrow_{0.9} \neg flies(x)$
 - bird(x) $\rightarrow_{0.5}$ flies(x)

Solutions

- Semantic Networks
- Default Logic/Non-monotonic logics
- Closed-World Assumption and Negation-as-failure in PROLOG
- Fuzzy Logic
- Bayesian Probability

Semantic Networks

- graphical representation of knowledge
- nodes, slots, edges, "isa" links
- procedural mechanism for answering queries
 - follow links to get answers
 - different than formal definition of "entailment"
- inheritance
 - can override defaults

Semantic Networks

- semantic nets are a nice, graphical way of representing information
- an advantage is how the handle default info
- but there are different variations on the graphical symbology and how to express different things (like negation, universal, existence info)
 - difference between thin, thick, and dashed arcs?
 - how to express "safeDrivers are drivers who haven't been in an accident" graphically?
- what does a particular Sem Net formalism *mean???* (semantics of edges, etc)
- try to translate it into a logic. (need more than FOL)

Non-monotonic Logics

- allow retractions later (popular for truth-maintenance systems)
- "birds fly", "penguins are birds that don't fly"
 - $\forall x \text{ bird}(x) \rightarrow fly(x)$
 - $\forall x \text{ penguin}(x) \rightarrow \text{bird}(x), \forall x \text{ penguin}(x) \rightarrow \neg fly(x)$
 - {bird(tweety), bird(opus)} |= fly(opus)
 - later, add that opus is a penguin, change inference
 - penguin(opus) |= ¬fly(opus)
- Definition: A logic is *monotonic* if everything that is entailed by a set of sentences α is entailed by any superset of sentences $\alpha \land \beta$
 - opus example is *non-monotonic*

Default Logic

- example syntax of a default rule:
 - bird(x): fly(x) / fly(x) or bird(x) > fly(x)
 - analogous to $\forall x \text{ bird}(x) \rightarrow fly(x)$, but allows exceptions
 - meaning: "if PREMISE is satisfied and it is not inconsistent to believe CONSEQUENT, then CONSEQUENT"
 - {bird(tweety),bird(opus), ¬fly(opus), bird(x): fly(x) / fly(x) } |={fly(tweet), ¬fly(opus)}
- requires *fixed-point semantics* (different model theory and inference procedures)

Circumscription

- an alternative approach to default logic
- add *abnormal* predicates to rules
 - $\forall x \operatorname{bird}(x) \land \neg \operatorname{abnormal}_1(x) \rightarrow fly(x)$
 - $\forall x \text{ penguin}(x) \land \neg abnormal_2(x) \rightarrow bird(x)$
 - $\forall x \text{ penguin}(x) \land \neg abnormal_3(x) \rightarrow \neg fly(x)$
- algorithm: minimize the number of *abnormals* needed to make the KB consistent
 - {bird(tweety),fly(tweety),bird(opus),penguin(opus), ¬fly(opus)} is INCONSISTENT
 - {bird(tweety),fly(tweety),bird(opus),penguin(opus), ¬fly(opus), abnormal₁(opus)} is CONSISTENT

Probability (Ch. 12)

- an alternative route to encoding default rules like "most birds fly" is to quantify it using probability, p(fly|bird)=0.95
- probabilistic reasoning has had a major impact on AI over the years
 - conferences and journals on UAI (Uncertainty in AI)
- probabilistic models has led to major algorithms like:
 - Hidden Markov Models (applications to speech, genomics...)
 - SLAM (simultaneous localization and mapping) for robotics
 - Bayesian networks/graphical models (as knowledge bases)
 - Kalman filters, ICA, POMPDs, ...
 - Reinforcement Learning

Axioms of Probability

- for event e: $0 \le P(e) \le 1$
- for mutually exclusive events $e_1..e_n : \Sigma_i P(e_i) = 1$
- negation: P(¬e) = 1-P(e)
- Kolmogorov axiom for non-exclusive events: P(a∨b)=P(a)+P(b)-P(a,b)

Prior and Conditional Probabilities

- encode knowledge in the form of *prior* probabilities and *conditional* probabilities
 - P(x speaks portugese)=0.012
 - P(x is from Brazil)=0.007
 - P(x speaks portugese | x is from Brazil)=0.9
 - P(x flies | x is a bird)=0.9 (?)

 inference is done by calculating *posterior* probabilities given evidence (using Bayes' Rule)

- compute P(cavity | toothache, flossing, dental history, recent consumption of candy...)
- compute P(fed will raise interest rate | unemployment=5%, inflation=0.5%, GDP=2%, recent geopolitical events...)

prior probs

conditional probs

Bayes' Rule

- product rule : joint prob P(A,B) = P(A|B)*P(B)
 - P(A|B) is read as "probability of A given B"
 - in general, P(A,B)≠P(A)*P(B) (unless A and B are independent)
- Bayes' Rule: convert between causal and diagnostic

$$P(H \mid E) = \frac{P(E \mid H) \cdot P(H)}{P(E)}$$

H = hypothesis (cause, disease)E = evidence (effect, symptoms)

- joint probabilities: P(E,H), priors: P(H)
- conditional probabilities play role of "rules"
 - people with a toothache are likely to have a cavity
 - p(cavity|toothache) = 0.6

Causal vs. diagnostic knowledge

- causal: P(x has a toothache | x has a cavity)=0.9
- *diagnostic*: P(x has a cavity | x has a toothache)=0.6
- typically it is easier to articulate knowledge in the causal direction, but we often want to use it in a diagnostic way to make inferences from observations

- Joint probability table (JPT)
 - you can calculate answer to any question from JPT
 - the problem is there are exponential # of entries (2^N, where N is the number of binary random variables)

	toothache		⊐ toothache		
	catch	\neg catch	catch	\neg catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

 $P(\neg cavity \mid toothache) = ?$

- Joint probability table (JPT)
 - you can calculate answer to any question from JPT
 - the problem is there are exponential # of entries (2^N, where N is the number of binary random variables)

	toothache		⊐ toothache		
	catch	\neg catch	catch	¬ catch	
cavity	.108	.012	.072	.008	
⊐ cavity	.016	.064	.144	.576	

P(¬*cavity* | *toothache*)

= $P(\neg cavity \land toothache) / P(toothache)$

= 0.016+0.064

(0.108 + 0.012 + 0.016 + 0.064)

= 0.4

- Joint probability table (JPT)
 - you can calculate answer to any question from JPT
 - the problem is there are exponential # of entries (2^N, where N is the number of binary random variables)

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

 $P(\neg cavity \mid toothache)$

= $P(\neg cavity \land toothache) / P(toothache)$

= 0.016+0.064

(0.108 + 0.012 + 0.016 + 0.064)

= 0.4

- useful calculations
 - marginalization summing out unknown variables

 $\mathbf{P}(Cavity) = \mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch)$

+ $\mathbf{P}(Cavity, \neg toothache, catch) + \mathbf{P}(Cavity, \neg toothache, \neg catch)$

P(cavity) = 0.108 + 0.012 + 0.072 + 0.008 = 0.2

P(Cav|catch,to P(¬Cav|catch, < 0.108, 0.016> a = 0.108 + 0.0≅ < 0.87, 0.13>

pothac)=0.108		toothache		⊐ toothache		
toothac)=0.016		catch	\neg catch	catch	\neg catch	
16=0.124	cavity	.108	.012	.072	.008	=0.2
,	⊐ cavity	.016	.064	.144	.576	

- normalization we can use relative probabilities (and avoid computing the denominator) if we compute prob. for and against outcome <P,Q>: they must sum to one
 - α represents the proportionality constant
 - $\alpha < P,Q > means: \alpha = (P+Q), < P',Q' > = < \frac{P}{\alpha}, \frac{Q}{\alpha} >, P'+Q' = P/\alpha + Q/\alpha = 1$

 $\mathbf{P}(Cavity | toothache) = \alpha \mathbf{P}(Cavity, toothache)$

 $= \alpha [\mathbf{P}(Cavity, to thache, catch) + \mathbf{P}(Cavity, to thache, \neg catch)]$

 $= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle] = \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle$

4/25/2023

Conditional Independence

- Applying Bayes' Rule in larger domains has a <u>scalability</u> problem
 - the size of the JPT grows exponentially with the number of variables (2ⁿ for n variables)
- Solution to reduce complexity:
 - employ the <u>Independence Assumption</u>
- Most variables are not strictly independent; most variables are at least partially correlated (but which is cause and which is effect?).
- However, many variables are *conditionally* independent.

A and B are *conditionally independent* <u>given C</u> if: P(A,B|C) = P(A|C)P(B|C), or equivalently P(A|B,C) = P(A|C)

Conditional Independence

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity)$

- conditional independence gives us an efficient way to combine evidence
 - consider P(Cav|toothache,catch)
 - using Bayes' Rule:
 - $P(Cav|toothache,catch) \propto P(toothache^catch|Cav)*P(Cav)$
 - this requires a mini JPT for all combinations of evidence
 - assuming toothache is conditionally independent of catch given Cavity:
 - P(toothache^catch|Cav) = P(toothache|Cav)*P(catch|Cav)
 - therefore...

 $P(Cav|toothache,catch) \propto P(toothache|Cav)*P(catch|Cav)*P(Cav)$

Naive Bayes algorithm

- suppose you have a phenomenon that causes several different effects that could be observed
- Cause \rightarrow Effect₁, Effect₂,..., Effect_n
- each effect is probabilistic, but assume they are all conditionally independent of each other
- Then an efficient method for detecting or classifying probable causes is:

 $\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i | Cause)$

• if you have some unobserved vars (y), could marginalize them out, but it leads to same Eqn above

 $\mathbf{P}(Cause | \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(Cause, \mathbf{e}, \mathbf{y})$

- Example: classifying documents as Bag-of-Words
 - P(doctype=sports|words) = P(sports)*(has "score"|sports)*(has "referee"|sports)*...

Bayesian Networks (Sec. 13.1 and the first page of Sec 13.2)

- graphical models where *edges represent conditional probabilities*
 - efficient representation because missing edges are assumed to be conditionally independent given the nodes in between
- popular for modern AI systems (expert systems)
 - important for handling uncertainty

all vars are correlated, O(n²) edges, requires full JPT with 2ⁿ rows

Naive Bayes: compute probability of 1 var depending on all the others (n-1)

Bayesian Network: selected edges represent conditional dependence

requires independence assumption

more natural: links follow causality

Bayesian Networks (Sec. 13.1-2)

- prob of each node depends on parents; specify with a mini-JPT
- full JPT has 2⁵=32 entries can answer any query from JPT
- joint prob of full state <j,m,a,¬b,¬e> is product of prob over all nodes
- prob of each node is conditioned on parents

 $P(x_1,\ldots,x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

 $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

 $= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$

 ≈ 0.00063

4/25/2023

- Efficient algorithms for computing inferences or outcomes conditioned on observations/evidence
 - <u>Variable elimination</u>: factor computations into a tree of products and sums (algebraic calculation from formula)
 - rearrange to minimize number of adds and mults...

$$P(b \mid j,m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a \mid b, e)P(j \mid a)P(m \mid a)$$

$$P(b \mid j,m) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$$

• <u>Belief propagation</u>: graph algorithm that updates probs of neighboring nodes when belief of any node changes

Figure 13.9 A Bayesian network for evaluating car insurance applications.

4/25/2023

Initial evidence: car won't start Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters

- Many modern knowledge-based systems are based on probabilistic inference
 - including Bayesian networks, Hidden Markov Models, (HMMs), Markov Decision Problems (MDPs)
 - example: Bayesian networks are used for inferring user goals or help needs from actions like mouse clicks in an automated software help system (think 'Clippy')
 - *Decision Theory* combines *utilities* with *probabilities* of outcomes to decide actions to take
- the challenge is capturing all the numbers needed for the prior and conditional probabilities

- objectivists (frequentists) probabilities represent outcomes of trials/experiments
- subjectivists probabilities are degrees of belief
- probability and statistics is at the core of many Machine Learning algorithms