Limitations of First-Order Logic

- FOL is very expressive, but...consider how to translate these:
- "most students graduate in 4 years"
- $\forall x$ student $(x) \rightarrow$ duration(undergrad $(x)) \leq y e a r s(4)$ (all???)
- "only a few students switch majors"
- $\exists \mathrm{s}, \mathrm{m} 1, \mathrm{~m} 2, \mathrm{t} 1, \mathrm{t} 2$ student(s)^major(s,m1,t1)^major(s,m2,t2) $\wedge m 1 \neq m 2 \wedge t 1 \neq \mathrm{t} 2$ (exists???)
- "all birds can fly, except penguins, stuffed birds, plastic birds, birds with broken wings..."
- The problem(s) with FOL involve expressing:
- default rules \& exceptions
- degrees of truth
- strength of rules

Practical needs for modeling Uncertainty in KBS

- What happens if you do not know whether an antecedent is Tor F?
- neither T nor F, but 'unknown' (not allowed in Boolean logic)
- FOL treats 'unasserted' facts as "could be either T or F" when determining entailment, e.g. $\{\mathrm{A} \wedge \mathrm{B} \rightarrow \mathrm{C}, \mathrm{A}\}$ does not entail C
- what we often want to do is assume the most likely state (B or \neg B) by default
- examples:
- what if a doctor has to make a diagnosis before white blood cell count is available?
- or treat a patient even if history of seizures is unknown (because they are unconscious)?
- We will show how to:
- make default assumptions that are most likely, and derive inferences from them
- utilize prior and conditional probabilities
- marginalize over unknowns (which is like weighted averaging by conditional probability of T or F)

Limitation of First-Order Logic

- FOL is not good at handling exceptions
- universal quantifier means ALL; can't say "most" birds fly
- $\forall x \operatorname{bird}(x) \rightarrow f l i e s(x)$
- asserting bird(opus)^ーflies(opus) in the KB would cause it to be inconsistent
- FOL is monotonic: if $\alpha \mid=\beta$, then $\alpha \wedge \omega \mid=\beta$
- adding new facts does not undo conclusions
- we could say: $\forall x$ bird $(x) \wedge \neg p e n g u i n(x) \rightarrow f l i e s(x)$
- but we can't enumerate all possible exceptions
- what about a robin with a broken wing?
- what about birds that are made out of plastic?
- what about Big Bird?
- Uncertainty in reasoning about actions:
- If a gun is loaded and you pull the trigger, the gun will fire, right?
- ...unless it is a toy gun
- ...unless it is defective
- ...unless it is underwater
- ...unless the barrel is filled with concrete

Possible Solutions

- Add rule strengths or priorities
- common in early Expert Systems
- ...an old ad-hoc approach (with unclear semantics)
- penguin $(x) \rightarrow_{0.9}$ flies(x)
- $\operatorname{bird}(x) \rightarrow_{0.5}$ flies(x)

Solutions

- Semantic Networks
- Default Logic/Non-monotonic logics
- Closed-World Assumption and Negation-as-failure in PROLOG
- Fuzzy Logic
- Bayesian Probability

Semantic Networks

- graphical representation of knowledge
- nodes, slots, edges, "isa" links
- procedural mechanism for answering queries
- follow links to get answers
- different than formal definition of "entailment"
- inheritance
- can override defaults

Semantic Networks

- semantic nets are a nice, graphical way of representing information
- an advantage is how the handle default info
- but there are different variations on the graphical symbology and how to express different things (like negation, universal, existence info)
- difference between thin, thick, and dashed arcs?
- how to express "safeDrivers are drivers who haven't been in an accident" graphically?
- what does a particular Sem Net formalism mean??? (semantics of edges, etc)
- try to translate it into a logic. (need more than FOL)

Non-monotonic Logics

- allow retractions later (popular for truth-maintenance systems)
- "birds fly", "penguins are birds that don't fly"
- $\forall x$ bird $(\mathrm{x}) \rightarrow \mathrm{fly}(\mathrm{x})$
- $\forall x$ penguin $(x) \rightarrow$ bird $(x), \forall x$ penguin $(x) \rightarrow \neg f l y(x)$
- \{bird(tweety), bird(opus)\} |= fly(opus)
- later, add that opus is a penguin, change inference
- penguin(opus) |= - fly(opus)
- Definition: A logic is monotonic if everything that is entailed by a set of sentences α is entailed by any superset of sentences $\alpha \wedge \beta$
- opus example is non-monotonic

Default Logic

- example syntax of a default rule:
- $\operatorname{bird}(x): f l y(x) / f l y(x) \quad$ or $\quad \operatorname{bird}(x)>f l y(x)$
- analogous to $\forall x \operatorname{bird}(x) \rightarrow f l y(x)$, but allows exceptions
- meaning: "if PREMISE is satisfied and it is not inconsistent to believe CONSEQUENT, then CONSEQUENT"
- \{bird(tweety),bird(opus), ᄀfly(opus), bird(x): fly(x)/fly(x) \} |=\{fly(tweet), \neg fly(opus)\}
- requires fixed-point semantics (different model theory and inference procedures)

Circumscription

- an alternative approach to default logic
- add abnormal predicates to rules
- $\forall x \operatorname{bird}(\mathrm{x}) \wedge \sim$ abnormal ${ }_{1}(\mathrm{x}) \rightarrow \mathrm{fly}(\mathrm{x})$
- $\forall x$ penguin $(x)^{\wedge}-$ abnormal $_{2}(x) \rightarrow \operatorname{bird}(x)$
- $\forall x$ penguin $(x)^{\wedge} \neg$ abnormal ${ }_{3}(x) \rightarrow \neg f l y(x)$
- algorithm: minimize the number of abnormals needed to make the KB consistent
- \{bird(tweety),fly(tweety),bird(opus),penguin(opus), \sim fly(opus) $\}$ is INCONSISTENT
- \{bird(tweety),fly(tweety),bird(opus),penguin(opus), \sim fly(opus), abnormal ${ }_{1}$ (opus)\} is CONSISTENT

Probability (Ch. 12)

- an alternative route to encoding default rules like "most birds fly" is to quantify it using probability, p (fly \mid bird) $=0.95$
- probabilistic reasoning has had a major impact on AI over the years
- conferences and journals on UAI (Uncertainty in AI)
- probabilistic models has led to major algorithms like:
- Hidden Markov Models (applications to speech, genomics...)
- SLAM (simultaneous localization and mapping) for robotics
- Bayesian networks/graphical models (as knowledge bases)
- Kalman filters, ICA, POMPDs, ...
- Reinforcement Learning

Axioms of Probability

- for event e: $0 \leq P(e) \leq 1$
- for mutually exclusive events $\mathrm{e}_{1} . . \mathrm{e}_{\mathrm{n}}: \Sigma_{\mathrm{i}} \mathrm{P}\left(\mathrm{e}_{\mathrm{i}}\right)=1$
- negation: $\mathrm{P}(\neg \mathrm{e})=1-\mathrm{P}(\mathrm{e})$
- Kolmogorov axiom for non-exclusive events:

$$
P(a \vee b)=P(a)+P(b)-P(a, b)
$$

Prior and Conditional Probabilities

- encode knowledge in the form of prior probabilities and conditional probabilities
- $\mathrm{P}(x$ speaks portugese)=0.012
- $P(x$ is from Brazil $)=0.007$
prior probs
- $P(x$ speaks portugese $\mid x$ is from Brazil $)=0.9$
- $P(x$ flies $\mid x$ is a bird) $=0.9$ (?)
- inference is done by calculating posterior probabilities given evidence (using Bayes' Rule)
- compute P(cavity | toothache, flossing, dental history, recent consumption of candy...)
- compute P(fed will raise interest rate | unemployment=5\%, inflation=0.5\%, GDP=2\%, recent geopolitical events...)

Bayes' Rule

- product rule : joint prob $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B})^{*} \mathrm{P}(\mathrm{B})$
- $P(A \mid B)$ is read as "probability of A given B "
- in general, $P(A, B) \neq P(A)^{*} P(B)$ (unless A and B are independent)
- Bayes' Rule: convert between causal and diagnostic

$$
P(H \mid E)=\frac{P(E \mid H) \cdot P(H)}{P(E)} \quad \begin{aligned}
& \mathrm{H}=\text { hypothesis (cause, disease) } \\
& \mathrm{E}=\text { evidence (effect, symptoms) }
\end{aligned}
$$

- joint probabilities: $\mathrm{P}(\mathrm{E}, \mathrm{H})$, priors: $\mathrm{P}(\mathrm{H})$
- conditional probabilities play role of "rules"
- people with a toothache are likely to have a cavity
- $p($ cavity \mid toothache $)=0.6$

Causal vs. diagnostic knowledge

- causal: $\mathrm{P}(\mathrm{x}$ has a toothache $\mid \mathrm{x}$ has a cavity)=0.9
- diagnostic: $\mathrm{P}(\mathrm{x}$ has a cavity $\mid \mathrm{x}$ has a toothache $)=0.6$
- typically it is easier to articulate knowledge in the causal direction, but we often want to use it in a diagnostic way to make inferences from observations
- Joint probability table (JPT)
- you can calculate answer to any question from JPT
- the problem is there are exponential \# of entries (2^{N}, where N is the number of binary random variables)

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

$\mathrm{P}(\neg$ cavity | toothache $)=$?

- Joint probability table (JPT)
- you can calculate answer to any question from JPT
- the problem is there are exponential \# of entries (2^{N}, where N is the number of binary random variables)

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

$$
\begin{aligned}
\mathrm{P}(\neg \text { cavity | toothache }) \quad=\mathrm{P}(\neg \text { cavity } & \wedge \text { toothache }) / \mathrm{P}(\text { toothache }) \\
& =\frac{0.016+0.064}{(0.108+0.012+0.016+0.064)} \\
& =0.4
\end{aligned}
$$

- Joint probability table (JPT)
- you can calculate answer to any question from JPT
- the problem is there are exponential \# of entries (2^{N}, where N is the number of binary random variables)

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

$$
\left.\left.\begin{array}{rl}
\mathrm{P}(\neg \text { cavity } \mid \text { toothache }) \quad & \mathrm{P}(\neg \text { cavity }
\end{array}\right) \text { toothache }\right) / \mathrm{P}(\text { toothache })
$$

- useful calculations
- marginalization - summing out unknown variables

$$
\begin{aligned}
\mathbf{P}(\text { Cavity }) & =\mathbf{P}(\text { Cavity }, \text { toothache }, \text { catch })+\mathbf{P}(\text { Cavity }, \text { toothache }, \neg \text { catch }) \\
& +\mathbf{P}(\text { Cavity }, \neg \text { toothache }, \text { catch })+\mathbf{P}(\text { Cavity }, \neg \text { toothache }, \neg \text { catch }) \\
P(\text { cavity }) & =0.108+0.012+0.072+0.008=0.2
\end{aligned}
$$

		toothache		7 toothache	
$\mathrm{P}(-\mathrm{Cav} \mid$ catch, toothac $)=0.016$		catch	ᄀ catch	catch	ᄀ catch
$a=0.108+0.016=0.124$	cavity	. 108	. 012	. 072	. 008
$\cong<0.87,0.13>$	7 cavity	. 016	. 064	. 144	. 576

- normalization - we can use relative probabilities (and avoid computing the denominator) if we compute prob. for and against outcome <P,Q>: they must sum to one
- α represents the proportionality constant
- $\alpha<P, Q>$ means: $\left.\alpha=(P+Q),<P^{\prime}, Q^{\prime}\right\rangle=<\frac{P}{\alpha}, \frac{Q}{\alpha}>, P^{\prime}+Q^{\prime}=P / \alpha+Q / \alpha=1$
$\mathbf{P}($ Cavity \mid toothache $)=\alpha \mathbf{P}($ Cavity, toothache $)$
$=\alpha[\mathbf{P}($ Cavity, tqothache, catch $)+\mathbf{P}($ Cavity, toothache,\neg catch $)]$

$$
=\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle]=\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle
$$

Conditional Independence

- Applying Bayes' Rule in larger domains has a scalability problem
- the size of the JPT grows exponentially with the number of variables (2^{n} for n variables)
- Solution to reduce complexity:
- employ the Independence Assumption
- Most variables are not strictly independent; most variables are at least partially correlated (but which is cause and which is effect?).
- However, many variables are conditionally independent.

$$
\begin{aligned}
& A \text { and } B \text { are conditionally independent given } C \text { if: } \\
& P(A, B \mid C)=P(A \mid C) P(B \mid C) \text {, or equivalently } \\
& P(A \mid B, C)=P(A \mid C)
\end{aligned}
$$

Conditional Independence

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache, \neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity:
$\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

- conditional independence gives us an efficient way to combine evidence
- consider P(Cav|toothache,catch)
- using Bayes' Rule:
- $P($ Cav \mid toothache, catch $) \propto P($ toothache^catch $\mid C a v) * P(C a v)$
- this requires a mini JPT for all combinations of evidence
- assuming toothache is conditionally independent of catch given Cavity:
- $P\left(\right.$ toothache ${ }^{\wedge}$ catch \mid Cav $)=P($ toothache $\mid C a v) * P($ catch $\mid C a v)$
- therefore...
$P(C a v \mid$ toothache, catch $) \propto P($ toothache $\mid C a v) * P($ catch $\mid C a v) * P(C a v)$

Naive Bayes algorithm

- suppose you have a phenomenon that causes several different effects that could be observed
- Cause \rightarrow Effect $_{1}$, Effect $_{2}, \ldots$, Effect $_{n}$
- each effect is probabilistic, but assume they are all conditionally independent of each other
- Then an efficient method for detecting or classifying probable causes is:

$$
\mathbf{P}\left(\text { Cause } \text { Effect }_{1}, \ldots, \text { Effect }_{n}\right)=\mathbf{P}(\text { Cause }) \prod_{i} \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

- if you have some unobserved vars (y), could marginalize them out, but it leads to same Eqn above

$$
\mathbf{P}(\text { Cause } \mid \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(\text { Cause }, \mathbf{e}, \mathbf{y})
$$

- Example: classifying documents as Bag-of-Words
- $\mathrm{P}($ doctype=sports|words) = P(sports)*(has "score"|sports)*(has "referee"|sports)*...

Bayesian Networks (Sec. 13.1 and the first page of Sec 13.2)

- graphical models where edges represent conditional probabilities
- efficient representation because missing edges are assumed to be conditionally independent given the nodes in between
- popular for modern AI systems (expert systems)
- important for handling uncertainty
all vars are correlated, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ edges, requires full JPT with 2^{n} rows

Naive Bayes: compute probability of 1 var depending on all the others ($\mathrm{n}-1$)

requires independence assumption

Bayesian Network: selected edges represent conditional dependence

more natural: links follow causality

Bayesian Networks (Sec. 13.1-2)

- prob of each node depends on parents; specify with a mini-JPT
- full JPT has $2^{5}=32$ entries - can answer any query from JPT
- joint prob of full state <j,m,a,-b,-e> like is product of prob over all nodes
- prob of each node is conditioned on parents

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Efficient algorithms for computing inferences or outcomes conditioned on observations/evidence
- Variable elimination: factor computations into a tree of products and sums (algebraic calculation from formula)
- rearrange to minimize number of adds and mults...

$$
\begin{gathered}
\mathbf{P}(\text { Burglary } \mid \text { JohnCalls }=\text { true }, \text { MaryCalls }=\text { true }) \\
P(b \mid j, m)=\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) \\
P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
\end{gathered}
$$

- Belief propagation: graph algorithm that updates probs of neighboring nodes when belief of any node changes

Figure 13.9 A Bayesian network for evaluating car insurance applications.

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange) Hidden variables (gray) ensure sparse structure, reduce parameters

- Many modern knowledge-based systems are based on probabilistic inference
- including Bayesian networks, Hidden Markov Models, (HMMs), Markov Decision Problems (MDPs)
- example: Bayesian networks are used for inferring user goals or help needs from actions like mouse clicks in an automated software help system (think 'Clippy')
- Decision Theory combines utilities with probabilities of outcomes to decide actions to take
- the challenge is capturing all the numbers needed for the prior and conditional probabilities
- objectivists (frequentists) - probabilities represent outcomes of trials/experiments
- subjectivists - probabilities are degrees of belief
- probability and statistics is at the core of many Machine Learning algorithms

