First-Order Logic

CSCE 420 — Spring 2023
read: Ch. 8,9

First-Order Logic as Knowledge Repr. for Al

* while Prop Log and Boolean satisfiability has many applications, it has
limited expressiveness

* think of how many rules or clauses were required for the Wumpus world, or tic-tac-
toe, or map-coloring

 First-Order Logic (FOL) is more expressive

* FOL is considered the lingua franca for Al, or the standard concept representation
language for underlying most knowledge bases

 flexible enough to express almost any concept

* many KR systems have been proposed over the years, but the Al community has
found FOL to be the common, most useful, general language

.]’Ewo influential books/papers (among many) showing the generality of FOL
or KR:
* Patrick Hayes — Naive Physics Manifesto (1978)
* Ernest Davis — Representations of Commonsense Knowledge (1990)

Overview of FOL

* the main extensions to the language are:
* we now have predicates, not just propositions, making it relational
* father(Bart,Homer) instead of FatherOfBartlsHomer

* we now have variables and quantifiers
e Vc car(c)->hasEngine(c)

Example of FOL Expressiveness

* Map-coloring

* PropLog
* WAR v WAG v WAB, NTRv NTG v NTB...
* WAR—> —-WAB*~WAG, WAG —» —-WAB" -WAR ...
* WAG —> —NTG, WAG — —SAG...
* (about 50 sentences)

* FOL
* neigh(WA,NT),neigh(WA,SA),neigh(NT,SA),neigh(NT,Q)...
e color(R),color(G),color(B)
» state(WA),state(NT)...,state(V),state(T)
» Vs state(s) - 3c color(c)*hasColor(s,c)
* Vs,c,d state(s)*hasColor(s,c)*hasColor(s,d)—>c=d
e Vs,t,c state(s) state(t)*neigh(s,t)*hasColor(s,c) ->—hasColor(t,c)
* (more concise than Prop Log - only 3 rules!)

food for thought: how would you write a KB in FOL for the wumpus world?

4/4/2023 . . — :
or for choosing optimal moves in tic-tac-toe given a current board state?

Syntax of FOL

* BNF

* <sentence> ::= <atomic> | <complex>
e <atomic> ::= <predicate> | <equality>
<predicate> ::= <predicatename>(<term>*)

* predicate names are symbols, like propositions

* they represent properties or categories (for unary case, 1 arg), or relationships (for n-ary
case, n>2)

» examples: cat(garfield), hungry(garfield), owner(garfield,jon),feeds(jon,garfield,lasagna)
<term> ::= <const> | <var> | <function>

* consts and vars both look like symbols, but the difference is usually clear from context

* some languages mark vars, e.g '?x’,
<function> ::= <functionname>(<arg>*)

* functions look like predicates, but they are always embedded inside predicates as args

* loves(bill,motherOf(bill)), in(keys(carOf(jon)),pocketOf(pantsOf(jon)))

Syntax of FOL

* BNF cont'd
<complex> ::= (<sent>) | <sent> <binop> <sent> | —<sent> |<quantified>
<binop>:=2|v|>| & | @
<quantified> ::= <quantifier><var><sentence>
<quantifier> ::=V | 3
* note: all variables in sentence should be quantified (else they are called 'free')

e we can combine several variables for concision: VxVy P(x,y) = Vx,y P(x,y)
e scoping and order of quantifiers matters!

* Vx 3y loves(x,y) // everybody loves somebody

* Jy Vx loves(x,y) // there is somebody loved by everybody

Syntax of FOL

e Equality
e <equality> ::= <term>=<term>
* includes <var>=<const>, <var>=<var>, <const>=<const>, <const>=<funct>...
* examples: ?c=red, ?x=?y, alice=motherOf(bill)
» technically, '='is just a binary predicate! like this: Eq(alice,motherOf(bill))
* can negate these too: Vs,t,c,d hasColor(s,c)*hasColor(t,d)*neigh(s,t)>—c=d (= c#d)
* Numbers
e constants with conventional meanings, like O, 1, -2, 4.501, (and w, e,...)
e Vx biped(x)>numLegs(x)=2 // Eq(numLegs(x),2), note: numLegs() is a function
e or... Vx biped(x)—=>3y,z leg(y)*leg(z)*partOf(y,x)*partOf(z,x)y#z " ...
(Vw leg(w)*partOf(w,x)—=>(w=y v w=z))
 actually, although this definition is more verbose, it is preferred because you can do

more reasoning with it, because it identifies specific objects as legs; leg() and
partOf() are useful as general predicates for making other inferences

Guidelines for Translating Knowledge into FOL

e divide the world into:
* objects
* | mean this in the abstract, conceptual way - anything we can 'talk about' or 'refer to'
» garfield, sam's birthday, queen of England, the signing of the magna carte, ...
* types/categories/properties of things
 cats, game pieces, colors, states, people, apples, legs...
* events, situations

* model these with unary predicates, e.g. cat(garfield), F150(truck,), birthday(b,.,)
* happy(x), salty(x), broken(x), hasPower(x)...

* relations

* prerequisite(csce411,csce420), instructor(csce221,DrWelch), birthdayPerson(b,<,,sam),
owner(cheers,sam), girlfriend(sam,diane)

Using FOL

Subserlf

=
— Logrs

Per. '.m?Q—" 2

&Gh‘ - Gr\-

MemberQf Member(

HazMother

Male
Persons

SizrarOf

Vx person(x)->mammal(x)

Vx person(x)->3y hasMother(x,y)*femalePerson(y)
Vx femalePerson(x)—>person(x)
femalePerson(mary)

malePerson(john)

sisterOf(john,mary)

this illustrates rules encoding taxonomic info

4/4/2023

Qh Lve n.fp'

fracr

-\HN. = =

¢ %."?:m.ﬂlm\I -‘f\m IrmD I/f\m;’_;bu'.fwl f}'{’.'r'f{_’f'{i"h'_;'\l
.--"'f *-u___ -~

FlyEvent(Fly17)
agent(Flyl7,Shankar)
origin(Fly17,NewYork)
destination(Fly17,NewDelhi)
during(Fly17,yesterday)

this illustrates ‘reification’ — treating an abstract
thing such as an event like an ‘object’ which
has properties and relates to other objects

Using FOL

* writing concept definitions as rules
* Vx batchelor(x) €2 person(x) * adult(x) » male(x) » -married(x)
e Vx,y grandmother(x,y) €2 Jz parent(x,z) * parent(z,y) * female(x)
* how would you define: hard-drive? chair? ambush? bargain?

e properties are like subsets
» Vx plant(x)—>green(x) // plants are a subset of things that are green

* describing compositions of objects: partOf predicate
e Yccar(c) - 3t tire(t) » partOf(x,t) // don’t forget to relate the 2 objects

e Vx biped(x) = 3y,z leg(y) » leg(z) » partOf(y,x) » partOf(z,x) » y=z * (Vw leg(w) »
partOf(w,x) = (w=y v w=z))
* partOf(toe,foot), partOf(foot,leg), partOf(leg,humanBody)

* location and spatial relationships:

loc(house(joe),BCS) // i.e. geographic location; BCS is a ‘place’

Vd,h frontDoor(d,h)é>door(d)*house(h)?in(d,frontSideOf(h)) // note the function
Vx,y,z in(x,y)*in(y,z)—=>in(x,z) // transitivity, e.g. milk in fridge, in kitchen

Va,b,L in(a,L)*partOf(b,a) =>in(b,L) // if in(patient59,room1002), so are his toes...

Guidelines for Translating Knowledge into FOL

* important: divide long constants and predicate names into simple concepts (and
define them)
 instead of below30psi(leftFrontTireOflohnsKia), say:

e dt,c tire(t) * car(c) » partOf(t,c) » owner(c,john) » make(c,kia) * on(t,LeftSide(c))
A on(t,frontSide(c)) " pressure(t)<psi(30)

* this is a common trick - using existentially quantified variables to refer to objects, and then
using lots of basic predicates to describe the properties of and relations among the objects

* remember our example of replacing 'numlegs(x)'...

 usually, implications go with universal quantifiers
e correct: Vx plant(x)—>green(x)
* incorrect: dx plant(x)—>green(x)

 usually, conjunctions go with existential quantifiers
* (see tire example above)

Axiomatizing Numbers

* Natural numbers (0,1,2...)

* Peano axioms
* natNum(0) // there exists a natural number, denoted by ‘0’
V¥ n natNum(n)->natNum(S(n)) // successor function
¥ mand n, m=n <>5(m) = S(n).
Y n (S(n) # 0) // there is no natural number whose successor is 0.
Y n plus(n,0)=n // n+0=n
Y n,m plus(n,S(m))=S(plus(n,m)) // n+(m+1)=(n+m)+1
...there are a few more

* the point is that natural numbers exist and we can use basic arithmetic
(as functions) in FOL sentences

e Vx,n,y biped(x) » Eq(numLegs(x),n) ~ tripod(y) = Eg(numLegs(y),Plus(x,1)) // “x+1”

* note that functions in the arithmetic sense are represented by functions
in the logical sense

Axiomatizing Numbers

* rational numbers — easy:
e VYq rational(g)é>da,b natNum(a)*natNum(b)*b#0"qg=frac(a,b)

* real numbers: Continuum hypothesis

* it’s trickier to axiomatize these, but we can go ahead and assume real
numbers exist! so we can use them is our FOL sentences

e furthermore, we can assume functions, like Plus(a,b), Times(x,y) exist, so we
can say things like:

e Vc,t,d,m car(c)*rip(t)?
distanceTraveled(t,d)*gasMileage(c,m)—>fuelUsed(c,t)=Times(d,m) or "=d*m"
* axioms for transcendental numbers; transfinite numbers...(axioms for
the math cognoscenti)

Sets

* remember: order doesn’t matter (or repeats)

e Vs set(s)é>s= v [dx,a set(x) » s=Add(a,x)]

e —3s,a Add(a,s)=

e Vs,a Member(a,s) <> 3t Add(a,t)=s // acs is shorthand for Member(x,s)
* Vr,s Subset(r,s)¢=>[Vx Member(x,r)>Member(x,s)]

e Vr,s set(r)"set(s) r=s¢>[Subset(r,s) * Subset(s,r)]

* /1,5,x Member(x,Union(r,s))é>[Member(x,r) v Member(x,s)] // rus

e YVr,s,x Member(x,Intersection(r,s))é=>[Member(x,r) » Member(x,s)]

Quantities

* it is useful to be able to specify quantities, e.g. Bill bought 2 gallons of
gas and 10 quarts of milk (which was more?)

* use functions to indicate units of quantities
» dg bought(Bill,g)*gas(g)*volume(g)=gallons(2)
e dm bought(Bill,m)*milk(m)*volume(m)=quarts(10)
* the functions map numbers to ‘volumes” as objects on an abstract
scale, where quarts(10) is more than gallons(2)
e we want to be able to infer that volume(m)>volume(g)

e we can connect them and reason about quantities with axioms like

e Vx,y volume(x)=gallons(y) = volume(x)=quarts(4*y)
» scale of liquid volumes

) 1
gallons(2) quarts(10)

Semantics of FOL: Model Theory

* in Prop Log, models were truth-assignments over propositions <P=T, Q=F...>

* in FOL, a model consists of 3 things: <U,D,R>
* Uis a set of abstract objects in the universe (also called 'domain’'); not necessary finite!

* D are denotations, mappings from constants and functions to objects, d:const/>U
 for functions, there can be only one denotation for each argument
* example: loves(bill, motherOf(bill)) works because there is only 1
* |oves(sue,pet(sue)) would not work, because she could have more than 1 pet
* in 1-to-many situations, use a predicate: Blx pet(sue,x)—>loves(sue,x)

* Ris aset of relations (tuples over U") defining each predicate
» for a unary predicate (n=1), it is just the subset of objects U that satisfies it
* note: we can't just say Ry, .={snoopy,marmaduke,...} because these are constant terms

* they need to be the objects in U that are denoted by theose terms, e.g. Ry,,={uy,u,...} if d('snoopy')=u,,
d(marmaduke')=u,, for u;,u,eU

» for n-ary predicates, it is the set of n-tuplescUxU..xU that satisfies it

* note: the equality binary predicate, =, is always implicitly defined in any model as R, ={<0, 0, >,<0,,0,>...}
for all 0,eU '

Semantics of FOL

* note: there are usually many, many models that could represent the
KB

e although this sounds abstract, think of a model as an "envisionment"
of what the KB describes (also known as an "interpretation")

Example of a Model

KB={king(john),evil(john),ruler(john,England, interval(1189,1199)),
brother(john,Richard),kick(john,leftLegOf(Richard), person(john),person(richard),
Vx,y brother(x,y)—>brother(y,x), * model=<U,D,R>

Vx king(x)->3y crown(y)*onHead(x,y) } + Us<ab,cde,ftLt2,} &> anonvmous designators
* D: denotations={

* constants:
{'john'=>c,'richard'=>a,'England'>f,1189->11,

'England’ 1199.9t2?
‘ 11189' * functions: |
Mg 1199' » leftLegOf(.): {a>d, c> e; b,d,e,ft1,t2,i>J}
¢ * interval(.,.): {<t1,t2>->i; all others <u,v>->J}

* R:relations for each predicate:
@ itis hGlpr' to ° Rbrother={<a’C>’<C’a>}
have a 'null'
object * ReviI={<C>} ' Rcrown = {}
* Rruler={<crf;|>}
t1 12 i * Roerson={<c>,<a>}

person

18

Sematics of FOL

* there are other models...
e with more (unmentioned objects)
* where richard also has a crown
e where richard also kicks john
 where the crown has a brother...

e but

e some models are not consistent with the KB

* for example, if john was richard's brother, but richard was not john's brother,
l.e. <a'C>€Rbrother but <C,a>¢& Rbrother

* the reflexive axiom for brother constrains which models satisfy the KB
* in fact, models with R, ,..=1<a,c><c,a>,<b,e>,<e,b>} are OK too

FOL Truth Conditions

 remember in Prop Log, we used truth tables to evaluate the truth value of
any sentence, given a model (composed ground-up from propositions)

* In FOL, if m=<U,D,R> (and there are no free vars in P,Q) then:
* sat(m,pred(<t,,....,t,>)) iff <d(t,),...,d(t,)>€R
e sat(m,—s) iff sat(m,s) is false
e sat(m,P~Q) iff sat(m,P) and sat(m,Q)
e sat(m,PvQ) iff sat(m,P) or sat(m,Q)
e sat(m,P->Q) iff sat(m,—P) or sat(m,Q)
 sat(m,Vx P(x)) iff for every o€ U, sat(m,P(x/0)) where x is substituted by o
 sat(m,3x P(x)) iff for some oeU, sat(m,P(x/0)) where x is substituted by o
» for any sentence P(...x...) containing x

pred

Semantics of FOL

* using the truth conditions, you should be able to prove that:
e —Vx P(x)=3dx —=P(x) (semantically equivalent)
e —dx P(x) = Vx —P(x)
* you have to show this holds for all models

Entailment

* this is the key idea underlying inference
* entailment = “logical consequence” of a KB

*a |=,B iff all models of a also satisfy [(same as in Prop Log)

* the problem is that there are many more models in FOL (possibly
infinite, possibly uncountable) (not just 2")

* (a bit of related theory that you don't need to know...)

* Lowenheim-Skolem Theorem (paraphrased): For any finite, consistent
set of first-order sentences, there always exists models of infinite size

Inference in FOL

* unlike Prop Log, we can’t do model-checking (because the number of
models is not finite)

 thus we NEED to use sound rules of inference to show that a sentence
is entailed purely by syntactic manipulation

* most of the ROl from Prop Log carry over to FOL
* there are some new rules (e.g. related to quantifiers)

* the main new concept is unification, for dealing with variable when
doing pattern matching (e.g. of sub-sentences)

Inference in FOL

>I

AndElimination (AE) A"B N
AndIntroduction (Al) A, B A"B
Orlntroduction A, B AvB
Commutativity A"B BAA
Distributivity Av(BAC) (AvB)A(AvC) th K th
A (BVC) (AAB)V(AAC) - €s€ workthe
o same in FOL as
DoubleNegationElim (DN) --A A in Prop Log
DeMorgan’s Laws (DM) -(AvB) -AN-B
-(A"B) -Av-B
ImplicationElimination (IE) A->B -AvB
contraposition A->B -B>-A
these need to be
~— adapted to handle
variables

} new rules 24

Inference in FOL

2 new ROI

* these can be used to make ‘ground sentences’, or versions of quantified
sentences with variable replaced by specific constants

e Universal Instantiation (Ul)

Vx P(x) any sentence P containing x

P(c) where variable x is replaced with any constant c
e example:

{Vx parent(x)—>3y child(y,x)}

parent(homer) -3y child(y,homer)

parent(fido) -3y child(y,fido)

parent(ReliantStadium) -3y child(y,ReliantStadium) // nonsense, but still true

Inference in FOL

 Existential Instantiation (El)
3x P(x) any sentence P containing x

P(c) where variable x is replaced with any new constant c that does not
appear anywhere else in the KB

* cis called a ‘skolem constant’; it is like introducing an anonymous name for
the object

* example:

 {dx car(x)*owns(john,x)} F {car(car.,)*owns(john,car.,)}
* where cars,is a made-up new symbol denoting the thing that exists
* if you use any existing symbol, it doesn’t work: owns(john,the_alamo)

 in LISP, there is a ‘gensym’ function to create new symbols:
owns(john, X454912)

Unification

* MP and Reso involve pattern matching
* need to extend them to handle variables

e example:
KB ={Vxdog(x)>mammal(x), dog(fido) }

e we want to conclude KB |=mammal(fido) by MP, but technically, ‘dog(fido) does
not match the antecedent ‘dog(x)’

* however, they would match if x” were substituted by ‘fido’

Unification

e a variable-substitution list is a mapping of variables to terms,
Var > Term
* example: u={X/fido}
e vars can map to constants, other vars, or functions
o u={X/fido, Y/snoopy, U/V, Z/sqrt(2), R/f(P,Q) , M/mother(bill)}

* a unifier of 2 expressions P and Q is a substitution-list that makes P and Q
syntactically identical

P=dog(X), Q=dog(fido),

u={X/fido},

P’=subst(u,P)=dog(fido),

Q’=subst(u,Q)=dog(fido),

hence P’=Q’

Unification

* another example:
* P=eats(X,dogfood); Q=eats(fido,Y)
* unify(P,Q)=u where u={X/fido,Y/dogfood}
e subst(u,P)=subst(u,Q)=eats(fido,dogfood)

* another example:
* P =gives(bill,mother(bill),B,T,V) Q = gives(P,Q,present,R,V)
3 alternative unifiers:
ul={P/bill, Q/mother(bill), B/present, T/R} // don’t need to bind V
u2={P/bill, Q/mother(bill), B/present, T/R,V/3}// also works, but not necessary
u3={P/bill, Q/mother(bill), B/present, R/S, T/S} // also works, variable renaming

Unification

* negative examples that do not unify:
* no substitution will make these identical; i.e. unify(P,Q)=fail
* P=loves(bill, mother(bill)), Q=loves(X,X)
 P=move(blockA,stackl,X), Q=move(Y,X,stack?)
e P=lessThan(6,7), Q=lessThan(X,succ(X))
* P=match(X,X), Q=match(Y,f(Y))
 after binding X to Y, then X cannot be bound to f(X) which contains it
* most-general unifier (MGU) of P and Q
* the unifier that makes the least commitments (no unnec. variable bindings)
* the MGU always exists and is unique (modulo variable renaming)

Unification Algorithm

* given 2 expressions (FOL predicates or sentences), how to determine
whether they are unifiable, and if so, what is the MGU?

* the gist of the algorithm:
* imagine P and Q as parse trees
 start with an empty substitution list and add variable bindings as you go
» do a left traversal of the parse trees
* whenever you see a variable in one tree
* check to see if it is already bound
* if not bind it to the corresponding subtree in the other expression

Unification Algorithm

function UNIFY(z, y, /=empty) returns a substitution to make = and y identical, or failure

the algorithm treats each
expression as a nested list, like
“[loves fido [owner fido]]”,
which is a list of 3 terms, the
last of which is a list of 2 terms
(like S-expressions)

the algorithm is recursive; if it
can match elementiin each
list, it proceeds with trying to
match elements i+1

UnifyVar subroutine tries to
add a binding of var to x in the
current substitution list

first, it checks of var or x
already have substitutions

it also checks that var does not
occur inside of x, e.g. can’t

bind Z to f(2)
4/4/2023

if & = failure then return failure
else if © = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y,6)
else if VARIABLE?(y) then return UNIFY-VAR(y, z.6)
else if COMPOUND?(z) and COMPOUND7?(y) then
return UNIFY(ARGS(z), ARGS(y), UNIFY(OP(z), OP(y).)
else if LIST?(x) and L1ST?(y) then
return UNIFY(REST(z), REST(y), UNIFY(FIRST(z), FIRST(y), 7))
else return failure

function UNIFY-VAR(var, =,) returns a substitution
if {var/val} € 6 for some val then return UNIFY(val, z,0)
else if {z/val} € 6 for some val then return UNIFY(var, val, 8)
else if OCCUR-CHECK?(var, z) then return failure
else return add {var/z} to @

32

Unification Algorithm
this example describes
in this example, capital letters are variables and lower-case are constants block a on block b in situation S,
which is the successor of doing
*P= on(X,Y,S)"cIear(X,do(A,T)) a puton action in a predecessor state T
 Q =on(a,b,do(puton(a,b),statel)) clear(Z,S)
 u={X/a, Y/b, Z/a, S/do(puton(a,b),statel) , A/puton(a,b), T/statel }
 subst(u,P) = on(a,b,do(puton(a,b),statel))”*clear(a,do(puton(a,b),statel))

on/ ™ clear on/ T clear
7V AN
X Y S X do a b o) z S
/' \ /N
A T puton statel

/N
a b

Unification Algorithm

P = on(X,Y,S)clear(X,do(A,T))

Q = on(a,b,do(puton(a,b),statel))”clear(Z,S)

u={X/a, Y/b, Z/a, S/do(puton(a,b),statel), A/puton(a,b), T/statel }
subst(u,P) = on(a,b,do(puton(a,b),statel))*clear(a,do(puton(a,b),statel))

N FAN
on/ ™~ clear on/ T clear u={X/a}
//\ /\ //x /\ u={X/a, Y/b}
X Y S X do a b 0 Z S u={X/a, Y/b,
N . /' \ L A AN S/do(puton(a,b),statel)}
TTTeeTIEsslZEseiecfessssgpEzIIIIIiiooiiiiiooo- b—liton statel

/N
a b

Unification Algorithm

P = on(X,Y,S)clear(X,do(A,T))

Q = on(a,b,do(puton(a,b),statel))”clear(Z,S)

u={X/a, Y/b, Z/a, S/do(puton(a,b),statel), A/puton(a,b), T/statel }
subst(u,P) = on(a,b,do(puton(a,b),statel))*clear(a,do(puton(a,b),statel))

A A u={X/a, Y/b,
on/ S clear on/ . clear S/do(puton(a,b),statel),
7 LT A SN gt
X v S X ac” do ; b go “““““ 7 S “substitute through X to a”
/ \ Vs \ u={X/a, Y/b,
A T outon statel S/do(puton(a,b),statel),

/ \ Z/a}
a b

Unification Algorithm

P = on(X,Y,S)clear(X,do(A,T))

Q = on(a,b,do(puton(a,b),statel))”clear(Z,S)

u={X/a, Y/b, Z/a, S/do(puton(a,b),statel), A/puton(a,b), T/statel }
subst(u,P) = on(a,b,do(puton(a,b),statel))*clear(a,do(puton(a,b),statel))

A 74N u={X/ar Y/bl
on/ \clear on— - clear S/do(puton(a,b),statel),
7\ A P T 2 Apuroniap)
X Y S X do‘ a b 0 7 T s=do T/statel}
/N /N / N\
A T puton statel Puton statel
A
~~~~~~~~~~ SN X



Generalized Modus Ponens (GMP)

from {P’, V...P->Q} derive Q'=subst(u,Q) where u=unify(P,P’)

in other words...

e if P’ unifies with the antecedents of the rule, where u is the unifier, then derive the
consequent, but apply the unifier to it

e example 1:
VXY cat(X)*mouse(Y)—>chase(X,Y)
cat(scratchy)*mouse(itchy)
chase(scratchy,itchy) using u={X/scratchy, Y/itchy}

e example 2:
VM loves(M,M)->narcissist(M)
loves(fonzie,fonzie)
narcissist(fonzie) using u={M/fonzie}
note - this does not work for loves(joanie,chachi), does not unify with loves(M, M)




Natural Deduction Proofs in FOL

Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal

4/4/2023

38



It is a crime for an American to sell weapons to a hostile nation.
1. VX)Y.Z american(X) weapon(Y)hostile(Z) rsells(X,Y,Z) —criminal(X)
Nono has some missiles.
2. dB owns(nono,B)  missile(B)
All of Nono’s missiles were sold to it by Colonel West.
3. VCowns(nono,C)missile(C)—>sells(west,C,nono)
Missiles are weapons.
4. ¥ D missile(D)—>weapon(D)
 An enemy of America counts as “hostile”.
5. VE enemy(E,america)—>hostile(E)
* The country Nono is an enemy of America.
6. enemy(nono,america)
* Colonel West is an American.
7. american(west)



Natural Deduction proof in FOL (with unifiers)

8. hostile(nono) [MP,5,6] 6={E/nono}

9. owns(nono,m,) nmissile(m,) [ExInst ,2] 6={B/m,} skolem constant
10. missile(m,) [AndElim,9]

11. weapon(m,) [MP, 10,4] 6={D/m,}

12. sells(west,m,,nono) [MP, 3,9] 6={C/m}

13. american(west) » weapon(m1) A hostile(nono) * sells(west,m1,nono)
[AndIntro, 7,8,11,12]

14. criminal(west) [MP,1,13] 6={X/west,Y/m,Z/nono}

(From previous page...)
1. VX,Y,Z american(X)Aweapon(Y)rhostile(Z) rsells(X,Y,Z) —criminal(X)



Generalized Resolution

* from {PvQ, -P’vR} derive Q'vR’=subst(u,QvR) where u=unify(P,P’)

e in other words...

* if Pand P’ are two opposite literals that unify, and unifier is u, then combine
the remaining literals and apply the substitution

* example:
 clause 1: -dog(X) v mammal(X)
* clause 2: -mammal(Y) v animal(Y)
* resolvent(P,Q): -dog(Y) v animal(Y) after applying u={X/Y}




Resolution

e generalized resolution - with unifiers

Full first-order version:

LN - N, mqy V-V om,

I' 4 1V \Y¥ i—1 Vv f,f+] Vo L V'n 11 Vo N m j—1 Vo om j+1 Voeee N m n ] f

P

where UNIFY({;, —m;)=0.
For example,

—Rich(z) VvV Unhappy(x)
Rich(Ken)
Unhappy(Ken)

with f = {z/Ken}

Apply resolution steps to CNF (KB A —«); complete for FOL



Conversion to CNF ...in FOL

Everyone who loves all animals is loved by someone:
Va([Vy Animal(y) = Loves(z,y)] = [Fy Loves(y,x)])

1. Eliminate biconditionals and implications
YV [-Vy —Animal(y)V Loves(z,y)|V |3y Loves(y,z)]
2. Move — inwards: —=Vr.p =dr —p, —ZJx.p =Y —p:

Vo |3y —~(—Animal(y) V Loves(x,y))| V [3y Loves(y, x)]
Va |3y —-—Animal(y) AN = Loves(x,y)| V |3y Loves(y, )]
Va |y Animal(y) AN = Loves(x,y)| V |3y Loves(y, z)|




Conversion to CNF contd. ...in FOL

. Standardize variables: each quantifier should use a different one

Vr 3y Animal(y) A —~Loves(z,y)| V |3z Loves(z,z)]

¥,

. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

Va [Animal(F(z)) A =Loves(x, F'(x))| V Loves(G(z), x)
. Drop universal quantifiers:

[Animal(F(x)) A = Loves(x, F(x))|] V Loves(G(x), x)

. Distribute A over V:

[Animal(F(z)) V Loves(G(x),z)|] A [~ Loves(x, F(x)) V Loves(G(x), x)]

P



find a pair of clauses that are unifiable
e.g C=-pineTree(P) v plant(P)
C=pineTree(christmasTree29)
/ they unify provided P=christmasTree29

function PL-REsoLUTION( A B, o) retm
inputs: KB, the knowledge base, a se
v, the query, a sentence in pr

true or false don't forget to

ce in propositional logic
ositional logic / negate the query

clauses +— the set of clavuses in theA°NF representation of KB A —a

new «—{ }

loop do apply unifier O to remaining literals t¢

for each pair of clauses ', C; in clauses do " " .
resolvents — PL-RESOLVE(C:, () " the “resolvent”:e.g. plant(christmasT

if resolvents contains the empty clause then return {rue
new +— new |J resolvents

if new C clauses then return false termination: we are looking to generate
clauses «+— clauses |J new the empty clause

b generate
ree29)




KB converted to CNF clauses derived by resolution

~American(x) v ~Weapon(y) v —Sells(x,y,z) v—Hostile(z) vCriminal(x) —Criminal(West) (negated query)

American(West) —American(West) v ~Weapon(y)v —Sells(West,y,z) v —Hostile(z) {X/ West}

AN

—Missile(x) v Weapon(x) ~Weapon(y) Vv —Sells(West,y,z) v ~Hostile(z)

other possible resolve

Missile(M,) —Missile(y) v —Sells(West,y,z) v —Hostile(z) {x/y}

weapon(M1)

ﬁJMissileWﬁV(mo, x) V Sells(West,x, Nono) —Sells(West,My,z) v —Hostile(z) {y /M1}

Missile(M ) —Missile(M) v —~Owns(Nono, M) v —~Hostile(Nono) {x/M1,z/Nono}

owns(nono,N1) v sells(west,M1,nono

/ Owns(Nono, M) —~Owns(Nono, M) —Hostile(Nono)

—missle(M1) v sells(west,M1,Nongo)
—Enemy(x,America) v Hostile(x) —Hostile(Nono)

L

Enemy(Nono, America) %Snemy(Nono,America)

(empty clause)

4/4/2023 46



Resolution Strategies (Search Heuristics)

e Unit preference
* choose pairs of clauses where one of them is a single literal
* why? because will reduce length of other clause

 Set of Support
* initially identify a subset of clauses likely to contain the inconsistency (e.g. the
negated query)
* with each iteration, choose one of the clauses from SOS, and add resolvent to
SOS
e example: in Wumpus World, focus only on clauses involving rooms (x,y)
where x and y are restricted to 1-3

e generates "goal-directed proofs", without deriving a lot of irrelevant
conclusions from a large KB



Resolution Strategies

* Input resolution

 always choose one of the clauses from the Input (KB or facts) - never resolve 2
derived clauses

* restricted space of proof trees with a "spine" (see Col. West example)
 efficient, but not complete (except for Horn clause KBs)

* Linear resolution

 a variant of Input resolution

 allow clauses to be resolved if one of them is in Input, or if one is an ancestor
of the other

e complete



Completeness of Resolution

e Recall that Reso in Prop Logic is complete - because of Ground
Resolution Theorem:

* If a set of Prop clauses S is unsatisfiable, the empty clause is in the
Resolution Closure, so there exists a finite sequence of resolution steps
that will generate the empty clause O

* To prove this for FOL, we need to take unification into account

(for Vd riabIES) for example: think of converting
! X missle(x) and vy -missile(y) v weapon(y)
¢ Herbrand S Theorem: to: missile(m,) and -missile(m,) v weapon(m,)
 |f a set of FOL clauses S-isunsatisfiable, then there exists a finite set of

ground instances that is unsatisfiable

* combine this with the Ground Resolution Theorem and the
Lifting Lemma to show that o can be derive from the original
clauses S (with variables)




Completeness of Resolution

e Herbrand Universe: set of all Any set of sentences S 1s representable 1n clausal form
constants and functions of
constants

* a,b,c,f(a),f(b)f(f(a))...

* Herbrand base: set of all Assume S 1s unsatisfiable, and in clausal form
ground clauses made by
using objects from Herbrand
Universe as arguments -

* dog(a)->mammal(a) . . . C oA
« dog(b)=>mammal(b) Some set S’ of ground instances 1s unsatisfiable

* dog(f(a))>mammal(f(a)) l Ground resolution

Herbrand’s theorem

o heorem
* Lifting Lemma: once you theore

have the structure of a proof Resolution can find a contradiction mn '

of O using ground sentences,

gou can put the variables -
ack in to the same proof

structure

Lifting lemma

There 1s a resolution proof for the contradiction in §’




Illustration of Herbrand's Theorem

* Herbrand says the FOL KB is equivalent to a collection of ground
sentences where exist. vars are skolemized and univ. vars are
replaced by all possible constants...

e Consider the FOL theory for Col West:

1. VXY.Z
american(X)Aweapon(Y) hostile(Z) nsells(X,Y,Z) —>criminal(X)

2. dB owns(nono,B) nmissile(B)

3. Y C owns(nono,C) missile(C)—>sells(west,C,nono)
4. YD missile(D)—»weapon(D)

5. VE enemy(E,america)—hostile(E)

6. enemy(nono,america)

7. american(west)

* We want to show KB|=criminal(west) by Resolution. Can we

count on a derivation of [ by a finite number of steps?

4/4/2023

4. [/ VD missile(D) —>weapon(D) =
missle(west)—>weapon(west)
missle(nono)—»weapon(nono)
missle(america) —»weapon(america)
missle(m1)—>weapon(m1) *

5.// YE enemy(E,america)—hostile(E) =
enemy(west,America)—hostile(west)
enemy(nono,America)—hostile(nono) *
enemy(america,America)—hostile(america)
enemy(m1,America)—>hostile(m1)

1.// we would have all combinations of X,Y,Z...
american(m1)Aweapon(m1) hostile(m1) sells(m1,m1,m1)—»cri
minal(m1)

american(west) aweapon(m1)hostile(nono) sells(west,m1,non
o)—criminal(west) *

* Most of these are irrelevant and silly, but they exist in principle.

Our proof only relies on only selected ground instances (marked
by asterisks) o1



Illustration of Herbrand's Theorem

* propositionalize: e add negated query and convert to CNF:

* select just the right ground sentences

(and add negated query):

american(west)Aweapon(m1)hostile
(nono)sells(west,m1,nono)
—criminal(west)

owns(nono,m1) missile(m1)

owns(nono,m1) missile(m1)
—sells(west,m1,nono)

missile(m1)—>weapon(m1)
enemy(nono,america)—»hostile(nono)
enemy(nono,america)
american(west)

—-criminal(west)

4/4/2023

american_westAaweapon_m1nhostile
_nononsells_west_m1_nono
—criminal_west

owns_nono_ml missile_m1

owns_nono_mlmissile_m1
—sells_west_m1_nono

missile_m1—>weapon_m1
enemy_nono_america—hostile_nono
enemy_nono_america
american_west

-criminal_west

-american_west v -weapon_m1 v
-hostile_nono v
-sells_west_m1_nono v criminal_west

owns_nono_ml
missile_m1

-owns_nono_m1 v -missile_m1v
sells_west_m1_nono

-missile_m1 v weapon_ml1

-enemy_nono_America v
hostile_nono

enemy_nono_america
american_west

-criminal_west

52



Illustration of Herbrand's Theorem

* do resolution proof in propositional logic:

1. -american_west v -weapon_m1 v -hostile_nono v
-sells_west_m1_nono v criminal_west

owns_nono_ml

missile_m1

-owns_nono_m1 v -missile_m1 v sells_west_ m1 _nono
-missile_m1 v weapon_ml1

-enemy_nono_America v hostile_nono
enemy_nono_america

american_west

. =criminal_west

10 -missile_m1 v sells_west_m1_nono [res, 2&4]

11. sells_west_m1_nono [res, 3&10]

12. hostile_nono [res, 6&7]

13. weapon_m1 [res, 3&5]

14. -weapon_m1 v =hostile_nono v -sells_west_m1_nono v
criminal_west [res, 8&1]

15. =hostile_nono v -sells_west_m1_nono v criminal_west
[res, 14&13]

16. -sells_west_m1_nono v criminal_west [res, 15&12]
17. criminal_west [res, 16&11]

18. [ [res, 17&9]

LoONOURWN

 Lifting the same proof structure back to FOL (in CNF) with
unification:
1. ~american(X) v -weapon(Y) v -hostile(Z) v -sells(X,Y,Z) v
criminal(X)
2 owns(nono,m1)
missile(m1)
-owns(nono,C) v -missile(C) v sells(west,C,nono)
-missile(D) v weapon(D)
-enemy(E,america) v hostile(E)
enemy(nono,america)
american(west)
. =criminal(west)
10 -missile(m1) v sells(west,m1,nono) [res, 2&4] {C/m1}
11. sells(west,m1,nono) [res, 3&10]
12. hostile(nono) [res, 6&7] {E/nono}
13. weapon(m1) [res, 3&5] {D/m1}
14. -weapon(m1) v -hostile(Y) v -sells(west,Y,Z) v
criminal(west) [res, 8&1] {X/west}
15. -hostile(Z) v -sells(west,m1,Z) v criminal(west) [res,
14&13] {Y/m1)}
16. -sells(west,m1,nono) v criminal(west) [res, 15&12],
{Z/nono}
17. criminal_west [res, 16&11]
18. [ [res, 17&9] >3

LoONOUAW




Complexity of Resolution

* Recall that showing entailment by Resolution Refutation proofs in
Propositional Logic is NP-complete

* FOL is only semi-decidable
* if entailed (o |= B ), we could prove it (in theory, Herbrand’s Theorem)
* if B is not entailed, cannot guarantee we can prove it (because of Gédel's
Incompleteness Theorem)

* thus we say that Inference in FOL is "refutation-complete”

e computational complexity could be much worse than NP (depending
on syntactic restictions on variables, functions, operators...)
e e.g. satisfiability of quantified Boolean formulas (QBF) is PSPACE-complete



Forward-Chaining in FOL

* it works like it did in PropLog, but now we have to do unification
when matching antecedents in rules, and keep track of variable
bindings

* implementations

* Rete algorithm: efficient way to store KB as a graph and determine which
rules can fire, activating other nodes...

» JESS — Java-based system in which you can build applications that use FC to
make intelligent decisions



Forward Chaining Systems

* also known as Production Systems or Expert Systems

 e.g. diagnosis systems for medical, financial/corporate, or mechanical
systems

* also used for cognitive models of reasoning (e.g. ACT, SOAR)

* model of long-term and short-term memory, with activation of concepts by
association

e one advantage of ES is that they can generate explanations of their
recommendations (i.e. a proof-tree showing the rules and facts that
were used to support their conclusions)

* restriction: knowledge based must consist of facts and conjunctive
rules (including universal quantifiers but not existential)



Conjunctive Rules in FOL

* many KBs have rules of this form
e Vx,y [dz P(..)*Q(..)*R(..)]—>S(..)

Note: standardize your variable apart between rules.
If you use 'X' as a variable in multiple rules, replace each
instance with a unique version (subscript).
For example:
VX dog(x) =>mammal(x)
Vx cat(x) ->mammal(x)
becomes
vx, dog(x,)—»mammal(x,)
VX, cat(x,)»>mammal(x,)
That way, there will be less confusion during unification.

» LHS (antecedents) has to be a conjunction of positive literals (no negations)
* Universally quantified variables (appear in both antecedents and consequent)
* LHS can also have extra variables (dz), typically existentially quantified

e Vx [dz int(x)int(z) Mfactor(z,x)*1<z<x]—>compositeNumber(x)

e conjunctive rules are equivalent to Definite Clauses

e convert conjunctive rule to CNF (note the scoping during Impl. Elim.!)

vx,y [z P(..)2Q(..)"R(..)]—>S(..)

vx,y -[3z P(.)"Q(.)"MR(..)] v S(..)
vx,y [Vz =(P(..)*Q(..)*R(..))] v S(..)
vx,y [Vz =(P(..)*Q(..)*R(..))] v S(..)
vxy [Vz-P(..)v-Q(.)v-=R(.)]vS(.)

vx,y,z-P(..)v-Q[..)v-=R(..)vS(..) - definite clause, 1 pos. lit.




"agenda";
initialize with
known facts;
add new facts
as they are
inferred

Forward chaining algorithm

/

function FOL-FC-ASK(KB, ) returns a substitution or false

repeat until new is empty
new«—{ }
for each sentence rin KB do

(ptA...N\ pn = q)+<— STANDARDIZE-APART(r)
for each 6 such that (py A ... A pu)0 = (p] N ...
for some pi,...,p; in KB

g — SUBST(6, q)

if ¢’ is not a renaming of a sentence already in KB or new then do

add ¢’ to new
¢ — UNIFY(¢', @)
if ¢ is not fail then return ¢
add new to KB
return false

for each rule, like Vx dog(x)>mammal(x)
replace with unjque variable names, to
avoid confusion with use of same variable in
other rules, Vx{y; dog(x,4,) 2 mammal(x,y;)

AP J;'a ) Y




Forward Chaining Example IN FOL

1. american(X)Aweapon(Y)Ahostile(Z)Asells(X,Y,Z)—criminal(X)
2. owns(nono,C)Amissile(C)—sells(west,C,nono)
3. missile(D)—>weapon(D)
4. enemy(E,america)—>hostile(E)
— Because we had to convert KB
5. owns(nono,m1) o
. - to definite clauses,
f';\g.e.nd-a. 6. mi55i|e(m1) 3B owns(nono,B) nmissile(B)
|n!t|al|zed _ _ had to get made into a ground
with facts 7. enemy(nono,america) sentence by skolemization (El):
3 amerlcan(west) owns(noho,ml)".missile(m1)
for a particular missle m1

9. weapon(m1) // rule 3 fired, u={D/m1}
10. hostile(nono) // rule 4 fired, u={E/nono}
11. sells(west,m1,nono) // rule 2, u={C/m1}
12. criminal(west) // rule 1 fires



Example: Kinship KB (Simpsons characters)

female(lisa) Vx,y parent(x,y)*male(y)—father(x,y)
female(marge)

male(bart)
male(homer) v,y parent(x,y)*female(x)—>daughter(y,x)
male(tod)
male(rod)
male(flanders)

o p— p—  p—

Vx,y [dz parent(x,z)*parent(y,z)—sibling(x,y)

parent(bart,homer)  jnterpret these as "father of x is y" etc.
parent(bart,marge)

parent(lisa,homer)
parent(lisa,marge)
parent(rod,flanders)
parent(tod,flanders)

food for thought: define rules for 'grandfather’, ‘cousin’, 'aunt’, 'related'...



Example: Kinship KB (Simpsons characters)

female(lisa)
female(marge)
male(bart)
male(homer)
male(tod)
male(rod)
male(flanders)

parent(bart,marge)
parent(lisa,homer)
parent(lisa,marge)
parent(rod,flanders)
parent(tod,flanders)

4/4/2023

Vx,y parent(x,y)*male(y)—>father(x,y)
Vx,y parent(x,y)*female(x)—>daughter(y,x)
Vx,y [dz parent(x,z)*parent(y,z)—sibling(x,y)

What new facts can we generate by Forward Chaining?
 find all combos of facts matching LHS of rules (try all var bindings)

father(bart,homer)
father(lisa,homer)
father(rod,flanders)
father(tod,flanders)
daughter(marge,lisa)
daughter(homer,lisa)

male(homer)-—>father(bart,homer)

parent(lisa,homer)->sibling(bart,lisa)
sibling(bart,lisa)
sibling(lisa,bart)
sibling(rod,tod)
sibling(tod,rod)

what about sibling(bart,bart)?
to prevent this, add x#y to the rule

61



Forward-Chaining System Architecture

4 A f INFERENCE \

WORKING ENGINE

MEMORY
N J
L, PATTERN EXECUTION
MATCHER ENGINE

RULE 1
= [ | Caceon —1
\ %




alpha nodes essentially store lists of facts (tuples)
matching the pattern of an antecedent in a rule

Rete A | gO r | t h m beta nodes perform "joins" of alpha nodes that will

activate a rule, producing specifc new facts (tuples)

Rete

representation of knowledge as a network, where
nodes represent literals (predicates) . @ 0@

. Mode  /
rules link antecedent nodes to consequentsecs ) ® - =

start by activating nodes corresponding to initial \\,}. T\ = G

facts

uses efficient indexing of predicates to determine e (_« '
which rules can fire anme

in each iteration, determine which rules can fire ™™™

pick a rule (that can fire) with highest priority and i ()
modify the network — |

rules with variables generate new instances of nodes
for consequents with distinct variable bindings Agenda g _Confict

Resolution

run until quiescence

prOdUCES a” the consequences Of the faCtS https://en.wikipedia.org/wiki/Rete_algorithm



Conflict Resolution

* a common issue in Forward Chaining that has to be dealt with

* What happens when two rules can fire that have opposite effects?
e some rules can retract antecedents of other rules
e e.g. one rule says assert(P) and the other says retract(P)
* assign numeric priorities to rules — highest wins

e Subsumption Architecture (Rodney Brooks)

* intelligent behavior in robots can be produced in a decentralized way by a
lot of simple rules interacting

* divide behaviors into lower-level basic survival behaviors that have higher
priority, and higher-level goal-directed behaviors 1eFo

< S
* example: 6-legged robot ants learning to walk (/—\ “

Ve S e \-V b o
AV ag *ﬂﬂkwﬁwﬁ; o A

Ghenis:
https://en.wikipedia.org/wiki/Genghis_(robot) g



CLIPS/JESS - implementations of FC using Rete

* C-Language Integrated Production System
* developed at NASA
» open source: http://clipsrules.sourceforge.net/

e JESS - Java Expert System Shell

* developed by Ernest Friedman-Hill at Sandia
(https://herzberg.ca.sandia.gov/)

* Java implementation of Forward-Chaining and Rete algorithm

e can interface reasoning with GUI, controllers, etc.

(defrule library-rule-1
(book (name ?X)
(status late)
(borrower ?Y))
(borrower (name ?Y)
(address ?2))

e example of syntax for rules:

=>
(send-late-notice ?X ?Y ?Z))



CLIPS

* https://github.com/smarr/CLIPS

* Wine Expert - https://github.com/smarr/CLIPS/blob/master/examples/wine.clp
e expert system for recommending wine pairings with food

(rule (if has-sauce is yes and sauce is spicy) (then best-body is full))
(rule (if tastiness is delicate) (then best-body is light))

(rule (if has-sauce is yes and sauce is cream)
(then best-body is medium with certainty 40 and best-body is full with certainty 60))

(rule (if main-component is-not fish and has-sauce is yes and sauce is tomato)
(then best-color is red))




Backward-Chaining in FOL

* it works like it did in PropLog, but now we have to do unification
when matching goals on the goal stack, and keep track of variable
bindings

* this is the basis of how Prolog works (BC in FOL)



Backward chaining algorithm

function FOL-BC-ASK(KB, goals,f) returns a set of substitutions

inputs: KB, a knowledge base
goals, a list of conjuncts forming a query (6 already applied)
6, the current substitution, initially the empty substitution { }
local variables: answers, a set of substitutions, initially empty

if goals is empty then return {6}
q' — SuBST(#, FIRST(goals))
for each sentence rin KB
where STANDARDIZE-APART(7) = (p1 A ... A pn = q)
and @' — UNIFY(q, ¢') succeeds <

new_goals < [ py, ..., p,| REST(goals)]

answers «— FOL-BC-AsK(KB, new_goals, COMPOSE(6',0)) U answers
return answers

goal q" matches
consequent of
rule g, or

goal matches a
fact (where fact
is like a rule with
no antecedents,
i.e.n=0



1. VX,Y,Z american(X)Aweapon(Y)Ahostile(Z)Asells(X,Y,Z)—criminal(X)

Backward chaining example

2a. owns(nono,m1) // skolemized to make it definite-clause KB
2b. missile(m1)

3. YC owns(nono,C)Amissile(C)—sells(west,C,nono)

Ix/West, v/M1, z/Nono}

Criminal(West)

4. VD missile(D)—>weapon(D)

‘ American{West) ‘

[ Selis(WestM1,2) |

‘ Weapon(v) ‘ Hostile(Nono)

5. VE enemy(E,america)—hostile(E) .

6. enemy(nono,america)

7. american(west) (accumulated var bindings)

[criminal(west)] 0={}
[american(west), weapon(Y), sells(west,Y,Z), hostile(Z)]  6={X/west}
[weapon(Y), sells(west,Y,Z), hostile(Z)] 0={X/west}

[missile(Y), sells(west,Y,Z), hostile(Z)] 0={X/west, D/Y}
0={X/west, D/Y, Y/m1}

0={X/west, D/Y, Y/m1, C/m1, Z/nono}

[sells(west,m1,Z), hostile(Z)]

[owns(nono,m1),missle(m1),hostile(nono)]

0={X/west, D/Y, Y/m1, C/m1, Z/nono}
0={X/west, D/Y, Y/m1, C/m1, Z/nono}
0={X/west, D/Y, Y/m1, C/m1, Z/nono, E/nono}

[missle(m1),hostile(nono)]
[hostile(nono)]

[enemy(nono,America)]

& (empty stack) 0={X/west, D/Y, Y/m1, C/m1, Z/nono, E/nono}

{ zNeno }

| Missile(y) | | Missile(M1) | |O14’us(Nano,}Lﬂ) | |Enemy(Nouo.America) |

{wM1] {1 {} {}

annotation

initialize with query

replace criminal with ants of rule 1.
pop american by fact 6

pop weapon, push missile, rule 4
pop missile by fact 2b

match sells to conseq of rule 3

pop owns by fact 2a
pop missile by fact 2b

match hostile to conseq of 5; replace with enemy

pop enemy, since matches fact 6, leaving empty stack!



Example: Kinship KB (Simpsons characters)

female(lisa) Vx,y parent(x,y)*male(y)—>father(x,y)

ﬁg:;igﬂ?rge) v,y parent(x,y)*female(x)—>daughter(y,x)

male(homer) Vx,y [dz parent(x,z)*parent(y,z)—sibling(x,y)

male(tod)

male(rod) o

male(flanders) What can we prove by Backward Chaining?

* remember to track variable bindings with unifiers!

parent(bart,homer)

parent(bart,marge) query = father(lisa,homer) query = sibling(rod,tod)

parent(lisa,homer) goal stack: goal stack:

parent(lisa,marge) [father(lisa,homer)] [sibling(rod,tod)]

parent(rod,flanders) // push antecedents // push antecedents

parent(tod,flanders) [parent(lisa,homer),male(homer)] u={x/lisa,y/homer} | [parent(rod,z),parent(tod,z)] u={x/rod, y/tod}
// pop, since known fact // pop, since unifies with parent(rod,flanders)
[male(homer)] [parent(tod,flanders) u={x/rod, y/tod, z/flanders}
// pop, since known fact // pop, since known fact
& empty stack & empty stack




PROLOG

* PROLOG is an implementation of back-chaining in FOL.

e you can install PROLOG, and use it (by writing PROLOG programs) to
build Expert Systems for all kinds of applications.



