Iterative Improvement

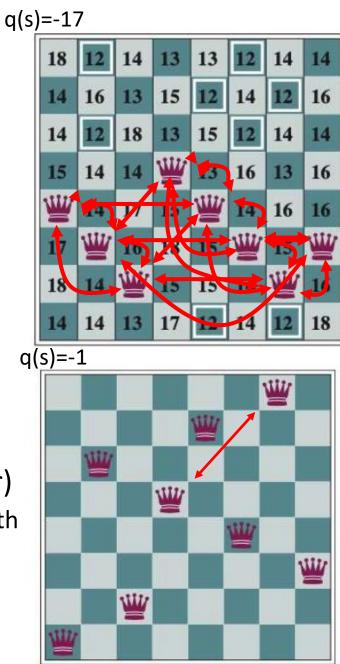
CSCE 420 – Spring 2023

read: Sec. 4.1

1

Iterative Improvement Search

- also known as Local Search
- maximize the "quality" of states, q(s) or value(s)
 - note: this is different than path cost
- example: 8-queens
 - can you place 8 queens on chess board such that none can attack each other?
 - initial state: place all 8 queens randomly, one in each column
 - q(s) = -(number of pairs of queens that can attach each other)
 - use negative so higher is better; or modify algorithm to find state with minimum score (gradient descent)



Hill Climbing

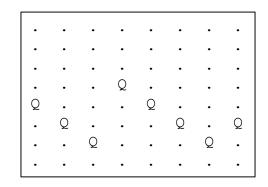
- maintain only a single current state
- generate successors using operator, and pick best

function HILL-CLIMBING(*problem*) **returns** a state that is a local maximum $current \leftarrow problem$.INITIAL

while true do

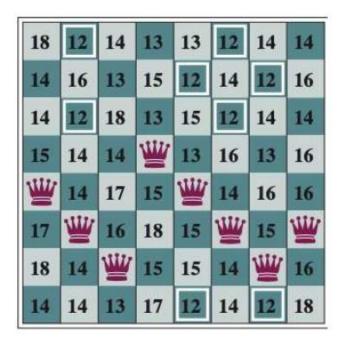
 $neighbor \leftarrow$ a highest-valued successor state of currentif VALUE(neighbor) \leq VALUE(current) then return current $current \leftarrow neighbor$

 operator for 8-queens: move any queen to another row in the same column

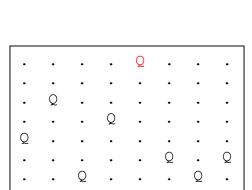


•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•
•	Q	•	•	•	•	•	•
•	•	•	Q	•	•	•	•
Q	•	•	•	Q	•	•	•
•	•	•	•	•	Q	•	Q
•	•	Q	•	•	•	Q	•
•	•	•	•	•	•	•	•

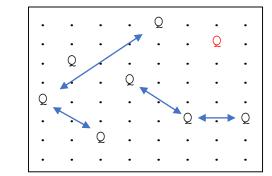
A sequence of iterations, where the best queen is moved to a new position in her column that most reduces the number of overall conflicts.



q=17

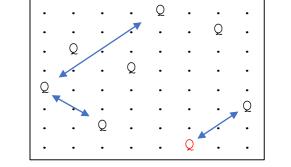


q=12-5+1=8



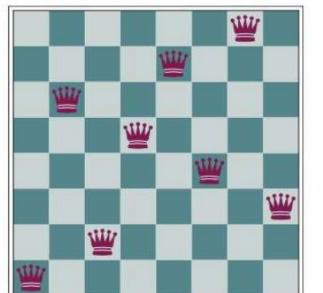
q=8-4+0=4

q=17-5+0=12



q=4-2+1=3

No further improvements can be made.



Problems with Hill-Climbing

B shoulder local maximum "flat" local maximum state space

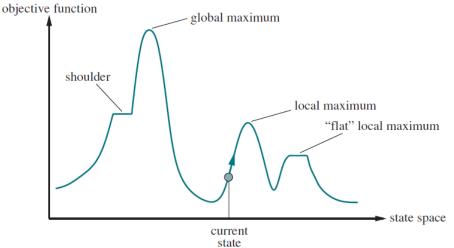
- 1. local maxima
- 2. plateau effect when all neighbors have same score and you "lose the gradient", even if not at top of hill
- **3.** ridge effect all neighbors have same or lower score, even then there might be other close states that are better

- suppose only choices are to go N, S, E, or W, but ridge goes up NE; hence all steps go down sides of the ridge
- often related to limitations of the successor function; consider expanding it to generate more successors in neighborhood (e.g. combinations of 2 steps)

ncreasing quality

Possible Solutions

• random restart HC



- stochastic HC choose any successor that is better than current state, not always the best
 - you can't just choose any random successor; must still bias the search upward
 - can this strategy really reduce risk of local minima?
 - this idea leads to Simulated Annealing...
- provide memory of previous states
 - HC only maintains 1 state: the current state
 - perhaps we could remember previously expanded-but-not-explored nodes to allow some "back-tracking" if we get stuck at a local maximum
 - this idea leads to Beam Search...
- macro operators ("macrops") create new operators from
 combinations of 2 or 3 actions, expanding the number of successors

Beam Search

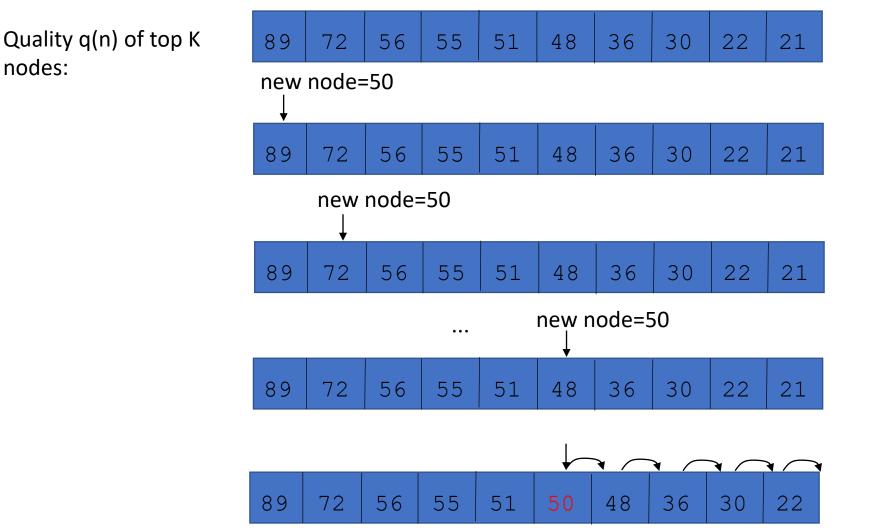
- adding "memory" to Hill-Climbing
 - comparison to Greedy Search: we used a frontier to keep track of *all* previously expanded-but-not-yet-explored states
 - (another difference: Greedy sorts PQ by h(n), and HC chooses successors by q(n))
 - however, this potentially has high space-complexity (exponential frontier size)
 - is there a compromise?
 - yes keep track of the K best previous nodes (based on state quality q(n))
 - this fixed-size array allows some back-tracking, even if not complete enough to explore the whole space (typically, beam size=10-100 nodes)
 - thus, Beam Search could possibly back-track off of one hill and get onto another with a higher local maximum, even though it might fail to find the global max.

```
BeamSearch(init,k)
    beam←array[k]
    beam.insert(init)
    while True // or until beam empty, or reach max iterations...
        // pop best node in beam (highest score at front)
        curr←beam[0]
        for each child c∈operator(curr):
            beam.insert(c)
```

beam.insert(node n)

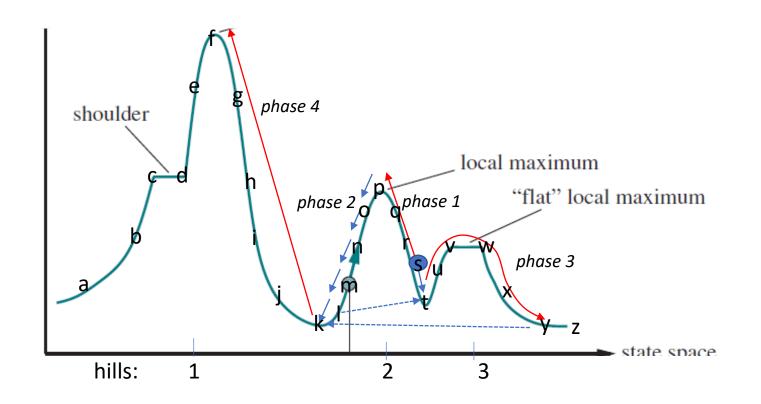
do insertion sort

since beam is always presorted, scan the list to find where n fits, and shift the rest of the nodes down (the last one falls out of the beam)



nodes:

note: something falls off end of beam (with lowest score) - it could be the kth item in beam, or the new node if it is worse than everything currently in beam (e.g. score<21)



- because this is a simple 1D space, all states have two neighbors
- usually, one of the neighbors has been recently visited, so we discard it
- phase 1: start at 's'; climb to local max at 'p' (hill 2)
- phase 2: when reach top of hill, the beam remembers these 2 nodes: [o,t]; start descending left slope of hill 2
- phase 3: there is a point where beam has both 'l' and 't' in it [l,t]; start ascending hill 3 since 't' is better
- phase 4: eventually, when reach 'y', resume search at 'l' and climb hill 1

Simulated Annealing

- stochastic search
- choose next child randomly, but "bias it upward"
- always accept better states, and accept worse states probabilistically, proportional to how much lower the quality is

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

current \leftarrow problem.INITIAL

for t = 1 to \infty do

T \leftarrow schedule(t)

if T = 0 then return current

next \leftarrow a randomly selected successor of current

\Delta E \leftarrow VALUE(current) – VALUE(next)

if \Delta E > 0 then current \leftarrow next

else current \leftarrow next only with probability e^{-\Delta E/T}
```

Simulated Annealing

- stochastic search
- choose next child randomly, but "bias it upward"
- always accept better states, and accept worse states probabilistically, proportional to how much lower the quality is

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state

current \leftarrow problem.INITIAL

for t = 1 to \infty do

T \leftarrow schedule(t)

if T = 0 then return current

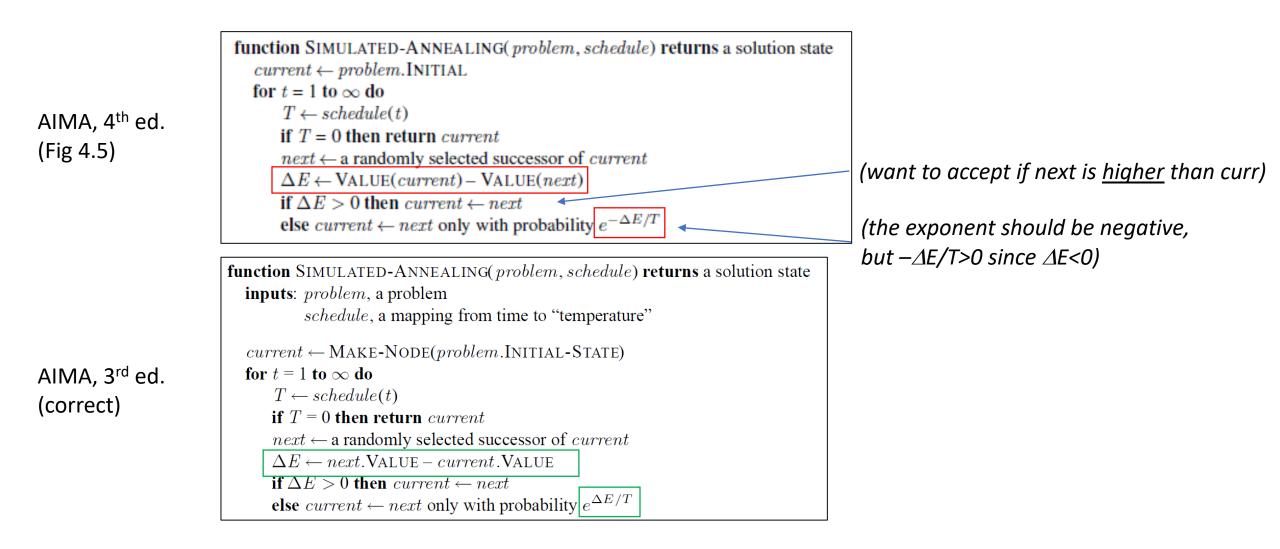
next \leftarrow a randomly selected successor of current

\Delta E \leftarrow VALUE(current) - VALUE(next) is this correct?

if \Delta E > 0 then current \leftarrow next

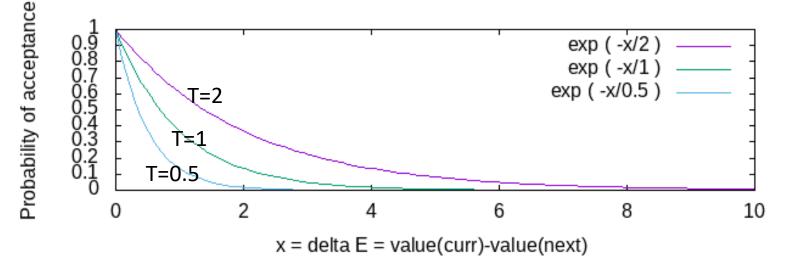
else current \leftarrow next only with probability e^{-\Delta E/T}
```

The algorithm in the 4th ed. of the textbook has 2 errors...



Simulated Annealing

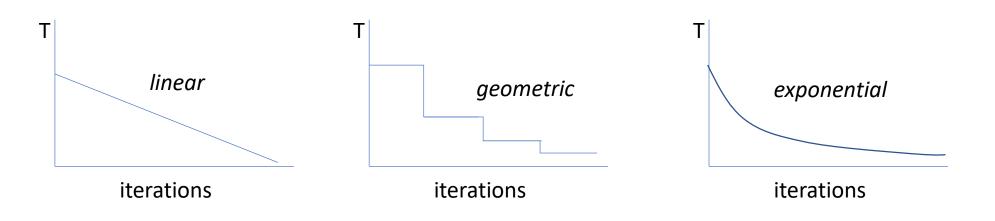
- accept with prob = $e^{-\Delta E/T}$ where ΔE =value(curr)-value(child)
 - if child is only a little worse, ΔE is small, so accept with high prob
 - if child is much worse, ΔE is large, and acceptance is less likely
- T ("temperature" controls) how loose or stringent we are
 - in the limit $T \rightarrow \infty$: all backward steps are allowed
 - in the limit T=0: no backward steps are allowed



this is analogous to "cooling" in materials like metal; malleable at high temperatures, but gets locked into a lattice structure at low temperatures

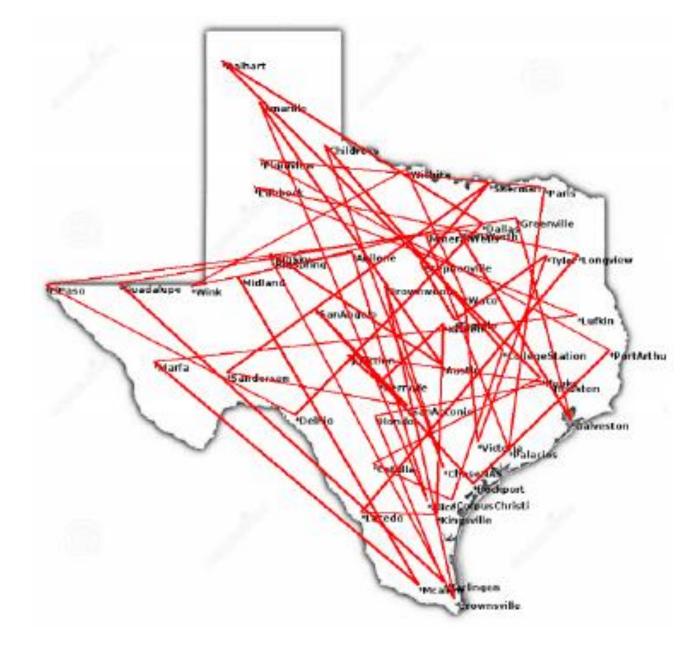
Temperature schedules

- a critical part of SA is to start with a high temperature and gradually lower it
- this allows the search to sample many local maxima initially, but over time, it becomes more selective and climbs up the best hill it it can find
- linear, geometric (e.g. halving every 1000 iterations), exponential...

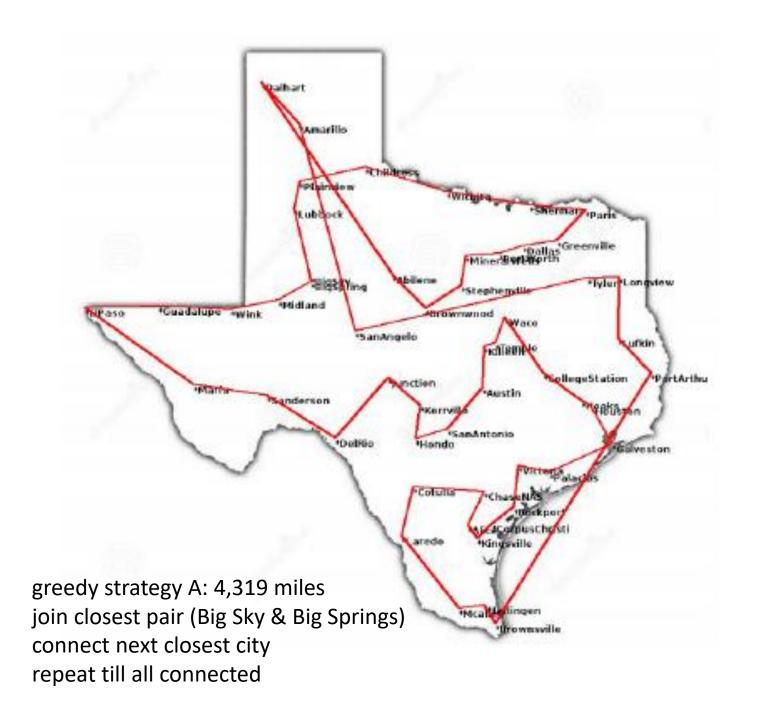


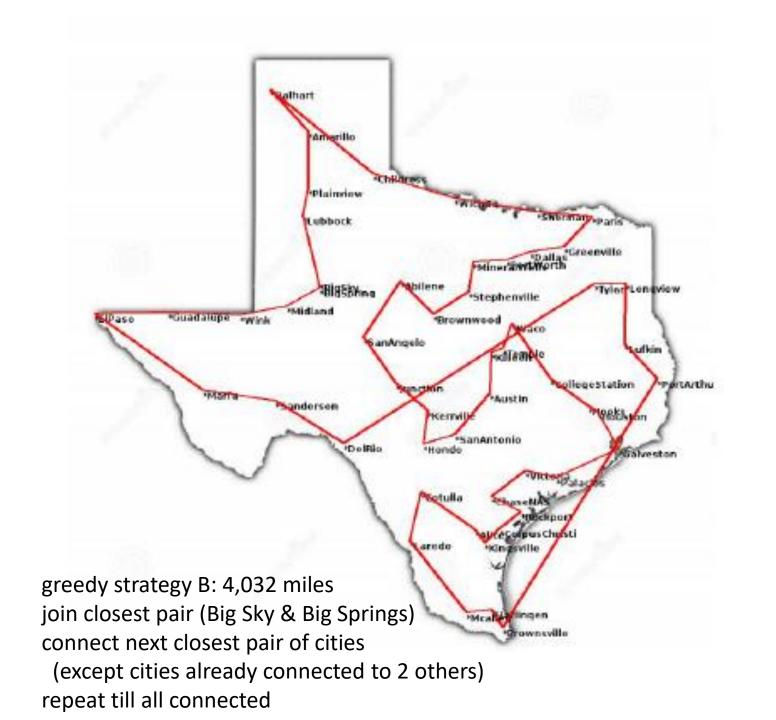
Simulated Annealing

- application of SA to "solving" the Traveling Salesman Problem (TSP)
 - actually, we can only hope to find approximately optimal solutions, because TSP is NP-hard
 - tour with minimum total length
 - (Hamiltonian cycle: visit every node exactly once)
 - example: Texas cities (pairwise connectable "as the crow flies")



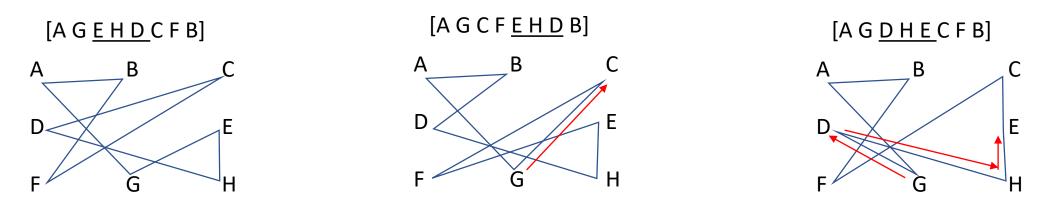
random tour, length=16,697 miles

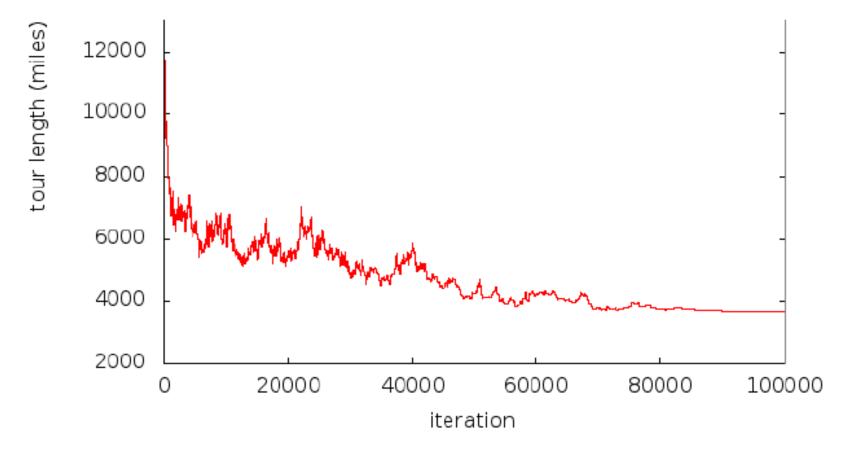




Simulated Annealing

- representation for TSP (for complete graphs): a list of the nodes in any order (permutation)
- operators for TSP (for complete graphs)
 - how to generate "variants" of any given tour (successor states)?
 - there are many ways to do this
 - choose a random subsequence and move it to another position
 - choose a random subsequence and reverse it



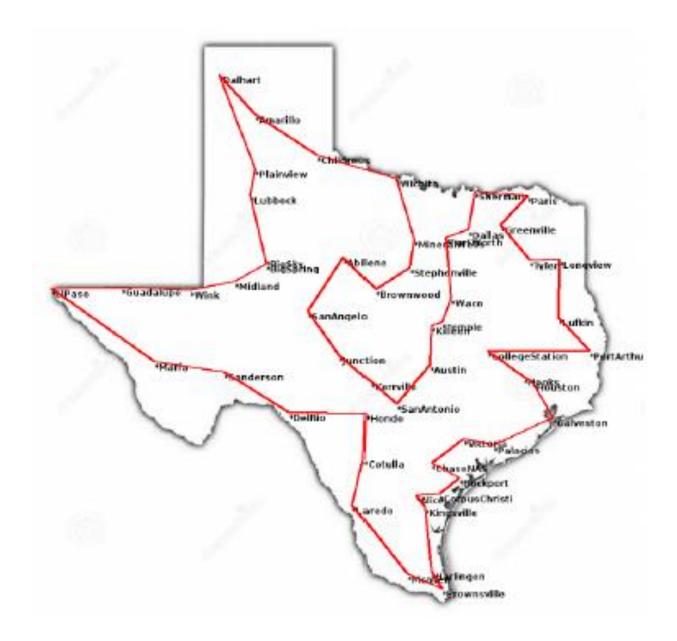


state = list of cities (complete tour) (state space size = ?)
operators:

A) pick 2 cities and swap them

B) pick a subsequence and reverse it

C) pick a subsequence and move to a new position in list



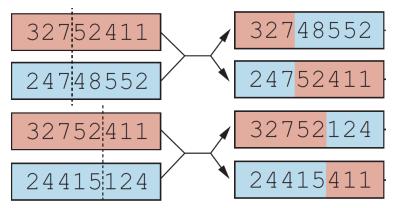
Simulated Annealing: 3,679 miles

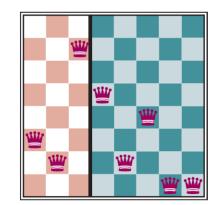
Genetic Algorithms

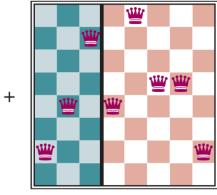
- also known as Evolutionary Programming
- the unique aspects of GA Search are:
 - maintain a *population* of **multiple candidate states** (parallel search, not just curr)
 - mix-and-match states by *recombination*
 - use *fitness* to select winners each round, akin to 'natural selection'
- fitness(state) is a synonym for value(s) or quality(s)
- some GAs use 'chromosomes', which represent state as a bit string
 - example: state of 8-queens is given by a list of 8 integers (0-7), which can be converted to a 24-bit string: 5,1,7,2,3,6,4,0 → 101001111010011110100000
 - but chromosomes are not necessary, as long as states can be recombined

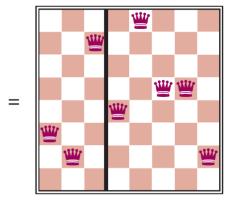
Recombination or 'cross-over'

 instead of an 'operator' to generate successors from states, use 'recombination' to combine parts of existing members of population









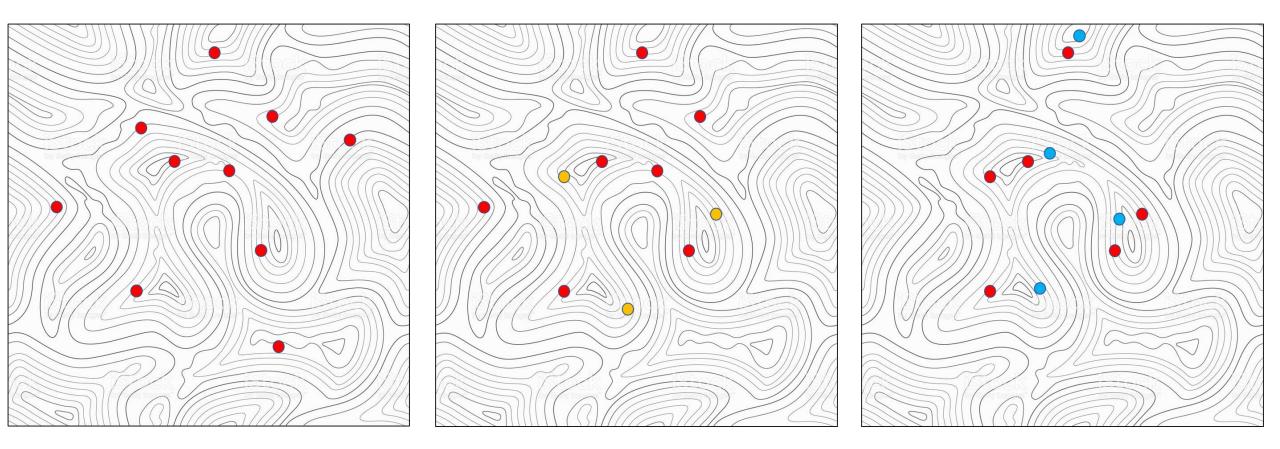
- for chromosomes, splice their strings at a random locations
- for other data types and states representation, use must define 'cross-over'
- by selecting parents at random and recombining them, you sometimes get the best of both and produce and improved state
- food for thought: How would you perform recombination between 2 tours for the TSP to generate a child state?

function GENETIC-ALGORITHM(population, fitness) returns an individual

repeat

```
weights \leftarrow WEIGHTED-BY(population, fitness)
population 2 \leftarrow empty list
for i = 1 to SIZE(population) do
parent1, parent2 \leftarrow WEIGHTED-RANDOM-CHOICES(population, weights, 2)
based on fitness
child \leftarrow REPRODUCE(parent1, parent2)
if (small random probability) then child \leftarrow MUTATE(child)
add child to population 2
population \leftarrow population 2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness
function REPRODUCE(parent1, parent2) returns an individual
n \leftarrow LENGTH(parent1)
c \leftarrow random number from 1 to n
```

```
return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c + 1, n))
```



Added some new orange individuals between red ones; Removed some of the less-fit red individuals.

Genetic Algorithms

- there are many variations on GAs
- some include *mutation*
 - make random changes to state (like operator) at low frequency
- Lamarckian evolution improvements/adaptation acquired during lifetime of individual can be passed on to offspring
- 'loss of diversity' is a problem for GAs, where population becomes homogeneous (everybody on the same hill)

Genetic Algorithms

- many applications of GAs to search problems,
 - from airfoil design (airplane wings)
 - to automatic program synthesis (random computation trees)
- optimization:
 - the power comes not from mutation, but from **competition**
 - <u>survival of the fittest</u> drives the population as a whole to gradually improve
 - weaker/less fit individuals do not get selected to reproduce and are effectively dropped from the population

Summary of Iterative Improvement Algorithms

- Uninformed (Weak) Search
 - Breadth-first (BFS)
 - Depth-first (DFS)
 - Iterative Deepening (ID)
 - Uniform-cost (UC) optimal (finds a goal with minimum path cost)
- Informed Search uses a heuristic h(n)
 - Greedy (Best-first) search
 - A* optimal (provided heuristic is admissible)
- Iterative Improvement
 - Hill-Climbing
 - Beam search
 - Simulated Annealing stochastic search
 - Genetic Algorithms parallel search (with a population of candidate solutions)