Search Algorithms

CSCE 420 - Fall 2023
read: Ch. 3

Search as a Model of Problem Solving in Al

- many AI problems can be formulated as Search
- planning, reasoning, learning...
- define discrete states of the world, connected by possible actions
- find a path from the current state to a desired goal state, producing a sequence of actions
- we start by describing generic (un-informed) search algorithms (like DFS)
- then we will extend this to heuristic search algorithms (like A*) which utilize domain knowledge to make the search more efficient

Example: Navigation as Search

- finding a path from an initial location (start) to a desired destination (goal)
- emphasis on discrete moves (city to city, or corner to corner as way-points

robot moving in workspace with obstacles

Example: Puzzles as Search

Start State

Goal State

...
actions = slide a tile up/down/left/right into empty space
a solution path is sequence of actions that transforms start state into the goal
other examples: Rubik's cube, River Crossing Problems, Monkey and Bananas Problem...

Framework for Formulating Search Problems

- states: a set of discrete representations/configurations of the world
- this defines the State Space, $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~S}_{2} \ldots\right\}$
- could be infinite
- operator: a function that generates successor states
- $S \mid \rightarrow 2^{S}$... mapping from S to powerset of S, i.e. subset of states
- $\operatorname{oper}\left(s_{\mathrm{i}}\right)=\left\{\mathrm{s}_{\mathrm{j}}\right\} \subset \mathrm{S}$
- this encodes the legal "moves" or "actions" in the space that transform from one state to another (or possibly multiple successors, or none)
- example: think about moves in tic-tac-toe

Search Framework

- the operator, applied recursively to the initial state, $\mathrm{s}_{\text {init }}$ generates the State Space (or at least, the reachable part)
- visualize it as a tree (the search tree)
- define b as the 'branching factor': average number of successors for each state
- the size of the tree (nodes on each level) grow exponentially with b

Search Framework

- goals: often specified in a domain-specific way as a set of requirements
- example: "winning states in tic-tac-toe have 3 X's in a row or column or diagonal"
- abstractly: we can think of goals as a subset of states in the State Space, i.e. $\mathrm{G}=\left\{\mathrm{s}_{\mathrm{j}}\right\} \subset \mathrm{S}$
- for many AI problems, we would be happy to find any goal node
- (doesn't matter which one)
- we are interested in the path, which is the sequence of actions that transforms the initial state $s_{\text {init }}$ into the goal $s_{\text {goal }}$
- in some cases, we might prefer the shortest path (fewest actions required)
- in other cases, if each operator has a different cost, we might be interested in finding the solution with the least path cost
- example: deciding to take a bus instead of a cab as part of a trip in order to minimize cost

$$
\operatorname{cost}\left(s_{1} . . s_{n}\right)=\sum_{i=1 . . n} c\left(o p_{i}\right) \quad \text { where } \mathrm{s}_{1}=\text { init, } \mathrm{s}_{\mathrm{n}}=\text { goal }, \text { and } \mathrm{s}_{\mathrm{i}+1} \in \mathrm{op}\left(\mathrm{~s}_{\mathrm{i}}\right)
$$

Uninformed Search ('Weak' Methods)

- Depth-first Search (DFS) expand children of children before siblings

Uninformed Search ('Weak' Methods)

- Depth-first Search (DFS) expand children of children before siblings

- Breadth-first Search (BFS) expand children of children AFTER siblings

Uninformed Search ('Weak' Methods)

- the 'frontier' or 'agenda' is the set of nodes that have been expanded but not yet explored, where expanded means it is a child of a visited node and explored means goal-tested

A Unified Search Algorithm

- although it is easy to write pseudo-code for DFS and BFS separately, they can be unified in an iterative procedure using a data structure to hold the nodes in the frontier
- BFS: frontier = queue (FIFO)
- DFS: frontier = stack (LIFO)
function BREADTH-FIRST-SEARCH (problem) returns a solution node or failure node $\leftarrow \operatorname{NODE}($ problem. INITIAL)
if problem.Is-GoAL(node.STATE) then return node
frontier \leftarrow a FIFO queue, with node as an element reached $\leftarrow\{$ problem.INITIAL $\}$
while not Is-Empty (frontier) do
node $\leftarrow \operatorname{POP}($ frontier $)$
for each child in EXPAND(problem, node) do
$s \leftarrow$ child.STATE
if problem.Is-GOAL (s) then return child
if s is not in reached then add s to reached add child to frontier
return failure

Search Framework

- nodes in the search tree represent states in the state space
- however, they are not quite the same
- a node represents a particular path (sequences of actions) to a state

- frontier (queue) for BFS:

- A // [front | A | end]
- B C // pop A, push children on end
- // pop B from front
- // push children D E on end
- CDE \leftarrow
- DEFG
- E F G H I // start adding next level
- FGHIJK
- G HIJKLM
-...
function BREADTH-FIRST-SEARCH (problem) returns a solution node or failure node $\leftarrow \operatorname{NODE}($ problem. INITIAL)
if problem.Is-GOAL(node.STATE) then return node
frontier \leftarrow a FIFO queue, with node as an element reached $\leftarrow\{$ problem.INITIAL $\}$
while not Is-Empty (frontier) do
node $\leftarrow \operatorname{POP}($ frontier $)$
for each child in EXPAND(problem, node) do $s \leftarrow$ child.STATE
if problem.Is-GOAL (s) then return child
if s is not in reached then
add s to reached
add child to frontier
return failure

```
function Depth-First Search (problem) returns a solution node or failure
    node}\leftarrow\textrm{NODE}(\mathrm{ problem.INITIAL)
    if problem.IS-GOAL(node.STATE) then return node
    frontier }\leftarrow\textrm{a}\mathrm{ LIFO queue, with node as an element
    reached }\leftarrow{\mathrm{ problem.INITIAL}
    while not Is-EmpTy(frontier) do
    node}\leftarrow\textrm{POP}(\mathrm{ frontier )
    for each child in EXPAND(problem, node) do
            s\leftarrowchild.STATE
            if problem.Is-GOAL(s) then return child
            if s}\mathrm{ is not in reached then
            add s to reached
            add child to frontier
    return failure
```

to change it to do DFS, all you have to do is replace the frontier with a stack (LIFO):
i.e.
frontier \leftarrow stack, initialized with start node as first element

- frontier (stack) for DFS:

- A
- // pop A, push children B and C
- BC
- // pop B, push D and E on front
- D E C
- HIEC // pop D, push H and I
- PQIEC// pop H, push P and Q
- QIEC// pop P
- IEC // pop Q
- R S E C // go to I, push R and S
-
note: when you expand a node, the order in which you push the children makes a difference In this example, I am pushing the children in reverse order, e.g. C before B (as children of A)

Graph Search

- in some Search Trees, there are multiple paths to the same state
- example: reversible operators (move, then move back); or think of a map; or think of circular moves in the tile puzzle
- detecting repeated (visited) states can greatly reduce redundancy in the search space
- if you have already explored children beneath node n, there is no need to do it again
- exception: if you find a shorter/cheaper path to n, you might want to keep track of the best such path found
- 'reached': you need a data structure (like a hash table) to keep track of these states

- Graph Search

- in BFS on a grid, how badly would the size of the search tree scale up if we didn't keep track of reached states?
- Assume each node has 4 neighbors, so $b=4$ (worst case) (or $b_{\text {avg }}=\sim 3$)
- level 0=1 node (initial state, at the center)
- level 1=4 nodes
- level 2=16 nodes
- level 3=64 nodes
- level 4=256 nodes
- ...
- level i: 4^{i} nodes

- and yet, there are only 25 distinct states in this space!

Graph Search (=BFS+checking for visited states)

function Breadth-First-Search (problem) returns a solution node or failure
node $\leftarrow \operatorname{NODE}($ problem.INITIAL)
if problem.Is-Goal(node.State) then return node
frontier \leftarrow a FIFO queue, with node as an element
reached $\leftarrow\{$ problem.INITIAL $\}$
while not Is-Empty (frontier) do
node $\leftarrow \operatorname{PoP}($ frontier $)$
for each child in EXPAND(problem, node) do
$s \leftarrow$ child.STATE
if problem.IS-GOAL(s) then return child
note: that we check reached before putting nodes into the frontier, not as we pull them out
reached is a data
structure (e.g. hash table) for keeping track of expanded states to avoid repeating the search
if s is not in reached then add s to reached add child to frontier
return failure

If s *has* been reached before, you might want to see if a shorter/cheaper path has been discovered and keep track of that...

- So when should you use DFS, and when should you use BFS?
- On what types of problems would DFS be better, or BFS?
- It depends on properties of the search space...

Computational Complexity

- analysis of computational properties for comparison of DFS and BFS
- time-complexity: number of nodes goal-tested (\# of loop iterations)
- space-complexity: maximum size to which the frontier grows
- completeness: if a goal exists, does ALGO guarantee to find it?
- optimality: does ALGO guarantee to find the goal node with the minimum path cost?

Computational Complexity of BFS

- time-complexity: number of nodes goal-tested (\# of loop iterations) m

- if the shallowest node occurs at depth d, and branching factor is b,
- then nodes checked (worst case) will be all levels up to and including b
- $1+b+b^{2}+\ldots . . b^{d}=0\left(b^{d+1}\right)$
- space-complexity: maximum size to which the frontier grows
- in worst case, have to store all children at level below goal, $\mathrm{O}\left(\mathrm{b}^{\mathrm{d}+1}\right)$

$$
\begin{aligned}
& \sum_{i=0}^{n} 2^{i}=2^{n+1}-1 \\
& \sum_{i=0}^{n} b^{i}=\left(\frac{b^{n+1}-1}{b-1}\right)
\end{aligned}
$$

- completeness: if a goal exists, does ALGO guarantee to find it?
- yes (because every goal exists at a finite depth, and BFS explores each level)
- optimality: does ALGO guarantee to find the goal node with the minimum path cost?
- yes (assuming all operator have equal cost) (but no, if unequal oper costs)
- in this case, the goal with least path cost is shallowest, and BFS will find it first, because it explores level-by-level)

Computational Complexity of DFS

- time-complexity: number of nodes goal-tested (\# of loop iterations)
- if the maximum depth of the tree is m,
- the worst case is when goal at depth d is on the right-most branch
- the nodes checked will be almost all in the tree (even deeper than d): $O\left(b^{m}\right)$
- space-complexity: maximum size to which the frontier grows
- each time we expand a node, we pop 1 and push b children, $(b-1) \mathrm{m}=\mathrm{O}(\mathrm{bm})$
- completeness: if a goal exists, does ALGO guarantee to find it?
- no, in general (i.e. if any branch has infinite depth)
- yes, only in finite search spaces
- optimality: does ALGO guarantee to find the goal node with the minimum path cost?
- no (since it is not complete)

Comparison of BFS and DFS

- so which is better? when would we prefer to use one over the other?
- although time-complexity could be exponentially worse for DFS (O(bm)>>O(bd)), DFS has linear space-complexity
- in practice, the size of the frontier is what limits Al search
- given modern CPU clock cycles, I can easily search a billion (10 ${ }^{9}$) nodes ($10 \mu \mathrm{~s}$ per loop iteration=17 min), but storing a billion nodes takes too much memory (~ 100 bytes per node=100 Gb)

	BFS	DFS
time-complexity	$\mathrm{O}\left(\mathrm{b}^{d+1}\right)$	$\mathrm{O}\left(\mathrm{b}^{\mathrm{m}}\right)$
space-complexity	$\mathrm{O}\left(\mathrm{b}^{d+1}\right)$	$\mathrm{O}(\mathrm{bm})$

Iterative Deepening

- Is there a way to get the benefits of both BFS and DFS?
- how can we maintain a linear frontier size like DFS while still searching level-by-level like BFS?
- how can you maintain the linear space-complexity of DFS while avoiding descending infinitely deep down any single branch?
- answer: depth-limited search
- do DFS down to depth=1
- if goal not found, do DFS down to depth=2
- if goal not found, do DFS down to depth=3
- ...
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure
for depth $=0$ to ∞ do
result \leftarrow DEPTH-LIMITED-SEARCH(problem, depth)
if result \neq cutoff then return result
function DEPTH-LIMITED-SEARCH (problem, ℓ) returns a node or failure or cutoff frontier \leftarrow a LIFO queue (stack) with NODE(problem.INITIAL) as an element result \leftarrow failure
while not Is-EMPTY(frontier) do
node $\leftarrow \operatorname{POP}(f r o n t i e r)$
if problem.IS-GoAL(node.STATE) then return node
if DEPTH $($ node $)>\ell$ then
result \leftarrow cutoff
else if not Is-CYCLE(node) do
for each child in ExPAND(problem, node) do add child to frontier
return result

Iterative Deepening

- Complexity analysis:
- since using DFS, the frontier should never get bigger than (b-1)d, hence O (bd)
- and it should be complete and optimal (for equal operator costs)
- what about time complexity?
- it seems wasteful because you have to re-generate the top part of the search tree each iteration

Iterative Deepening

- time complexity?
- $1+(1+b)+\left(1+b+b^{2}\right)+\left(1+b+b^{2}+b^{3}\right)+\ldots+\left(1+b+\ldots+b^{d}\right)$
- $\leq\left(1+b+\ldots+b^{d}\right)+\left(1+b+\ldots+b^{d}\right)+\ldots\left(1+b+\ldots+b^{d}\right)$
- $\leq d\left(1+b+\ldots+b^{d}\right) \leq d \Sigma b^{i} \leq d\left(b^{d+1}-1\right) /(b-1)=O\left(b^{d+1}\right)$

- it seems wasteful because you have to re-generate the top part of the search tree each iteration
- why not just "save" the part of the tree generated so far?
- because it will grow exponentially as depth limit increases, negating the benefit of the linear size of the frontier - you have to throw them away
- so it is a tradeoff: you spend a little more time computing (expanding nodes), but you save memory (linear frontier size)

Uniform Cost Algorithm

- suppose we want to find the goal node with the least path cost, when operators have different costs?
- the shortest path (number of actions) is not necessarily the cheapest path (sum of operator costs)
- in this case, BFS is not optimal
- however, we can use the same iterative search algorithm, but change the frontier to a priority queue
- keep the expanded-but-unexplored nodes sorted in order of increasing path cost
- nodes must keep track of cost; update when generating successors:
- cost(child) $=\operatorname{cost}($ parent $)+\operatorname{cost}\left(\mathrm{op}_{\mathrm{i}}\right)$

Uniform Cost Algorithm

function BEST-FIRST-SEARCH (problem, f) returns a solution node or failure
node \leftarrow NODE(STATE=problem.INITIAL)
frontier \leftarrow a priority queue ordered by f, with node as an element
reached \leftarrow a lookup table, with one entry with key problem. Initial and value node
while not Is-EmpTY(frontier) do
node $\leftarrow \operatorname{POP}(f r o n t i e r)$
if problem.IS-Goal(node.STATE) then return node
for each child in Expand (problem, node) do
(Note the 'late' goal-test,
$s \leftarrow$ child.STATE

if s is not in reached or child.PATH-COST < reached[s].PATH-COST then
reached $[s] \leftarrow$ child
add child to frontier
return failure
function EXPAND(problem, node) yields nodes
$s \leftarrow$ node.STATE
for each action in problem.ACTIONS(s) do
$s^{\prime} \leftarrow$ problem.RESULT(s, action)
cost \leftarrow node.PATH-COST + problem.ACTION-COST $\left(s\right.$, action, $\left.s^{\prime}\right)$

Uniform Cost Algorithm

- sure, every node you pull out of the priority queue has costs less than all other in the priority queue
- but when you reach a goal, how do you know there is not another cheaper goal out there?
- assumption: all operators have positive costs: $\operatorname{cost}\left(\mathrm{op}_{\mathrm{i}}\right)>0 \geq \varepsilon>0$
- therefore, cost of nodes along a path increases monotonically
- Lemma: UC explores nodes in order of increasing total path cost
- Suppose pathcost(n1)>pathcost(n2), but n1 is visited first (for sake of contradiction)
- n 2 might not be in the priority queue at same time n 1 is popped
- but there is always some node n^{\prime} on the path to n 2 that is in the priority queue (even it is the initial state/root node), and pathcost(n^{\prime}) $<$ path cost(n 2) since monotonic
- if n^{\prime} was in queue when $n 1$ was, then n^{\prime} would have been popped before $n 1$, because pathcost(n^{\prime}) <pathcost(n 2) <pathcost(n 1)
- Corollary: when the first node that is a goal, g^{*}, is visited, it has lower cost than any other goal node g^{\prime}, path $\operatorname{cost}\left(g^{*}\right) \leq$ path $\operatorname{cost}\left(g^{\prime}\right)$, hence g^{*} is optimal

Uniform Cost Algorithm

- comparison to Djikstra's Algorithm
- UC and Djikstra both solve the singlesource shortest-path problem
- however, an important difference is that Djikstra is based on Dynamic Programming (DP)
- it uses a data structure (array) to maintain partial path distances from the source to all vertices V in the graph
- you can't do this for most Al problems, especially if they have exponentially large or infinite State Spaces
function Dijkstra(Graph, source):
create vertex set Q
for each vertex v in Graph:
dist[v] \leftarrow INFINITY
$\operatorname{prev}[\mathrm{v}] \leftarrow$ UNDEFINED
add v to Q
dist[source] $\leftarrow 0$
while Q is not empty:
$\mathrm{u} \leftarrow$ vertex in Q with min dist[u]
remove u from Q
for each neighbor v of u :
alt $\leftarrow \operatorname{dist[u]}+$ length (u, v) if alt < dist[v]: $\operatorname{dist}[\mathrm{v}] \leftarrow$ alt $\operatorname{prev}[\mathrm{v}] \leftarrow \mathrm{u}$
return dist[], prev[]

Uniform Cost Algorithm

- Computational properties of UC

- time-complexity: $\mathrm{O}\left(\mathrm{b}^{\left(1+\mathrm{C}^{*} / \varepsilon\right)}\right)$
- where C^{*} is the total path cost of the cheapest solution
- why? because each step costs at least ε, so goal occurs at depth $\mathrm{C}^{*} / \varepsilon$ in the worst case
- space-complexity: $O\left(b^{\left(1+C^{*} / \varepsilon\right)}\right)$
- completeness: yes
- optimality: yes!

Trace of UC - visits nodes in order

 of least path cost

Summary of Computational Properties of Search Algorithms

read for yourself

Heuristic Search

- since Al search problems usually have exponential search spaces, the main focus is on how we can exploit domain knowledge to improve the efficiency of the search
- domain knowledge refers to anything we know about solving these types of problems
- rules of thumb, common solutions, way to decompose the problem into subgoals, useful sequences of actions, interactions/dependencies between operators...
- in this context, domain knowledge will be encapsulated in a heuristic function, h(n)
- it is a 'scoring' function that maps every node (or state) to a real number
- the advantage is using any knowledge we have to guide the search toward the goal, and avoid searching 'unproductive' parts the search space

Heuristic Search

- a heuristic function $\mathrm{h}(\mathrm{n})$ is an estimate of the distance (path cost) remaining from n to the closest goal
- hence it is a mapping from $S \vdash>\mathrm{R}$ (State Space to real numbers)
- generally, $h(n) \geq 0$, and $h(n)=0$ for goals
- abstractly, it is a quantification of how close a state is to being solved (higher is farther away)

Heuristic Functions

- Example 1: $\mathrm{h}_{\text {sLD }}$ for navigation
- suppose our goal was to find a route from Sibiu to Vasliu
- compare DFS vs BFS (assuming children are processed in counter-clockwise order)

Heuristic Functions

- Example 1: $\mathrm{h}_{\text {sLD }}$ for navigation
- suppose our goal was to find a route from Sibiu to Vasliu
- compare DFS vs BFS (assuming children are processed in counter-clockwise order)
- BFS (FIFO): (expand in levels)
- frontier at each pass:
- $S|O, A, R, F| Z, T, C, P, B|L, D, U, G| M, H, V$

Heuristic Functions

- Example 1: $h_{\text {sLD }}$ for navigation
- suppose our goal was to find a route from Sibiu to Vasliu
- compare DFS vs BFS (assuming children are processed in counter-clockwise order)
- BFS (FIFO):
- frontier at each pass:
- $S|O, A, R, F| Z, T, C, P, B|L, D, U, G| M, H, V$
- DFS (LIFO): (follows a single path)
- sequence of states visited:
- S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V

Heuristic Functions

- Example 1: $\mathrm{h}_{\text {sLD }}$ for Navigation
- suppose our goal was to find a route from Sibiu to Vasliu
- compare DFS vs BFS (assuming children are processed in counter-clockwise order)
- BFS (FIFO):
- frontier at each pass:
- $S|O, A, R, F| Z, T, C, P, B|L, D, U, G| M, H, V$
- DFS (LIFO):
- sequence of states visited:
- S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V
- $\mathbf{h}_{\text {sLD }}$: prioritize nodes in frontier based on straight-line distance to goal
- sequence of states visited: S, F, B, U, V 9/7/2023

- Example 2: heuristic functions for the Tile Puzzle
- how close is any given state to being solved?
- $h_{1}(n)$: \# tiles out of place
- this is an under-estimate because it will take more than move to put each tile in its proper place
- still, it differentiates states that are almost solved for those that are very jumbled
- even if 1 block is out of place, it might be close or very far away
- $h_{2}(n)$: Manhattan distance
- for each tile out of place, count number of rows and columns it needs to move
- still an under-estimate of total moves because moving one tiles can put others out of place
- ironically, it can also be an over-estimate, because a sequence of moves could put multiple tiles in place

$$
h_{2}(n)=\sum_{i=1}^{9}\left|\operatorname{currRow}\left(T_{i}\right)-\operatorname{goalRow}\left(T_{i}\right)\right|+\left|\operatorname{curr} \operatorname{Col}\left(T_{i}\right)-\operatorname{goalCol}\left(T_{i}\right)\right|
$$

Heuristic Functions

Start State

Goal State

7	2	4
5		6
8	3	1

h1 = 8
the 1 needs to move 3 steps the 2 needs to move 1 step the 3 needs to move 2 steps
$h 2=3+1+2+2+2+3+3+2=18$

1	2	
3	4	5
6	7	8

$$
\begin{aligned}
& h 1=2 \\
& h 2=2
\end{aligned}
$$

	1	6
3	4	5
2	7	8

h1 = 2
h2 $=8$

Where Do Heuristics Come From?

- Heuristics encode knowledge you have about the problem
- rules of thumb
- common solutions that are often used
- way to decompose the problem into subgoals
- useful sequences of actions
- interactions/dependencies between operators...
- This knowledge has to be formulated into a scoring function $h(n)$ that estimates the distance of any state to the goal
- Common strategy: approximate how many steps it would take to solve if we could relax the constraints
- counting tiles out of place implies we can fix them in 1 move
- Manhattan distance implies we can "slide tiles over each other"
- for navigation, straight-line distance is shorter than any road, but still useful

Greedy Search (best-first search with h(n))

- extending the iterative search algorithm to use a heuristic
- use a priority queue for frontier; sort nodes based on $\mathrm{h}(\mathrm{n})$

```
function BEST-FIRST-SEARCH(problem,f) returns a solution node or failure
node }\leftarrow\textrm{NODE(STATE=problem.INITIAL)
frontier }\leftarrow\textrm{a}\mathrm{ priority queue ordered by f}\mathrm{ , with node as an element where f is h(n)
reached }\leftarrow\mathrm{ a lookup table, with one entry with key problem.InITIAL and value node
while not IS-EMPTY(frontier) do
    node}\leftarrow\textrm{POP}(frontier
    if problem.IS-GoaL(node.STATE) then return node
    for each child in EXPAND(problem, node) do
            s\leftarrowchild.STATE
            if s}\mathrm{ is not in reached or child.PATH-COST < reached[s].PATH-COST then
                    reached[s]}\leftarrow\mathrm{ child
            add child to frontier
return failure
```

- (go back and review the slide on finding a route from Sibiu to Vasliu

Greedy Search

- The problem with Greedy Search is that it can be 'misled' by the heuristic to go in the wrong direction and waste time searching unproductive regions of the search space
- This is known as the "garden path" problem
- Greedy Search would search the gray-boxed region first, before discovering it has to go around the T to get the goal(red)
- How sub-optimal can it be? (in terms of cities expanded that are not actually on the solution path)
-What's the worst garden-path pair of cities for Romania?
- Can you think of a map and pair of cities that would force Greedy to visit every node before finding a route to the destination?

A* algorithm

- one of the most widely used and practical AI search algorithms
- essentially Best-first search (with priority queue), where nodes in frontier are sorted based on $f(n)=g(n)+h(n)$
- where $g(n)=p a t h$ cost so far (from root to n)
- and $h(n)=$ heuristic estimate of remaining path cost (from n to closest goal)
- so $f(n)$ is an estimate of total path cost going through n to goal

A* algorithm

- use a priority queue for frontier; sort nodes based on $f(n)=h(n)+g(n)$

```
function BEST-FIRST-SEARCH(problem,f) returns a solution node or failure
    node}\leftarrow\operatorname{NODE(STATE=problem.INITIAL)
    frontier & a priority queue ordered by f}\mathrm{ , with node as an element where f=h(n)+g(n)
    reached }\leftarrow\mathrm{ a lookup table, with one entry with key problem.INITIAL and value node
    while not Is-EMPTY(frontier) do
        node \leftarrow & POP(frontier)
        if problem.IS-GOAL(node.STATE) then return node note the 'late' goal test (see slide on UC alg)
        for each child in EXPAND(problem, node) do
            s\leftarrowchild.STATE
            if s}\mathrm{ is not in reached or child.PATH-CosT < reached[s].PATH-CosT then
            reached[s]\leftarrow child
            add child to frontier
    return failure
```

A* search of Vasiliu to Fagaras:

notice how $f(n)$ for popped nodes keeps increasing: V(235), I(317), U(362), N(369), B(437), F(438)

A* search of Vasiliu to Fagaras:

notice how $f(n)$ for popped nodes keeps increasing:
V(235), I(317), U(362), N(369), B(437), F(438)

Computational Properties A* Search

- what guarantees about completeness and optimality can we make?
- remember that $\mathrm{h}(\mathrm{n})$ could be inaccurate!
- it could tell us that many nodes down path are getting closer and closer, when in fact there is no way to reach the goal, and back-tracking is required
- first, we need to make an assumption...
- $\mathrm{h}(\mathrm{n})$ is admissible
- $h(n)$ never over-estimates the true distance to the goal for any node n
- $0 \leq h(n) \leq c^{*}(n)=\operatorname{cost}(n . . . g)$ for all states in the State Space

Computational Properties A* Search

- Theorem: A^{*} is optimal (finds a goal with minimum path cost)
- although this sounds obvious because the PQ is sorted on $\mathrm{f}(\mathrm{n})$, it is deceptive because it only applies to nodes in the frontier, but not all states in the space
- suppose the optimal goal is g^{*} but greedy returns g first, where $\mathrm{c}(\mathrm{g})>\mathrm{c}\left(\mathrm{g}^{*}\right)$
- let n^{*} be a node on the optimal path to g^{*} that is in the frontier at same time
- $f\left(n^{*}\right)=g\left(n^{*}\right)+\underline{h\left(n^{*}\right)} \leq \operatorname{cost}\left(n_{0} . . n^{*}\right)+\underline{\operatorname{cost}\left(n^{*} . . g^{*}\right)}=\operatorname{cost}\left(n_{0} . . g^{*}\right)=c\left(g^{*}\right)$
- because of admissibility
- therefore, n^{*} should have been dequeued before g (and so on, down the path to g^{*})
- Important point: Even though admissibility is desirable, it is not necessary: A* search can be made more efficient with a heuristic even if it is not admissible (however, the solution path found might not be minimal)

Computational Properties A* Search

- Lemma: $f(n)$ scores increase monotonically down any path from root
- if a path is $\left\langle\mathrm{n}_{0} . . \mathrm{n}_{\mathrm{i}} . . \mathrm{g}>\right.$, then $\mathrm{f}\left(\mathrm{n}_{0}\right) \leq \mathrm{f}\left(\mathrm{n}_{\mathrm{i}}\right) \leq \mathrm{f}(\mathrm{g})$
- in any step $n_{i} \rightarrow n_{i+1}, h\left(n_{i}\right)$ includes a guess of the cost of op ${ }_{i}$, whereas $g\left(n_{i+1}\right)$ has the actual cost of that step, which could only be higher (by admissibility)
- also requires consistency of heuristic, which is slightly stronger than admissibility (see book)
- remember that at a goal node, $f(g)=c(g)$ for any goal because $f(g)=g(g)+h(g)=c(g)+0$
- so $f(n)$ could be an underestimate of total path length early in a path, but converges to $\mathrm{c}^{*}(\mathrm{~g})$ as you get closer to the goal
- Theorem: A^{*} explores states in order of increasing $f(n)$ (total pathcost)
- estimated pathcost $\left(r_{. . n_{i} .} . g\right)=f(r . . . g)=g\left(r_{. . . n_{i}}\right)+h\left(n_{i} \ldots g\right)$
- $\delta\left(\mathrm{n}_{\mathrm{i}}\right)=\mathrm{h}\left(\mathrm{n}_{\mathrm{i}} \ldots \mathrm{g}\right)-\mathrm{h}\left(\mathrm{n}_{\mathrm{i}+1} \ldots \mathrm{~g}\right)$
- "estimated" cost of one action
- assume δ always less than true cost of operator, $\delta\left(n_{i}\right)<c\left(n_{i}\right)$ "consistency" (related to admissibility)
- $g\left(r_{1} . . n_{i-1}\right)+h\left(n_{i} \ldots g\right)=g\left(r_{1} . . n_{i-1}\right)+\delta\left(n_{i}\right)+h\left(n_{i+1} \ldots g\right)$

$$
\leq g\left(r_{\ldots} \ldots n_{i-1}\right)+c\left(n_{i}\right)+h\left(n_{i+1} \ldots g\right)
$$

therefore, estimates of total past costs always increase going down path:

- pathcost(r... $\left.\mathrm{n}_{\mathrm{i}} . \mathrm{g}\right)<$ pathcost(r.. $\left.\mathrm{n}_{\mathrm{i}+1} . . \mathrm{g}\right)$

Computational Properties A* Search

- analysis of time complexity
- efficiency of A^{*} is complicated because it depends on accuracy of the heuristic
- generally speaking, the more accurate the heuristic is, the faster the search
- boundary case 1: $\mathrm{h}(\mathrm{n})=0$ - no help, exponential time like Uniform Cost, $\mathrm{O}\left(\mathrm{b}^{1+\mathrm{C}^{*} / \varepsilon}\right)$
- boundary case 2 : $\mathrm{h}(\mathrm{n})=\mathrm{c}^{*}(\mathrm{n})$ - a heuristic that perfectly predicts the true distance to the goal for any node will lead A* right to it (in time linear in the path length)

Computational Properties A* Search

- analysis of time complexity
- if the inaccuracy of the heuristic is bounded, search will be sub-exponential
- define "relative error" $\Delta=\left|\mathrm{h}-\mathrm{h}^{*}\right| / h^{*}$ (max over all nodes in the State Space)
- then time complexity of A^{*} is $O\left(b^{\Delta \cdot L(g)}\right)$ where L is the path length to the goal g
- if $\left|h-h^{*}\right|=O\left(\log \left(h^{*}\right)\right)$ for all n, then A^{*} will search a sub-exponential number of nodes before finding the optimal goal
- however, this is rarely achievable in practice
- one can also think of heuristic as making A^{*} search more efficient by reducing the effective branching factor (for example, by half, if $\Delta=1 / 2$)

