
1 
 

CSCE 420, Assignment A6 
due: Monday, May 9, 3:00pm  
turn-in files by committing and pushing them to your TAMU github repository 
 
This project gives some simple practice with programming in Prolog.  You can use ‘gprolog’ on 
compute.cs.tamu.edu, or you can install gprolog or SWI-Prolog on your own machine, but the 
programs must still work with ‘gprolog’ on compute.cs.tamu.edu. 
 
These questions are intended to show you several different paradigms or use-cases of Prolog. 
 
Remember that Prolog works by back-chaining (e.g. putting antecedents on a goal stack), along 
with unification.  The order of rules and facts is important; when trying to solve a predicate, it 
will try unifying it to facts or the head (consequent) of rules in the order that they appear in the 
program; and antecedents will be evaluated in left-to-right order (as if pushed onto stack in right-
to-left order).  Recall that ‘is’ can be used to compute variable binding by arithmetic, such as ‘X 
is A+1’ as an antecedent.  See the documentation for arithmetical comparison operators like 
equal (=:=), not equal (=\=), greater than (>), and less-than-or-equal-to (=<, not <=). For more 
info, see the textbook, lecture slides, tutorial posted on the course web site, and online Prolog 
documentation.  You might find ‘trace.’ and ‘notrace.’ to be helpful for debugging programs, 
which allows you to see the calls during back-chaining. 
 
 
 
 
 
What to Turn In: 

 
• Put all your predicates in one file called ‘solutions.pl’.  We will load this and test it by 

calling your predicates on other test inputs. 
• Put examples of the input and output for each question in a file called ‘transcript.txt’ 
• Check these into an A6/ directory in your github repository. 

 
 
 

  



2 
 

1. Write rules in Prolog to infer various kinship relationships in terms of basic predicates like 
parent(X,Y) and female(X) and male(Y).  Input the following facts about people on 
The Simpsons: 
 
parent(bart,homer). 
parent(bart,marge). 
parent(lisa,homer). 
parent(lisa,marge). 
parent(maggie,homer). 
parent(maggie,marge). 
parent(homer,abraham). 
parent(herb,abraham). 
parent(tod,ned). 
parent(rod,ned). 
parent(marge,jackie). 
parent(patty,jackie). 
parent(selma,jackie). 
 
female(maggie). 
female(lisa). 
female(marge). 
female(patty). 
female(selma). 
female(jackie). 
 
male(bart).  
male(homer). 
male(herb). 
male(burns). 
male(smithers). 
male(tod). 
male(rod). 
male(ned). 
male(abraham). 
 
Write rules to define the following relationships: brother(), sister(), aunt(), 
uncle(), grandfather(), granddaughter(), ancestor(), 
descendant(), and unrelated().  Use the convention that relation(X,Y) means "the 
relation of X is Y".  For example, uncle(bart,herb) means the uncle of bart is herb. 
 
Use your rules to answer the following queries (typing ‘;’ after each solution to get the next):  
 
?- brother(rod,X). 
X = tod ; 
 
?- sister(marge,X). 
X = selma ; 
X = patty ; 
 
?- aunt(X,patty). 
X = bart ; 
X = lisa ; 
X = maggie ; 



3 
 

 
?- uncle(bart,X). 
X = herb ; 
 
?- grandfather(maggie,X). 
X = abraham ; 
 
?- granddaughter(jackie,lisa). 
true 
 
?- ancestor(bart,X). 
X = homer ; 
X = marge ; 
X = abraham ; 
X = jackie ; 
 
?- unrelated(tod,bart). 
true 
 
?- unrelated(maggie,smithers). 
true 
 
?- unrelated(maggie,selma). 
false 
 
 
  



4 
 

2. Using the following database, write a Prolog query to find all the surgeons who live in Texas 
and make over $100,000/yr.  You will have to add some additional data, such as about different 
types of surgeons, or city-state relationships. 
 
occupation(joe,oral_surgeon). 
occupation(sam,patent_laywer). 
occupation(bill,trial_laywer). 
occupation(cindy,investment_banker). 
occupation(joan,civil_laywer). 
occupation(len,plastic_surgeon). 
occupation(lance,heart_surgeon). 
occupation(frank,brain_surgeon). 
occupation(charlie,plastic_surgeon). 
occupation(lisa,oral_surgeon). 
 
address(joe,houston). 
address(sam,pittsburgh). 
address(bill,dallas). 
address(cindy,omaha). 
address(joan,chicago). 
address(len,college_station). 
address(lance,los_angeles). 
address(frank,dallas). 
address(charlie,houston). 
address(lisa,san_antonio). 
 
salary(joe,50000). 
salary(sam,150000). 
salary(bill,200000). 
salary(cindy,140000). 
salary(joan,80000). 
salary(len,70000). 
salary(lance,650000). 
salary(frank,85000). 
salary(charlie,120000). 
salary(lisa,190000). 
 
  



5 
 

3. Consider the following database of PROLOG facts: 
 
subject(algebra,math). 
subject(calculus,math). 
subject(dynamics,physics). 
subject(electromagnetism,physics). 
subject(nuclear,physics). 
subject(organic,chemistry). 
subject(inorganic,chemistry). 
 
degree(bill,phd,chemistry). 
degree(john,bs,math). 
degree(chuck,ms,physics). 
degree(susan,phd,math). 
 
retired(bill). 
 
Write a predicate canTeach(X,Y) that defines which persons X can teach a class Y a given 
subject, which requires that they have a phd in the relevant field Z.  For example, Susan can 
teach calculus because she has a phd in math.  Note that, since Z is not mentioned in the head of 
the clause, it will effectively be treated like an existentially quantified variable in the 
antecedents, which be matched to any academic field during the back-chaining. 
 
Show all solutions that are generated for the query canTeach(X,Y).  
 
Modify the rule (call it canTeach2(X,Y)) to allow anybody with a PhD or an MS degree to teach 
a class related to their degree? Show all solutions. 
 
Modify the rule (call it canTeach3(X,Y)) to exclude people who are retired.  (hint: this requires 
negation).  Show the solutions. 
 
 
  



6 
 

4. Prolog can be used to simulate iteration.  But it is done in a very different way than in a 
procedural language like C++.  It is done using recursion.  Suppose you want to print the integers 
from N down to 1.  You could write a predicate countdown(N), which would do some simple 
calculations and print using ‘format’ (in the antecedents) and then calls countdown(N-1), which 
would continue recursively until you hit a base case (countdown(0), which would be a separate 
fact that doesn’t print anything).  
 
countdown(0). 
countdown(N) :- N>0,format('~w~n',[N]),M is N-1,countdown(M). 
 
Write a similar rule for countup(A,B), which prints the numbers from A to B (inclusive).  For 
convenience, it might help to add argument C, as a ‘counter’ (which will range between A and B, 
while A and B stay constant): 
 
% wrapper function adds 3rd arg  
countup(A,B) :- A<B,countup(A,B,<initial counter value>).  
 
countup(A,B,C)… % what is the base case? 
countup(A,B,C)… % what is the recursive case? 
 
There are (at least) three ways to do this.  First, you can try switching the order of the calls to 
‘format’ and the recursive call in the antecedents of a rule like countdown.  Second, you can try 
mimicking countdown, but print B-C.  Third, you can change the recursion to count upward 
(by incrementing the count argument until it reaches B).  Try implementing countup all 3 ways. 
Call them countup1(A,B), countup2(A,B), and countup3(A,B). 
 
Show the result of countup1(2,8), countup2(2,8), and countup3(2,8) in the 
transcript. 
 

 

 

 


