
 2/8/2022 12:27 PM

CSCE 420 - Spring 2022
Assignment A1
due: Tues, Feb 22, 2022, 3:55pm (start of class), pushed to your Github.tamu
account

Objective

The overall goal of this assignment is to implement A* Search and use it to solve the classic
"Blocksworld" (BW) AI search problem. This problem involves stacking blocks from a random
initial configuration into a target configuration. You are to write a program to solve random
instances of this problem using your own implementation of A* in C++, based on the iterative
algorithm (BestFirstSearch) in the textbook using a priority queue. A critical part of this
assignment is to develop a heuristic, h(n), for the Blocksworld that can be used by A* to
improve the efficiency of the search, enabling it to solve harder problems with longer solution
paths.

A BW problem instance is given as two states: an initial state and a goal state. An example is
shown below. The operator for generating moves in this problem can only pick up the top block
on any stack and move it to the top of any other stack. Each action has equal (unit) cost. The
objective is to find a sequence of actions that will transform the initial state into the goal state
(preferably with the fewest moves, hence the shortest path to the goal.) Your program should
be able to handle problems with different numbers of stacks and blocks, and the goal state will
not always have blocks stacked in order on the first stack – it could be an arbitrary configuration.
(This instance requires 10 moves to solve, starting with moving D onto E, and then A into stack
1 (which would then be empty), and so on…)

Recall that a heuristic h(n) is an estimate of the distance from a node in the search space to the
goal. A* uses the heuristic score, in combination with the pathcost to n, g(n), to keep the nodes
sorted in the frontier by f(n)=g(n)+h(n) using a priority queue. In the Blocksworld, the pathcost is
just the depth of a node in the search tree. The heuristic can be thought of as a function of 2
states: the current state, and the goal state, which is constant for a given run, but could be
different for each problem instance.

 2/8/2022 12:27 PM

Program Interface

The compiled program called ‘blocksworld’ should be run from the command line with an
interface like this:

> blocksworld test1.bwp

The filename argument is a problem description in the file format described below. You might
also want to add other flags on the command line. For example, you might want to add a flag
specifying which heuristic function to use. By default, the program should use your best
heuristic; however, you can change it with the ‘-H’ flag; this is useful for simulating BFS using
H0.

usage: blocksworld <filename> [-H H0|H1|…] [-MAX_ITERS <int>]

One critical aspect of the program is that it should have a built-in limit on the maximum number
of iterations (in the main loop in BestFirstSearch). If that limit is reached for a given problem,
the program should give up and report failure. In initial recommendation for a default for max
iterations is either 100,000 or 1,000,000, depending on the speed of your computer. (Practically
speaking, set it to search for a couple minutes before giving up.) Optionally, you can also
include a command-line flag to adjust the limit (e.g. MAX_ITERS). Be sure to document this in
your README file.

It is OK if your program cannot solve some harder problems, e.g. with solution paths of length
10-20. These are hard problems and the search trees become enormous. You will only be able
to solve them by developing a sophisticated heuristic. That is the real objective of this project
– to make the program more capable by implementing a heuristic that estimates as accurately
as possible that true distance from any state to the goal. Thus, the power comes not just from
the A* algorithm, but from the intelligence you build-in to the heuristic function, which leads A*
more efficiently toward the goal.

When your program finishes, it should print out the solution path (sequence of states between
the initial state and goal), and it should print out a summary line like this (see Transcript below):

statistics: probB05.bwp method Astar planlen 5 iter 9 maxq 139

‘iters’ is a count of the number of times through the main loop; ‘maxq’ is the maximum size of
the queue. If it is not able to find a solution before reach MAX_ITERS, set planlen to ‘FAILED’.

File Format for Blocksworld Problems

We will use an input format for each problem, defined as follows. Line 1 indicates the number of
stacks S and number of blocks B and number of moves M (if generated, else -1). This is
followed by a separator line with 10 greater-than (‘>’) characters. Then the next S lines give
the configuration of the initial state by listing the stacks horizontally, on their side. Blocks
(assumed to be single characters, A-Z) are listed left-to-right in order from bottom to top, with no
spaces. Finally, the last S lines give the goal configuration. Then, another separator line, S
more lines for the goal configuration, and a final separator line. Here is an example with 3
stacks and 5 blocks (generated from 10 random moves):

 2/8/2022 12:27 PM

blocks1.bwp ###
3 5 10
>>>>>>>>>>
D
CA
BE
>>>>>>>>>>
ABCDE

>>>>>>>>>>

This describes the same problem as shown in the figure on page 1. Notice the two empty
stacks in the goal. The goal will not always have the blocks stacked in order in a single stack -
any goal configuration is possible.

On the course website, we will post 2 problem sets: probA03-probA11 (with 3 stacks and 5
blocks), and probB03-probB20 (with 5 stacks and 10 blocks). The ‘probA’ set are easier, and
can be solved even with BFS (or A* using h0). The ‘probB’ set are much harder, because the
branching factor is higher. You will probably only be able to solve up to probB07 with BFS
before the program begins reaching the MAX_ITERS limit and fails. The challenge is to design
an intelligent heuristic that allows A* to efficiently discover solution for more of these problems.

As part of your program, you will have to read in a problem file given as a command-line
argument, and use it to create objects representing the initial and goal states. You can assume
that input files will always comply with this specification; you don't have to put a lot of error-
checking in your function that reads these input files. Don't worry about checking for extra
spaces or characters, or things like incorrect number of lines or duplicate blocks, etc.

Hints

• The first thing you will have to do is write a simple parser to read the input file (.bwp) with
the problem specification, and construct the initial and goal state objects.

• You will probably want to implement a State class, which stores basic information about
the state (stacks of blocks), and operations on them.

• You will probably also want to implement a Node class. A Node is like a wrapper around
State; it also contains other things like a pointer to the parent from which it the state was
generated (which is useful for printing out the solution path at the end when you find the
goal node), the depth in the tree, etc.

• An important function to write is Node::successors() which returns a list of all the
successors of a given state by any legal move. This generates the branches in the
search tree. Don’t forget to keep a pointer to the parent Node.

• To implement the GraphSearch version of BestFirstSearch, you will have to keep track
of visited (or reached) states. One way to do this is to create a unique string
representing any given state as a hash key, and then store them in an unordered_map.

• You don’t have to reimplement priority queues from scratch; use priority_queue in the
STL. (Hint: put Node* pointers in the queue, not Node objects; and don’t worry about

 2/8/2022 12:27 PM

memory deallocation for this project). You will have to figure out how to get it to sort
Nodes on f(n) by using a comparator function. Make sure you pop Nodes with the
lowest f(n) score first (pay attention to direction the queue is sorted).

• While you are developing your code, it will be helpful to simulate BreadthFirstSearch
(BFS) at first, by setting h(n) to 0, which we can call h0(n) (or ‘H0’). Thus f(n)=g(n)=depth
will be used to sort the priority queue. Later, after you get BFS working on simpler
problems (e.g that require only a couple of moves), you can develop your heuristic
function to see if you can make it more efficient so it can solve harder problems (e.g.
with solution paths of 10-20 steps). Remember that the simplest non-trivial heuristic
function is h1(n), which is “number of blocks out of place”. So start with that, then try to
do better.

• The numbers/statistics in your output do not have to exactly match those shown in my
example transcripts. Number of iterations and queue size will be slightly different for
everybody, because it depends on a number of implementation details. So don’t worry if
you can’t exactly reproduce my output. But the trends should be similar (e.g. more
iterations for harder problems with longer solution paths). Also pay attention to the path
length of the solutions; they should be at least close to optimal (as defined by BFS).

What to Turn In

Create a subdirectory in your (private) Github project for the class (on the TAMU Github server)
called ‘A1’. In A1/, you should have the following files checked-in:

• README – should explain how your program works (e.g. command-line arguments),
and any important parameters or constraints

o If your program takes optional flags on the command line, such as for selecting
different heuristics, simulating BFS, or setting an iteration limit, document them.

o If your program has any known limitations, such as that it only works with a
certain number of stacks, or number of maximum blocks, or can only solve
problems of a certain type or difficulty, document all that.

• blocksworld.cpp – your main program should be called Blocksworld.cpp, but you might
also want to have other .cpp or .hpp files, e.g. if you want to split your code into multiple
source files based on classes for modularity

• makefile – we must be able to compile your C++ code on compute.cs.tamu.edu by
simply calling ‘make’

• RESULTS.txt (or RESULTS.docx) - this is a text file
o Describe your heuristic. Explain how it works, or what it computes. Show two

examples of states with their h(n) score to illustrate your heuristic.
o Give a table summarizing the performance of your best heuristic on the test

cases provided (probA03-A11, probB03-B20. Report the solution length with
your best heuristic, number of iterations (or FAILED), and maximum queue size.
See the example ‘statistics’ shown below.

• Transcripts – Show the output for at least 3 test cases, including the solution path. If
the tracing information is too large, you can just truncate it. (name these files like this,
for example: probB03.transcript.txt)

 2/8/2022 12:27 PM

The date you commit your files and push them to the TAMU Github server will be used to
determine whether it is turned in on time, or whether any late penalties will be applied.

Grading

The materials you turn in will be graded according to the following criteria:

• 20% - Does it compile on compute.cs.tamu.edu?
• 20% - Does it run (on simple test cases)?
• 20% - Does the implementation of A* (based on priority queue), successor function,

heuristic, checking for visited states, etc look correct?
• 20% - Does the heuristic described in RESULTS.txt look like it is designed well? Does it

look like it captures important aspects of how close a state is to being solved?
• 20% - Performance on test problems (probA03-probA11, probB03-probB20), as

summarized in the RESULTS.txt file you submit. Are solution path lengths, number of
iterations, max queue size, and other metrics reasonable? How do they scale up with
harder problems?

Example Transcript

> cat probB05.bwp
5 10 7
>>>>>>>>>>
AE
CF
D
GHIJ
B
>>>>>>>>>>
AEG
CFI
DJB

H
>>>>>>>>>>

> blocksworld probB05.bwp
(note: you can print out whatever tracing info you want here, or turn it off,
or truncate it, or only print it every 1000 iterations...)
iter=1, depth=0, pathcost=0, heuristic=15, score=0, children=20, Qsize=0
iter=2, depth=1, pathcost=1, heuristic=12, score=13, children=20, Qsize=19
iter=3, depth=2, pathcost=2, heuristic=9, score=11, children=20, Qsize=37
iter=4, depth=3, pathcost=3, heuristic=8, score=11, children=20, Qsize=55
iter=5, depth=3, pathcost=3, heuristic=8, score=11, children=20, Qsize=73
iter=6, depth=3, pathcost=3, heuristic=8, score=11, children=20, Qsize=90
iter=7, depth=3, pathcost=3, heuristic=8, score=11, children=16, Qsize=106
iter=8, depth=4, pathcost=4, heuristic=6, score=10, children=20, Qsize=120
success! iter=9, cost=5, depth=5, max queue size=139
move 0, pathcost=0, heuristic=15, f(n)=g(n)+h(n)=0
AE
CF
D
GHIJ
B

 2/8/2022 12:27 PM

>>>>>>>>>>
move 1, pathcost=1, heuristic=12, f(n)=g(n)+h(n)=13
AE
CF
DJ
GHI
B
>>>>>>>>>>
move 2, pathcost=2, heuristic=9, f(n)=g(n)+h(n)=11
AE
CFI
DJ
GH
B
>>>>>>>>>>
move 3, pathcost=3, heuristic=8, f(n)=g(n)+h(n)=11
AE
CFI
DJB
GH

>>>>>>>>>>
move 4, pathcost=4, heuristic=6, f(n)=g(n)+h(n)=10
AE
CFI
DJB
G
H
>>>>>>>>>>
move 5, pathcost=5, heuristic=5, f(n)=g(n)+h(n)=10
AEG
CFI
DJB

H
>>>>>>>>>>
statistics: probs/probB05.bwp method Astar planlen 5 iter 9 maxq 139

RESULTS

using BFS…

statistics: probA03.bwp method BFS planlen 3 iter 74 maxq 91
statistics: probA04.bwp method BFS planlen 4 iter 87 maxq 113
statistics: probA05.bwp method BFS planlen 5 iter 256 maxq 260
statistics: probA06.bwp method BFS planlen 6 iter 415 maxq 350
statistics: probA07.bwp method BFS planlen 7 iter 981 maxq 540
statistics: probA08.bwp method BFS planlen 8 iter 1304 maxq 595
statistics: probA09.bwp method BFS planlen 9 iter 1801 maxq 646
statistics: probA10.bwp method BFS planlen 10 iter 2462 maxq 646
statistics: probA11.bwp method BFS planlen 11 iter 2348 maxq 602

statistics: probB03.bwp method BFS planlen 3 iter 1181 maxq 6428
statistics: probB04.bwp method BFS planlen 4 iter 9700 maxq 50442
statistics: probB05.bwp method BFS planlen 5 iter 71358 maxq 301670
statistics: probB06.bwp method BFS planlen 6 iter 186812 maxq 746622
statistics: probB07.bwp method BFS planlen 7 iter 936119 maxq 3101719

 2/8/2022 12:27 PM

statistics: probB08.bwp method BFS planlen FAILED iter 1000001 maxq 3465665
statistics: probB09.bwp method BFS planlen FAILED iter 1000001 maxq 3559226
…BFS also failed for B10-B20

using A* with my best heuristic…

statistics: probA03.bwp method Astar planlen 3 iter 5 maxq 16
statistics: probA04.bwp method Astar planlen 4 iter 7 maxq 19
statistics: probA05.bwp method Astar planlen 5 iter 9 maxq 29
statistics: probA06.bwp method Astar planlen 6 iter 10 maxq 29
statistics: probA07.bwp method Astar planlen 7 iter 11 maxq 34
statistics: probA08.bwp method Astar planlen 8 iter 28 maxq 75
statistics: probA09.bwp method Astar planlen 9 iter 27 maxq 82
statistics: probA10.bwp method Astar planlen 10 iter 148 maxq 358
statistics: probA11.bwp method Astar planlen 12 iter 22 maxq 67 *
* (note: solution for probA11 has sub-optimal length, min should be 11)

statistics: probB03.bwp method Astar planlen 3 iter 6 maxq 75
statistics: probB04.bwp method Astar planlen 4 iter 6 maxq 88
statistics: probB05.bwp method Astar planlen 5 iter 9 maxq 139
statistics: probB06.bwp method Astar planlen 6 iter 7 maxq 86
statistics: probB07.bwp method Astar planlen 7 iter 13 maxq 171
statistics: probB08.bwp method Astar planlen 8 iter 18 maxq 249
statistics: probB09.bwp method Astar planlen 9 iter 131 maxq 1929
statistics: probB10.bwp method Astar planlen 10 iter 49 maxq 713
statistics: probB11.bwp method Astar planlen 11 iter 60 maxq 954
statistics: probB12.bwp method Astar planlen 12 iter 61 maxq 996
statistics: probB13.bwp method Astar planlen 13 iter 72 maxq 1025
statistics: probB14.bwp method Astar planlen 14 iter 112 maxq 1725
statistics: probB15.bwp method Astar planlen 15 iter 144 maxq 2303
statistics: probB16.bwp method Astar planlen 16 iter 136 maxq 2106
statistics: probB17.bwp method Astar planlen 17 iter 104 maxq 1649
statistics: probB18.bwp method Astar planlen 18 iter 3641 maxq 50778
statistics: probB19.bwp method Astar planlen 19 iter 7777 maxq 107512
statistics: probB20.bwp method Astar planlen 20 iter 326 maxq 5208

