
PROLOG

• install either
• GNU Prolog (gprolog): http://www.gprolog.org/
• SWI-Prolog (swipl): https://www.swi-prolog.org/
• these are generally command-line programs, but there are graphical IDEs

• tutorial
• https://people.engr.tamu.edu/ioerger/prolog.txt

Prolog Syntax

• Definite clauses (fact and conjunctive rules)
• facts: predicates with args, followed by a period.

• color(apple,red). meat(hamburger). in(london,england).
college_of(csceDept,engineering).

• predicate names and constants must start with lower case
• rules:

• write them backwards, using ‘:-’ for ← (read it as “if”)
• use commas for ‘and’
• drop ∀; variable must start with upper case
• ∀ x,m,st graduated(x,m)^medicalSchool(m)^passedBoards(x,st)→doctor(x)
• doctor(X) :- graduated(X,M),medicalSchool(M),passedBoards(X,State).

• "X is a doctor IF X graduated from a medical school and passed board exams
in some state"

Using Prolog

• run it from command-line, get interactive prompt
> swipl
Welcome to SWI-Prolog (threaded, 64 bits, version 7.6.4)
1 ?-

• load .pl files
1 ?- [‘examples.pl’]. // shorthand for consult('examples.pl').

• type in queries (see next slide)
• quitting

2 ?- halt.
• if you trigger an error warning, type ‘a’ to abort back to prompt

3 ?- foo(_).
ERROR: Undefined procedure: foo/1
Exception: (8) foo(_8282) ? a
% Execution Aborted
4 ?-

Using Prolog

• make queries
• solutions are variable bindings, not just T/F – this is how Prolog computes
• get additional solutions by typing ‘;’

4 ?- color(X). // equiv. to: "∃x color(x) ?"
X = red ;
X = green ;
X = blue.

• you can also make queries with multiple goals, with commas:
• lawyer(X),licensedIn(X,alabama).

• X = atticusFinch ...
• teachesAt(Faculty,tamu),degree(Faculty,phd),field(Faculty,math).

• Faculty=stephen_fulling ;
• Faculty=boris_hanin...

Prolog does Back-chaining (with unification)
4 ?- animal(X).
X = fido ;
X = snoopy ;
X = garfield ;
X = tweety ;
X = woodstock ;
X = opus ;
X = hedwig ;

dog(fido).
dog(snoopy).
cat(garfield).
canary(tweety).
canary(woodstock).
penguin(opus).
owl(hedwig).
person(john).
state(rhode_island).

animal(X) :- mammal(X).
animal(X) :- bird(X).
animal(X) :- fish(X).
mammal(X) :- dog(X).
mammal(X) :- cat(X).
bird(X) :- canary(X).
bird(X) :- penguin(X).
bird(X) :- owl(X).

goal-stack:
animal(X)
mammal(X) // try first rule, choice-point

dog(X).
X=fido (solution 1)
X=snoopy
no more solutions, so back-track

cat(X).
X=garfield

bird(X)
canary(X).

X=tweety
penguin(X).

X

Note - you can
ask Prolog to display
tracing info during a
query by typing
'trace.'
Then type the query.
To get out of it, type
'nodebug.'

Prolog files (.pl)

• rules can span across multiple lines
• order matters! (for back-chaining)
• group your facts or rules of same predicate name together

• otherwise, it might give you a warning, which is harmless

• comments are indicated by '%'

• if ';' isn't working right, try this:
set_prolog_flag(tty_control,false).

Colonel West example in Prolog

colonel_west.pl:

% from AIMA

criminal(X) :- american(X), weapon(Y), sells(west,Y,Z), hostile(Z).

weapon(Y) :- missile(Y).

hostile(Z) :- enemy(Z,america).

sells(west,m1,nono).

missile(m1).

enemy(nono,america).

query:

?- criminal(A).

A = west.

• there is a lot of other stuff in Prolog
• numerics: there are predicates for doing math (+, *, log...), and operators for

comparison (<, =, etc)
• negation: (we will talk about this later)
• lists: special notation for using lists as terms, ([Head|Rest])
• 'cut' (!): operator for controlling execution flow
• '_': anonymous variables
• format(): for printing out strings

• this always evaluates to True as an antecedent, but prints out as side-effect of execution.
message(M,Name) :- format("~w from ~w",[M,Name]).
?- message("hello","joe").
hello from joe

Doing Math in Prolog

• suppose you want to write a function for 'doubling' numbers
• write a predicate with 2 args, to be used as 'input' and 'output'
• in the body, use 'is' to bind a variable to a computed value
• this will get unified and returned when the predicate succeeds
double(X,Y) :- Y is 2*X.
?- double(5,A).
A = 10

• other functions are usually available, like sin, exp, sqrt
tan(Theta,Z) :- C is cos(Theta),S is sin(Theta),Z is S/C. % in radians

• can you write a conversion function: radians(Deg,Rad) :- ...?

• comparison operators act like regular antecedents, i.e. tests that are T or F.
• see http://www.gprolog.org/manual/html_node/gprolog030.html
large_frog(X) :- frog(X),length(X,W),W > 10. % large frogs are over 10 cm long
odd(A) :- B is A mod 2,B==1.
even(A) :- B is A mod 2,B\==1. % '\==' is inequality operator in gprolog

• can define mathematical functions in prolog
• typically defined as relations with args for input

AND output
execution trace:

factorial(10,N) calls
factorial(9,N) calls

factorial(8,N) calls
...

factorial(2,N) calls
factorial(1,N) which returns
factorial(1,1).

factorial(2,2).
factorial(3,6).

factorial(4,24)...
factorial(10,3628800).

You can use this idea to calculate square roots by Newton-
Raphson iteration. Write Prolog rules to define sqrt(A,B).

factorial(1,1). % base case
factorial(N,F) :- % rule

N>1,
N1 is N-1,
factorial(N1,F1),
F is N * F1.

?- factorial(10,N).
N = 3628800.

Paradigms for Programming in Prolog (Use Cases)

• 1. Expressing FOL sentences that define concepts
• examples

• criminal(X) :-... weapon(W) :- ... hostile(C) :- ...
• check(Board,Player) :- % in the sense of chess
• loan_at_risk_of_default(L) :-
• invasive_surgery(P) :-
• can_graduate(P) :-
• grandmother(A,B) :- mother(A,C),mother(C,B). % if there exists a C in between
• safe(Row,Col) :- % from wumpus world
• ...

criminal(X) :- american(X),weapon(Y),hostile(Z),sells(X,Y,Z).
sells(west,C,nono) :- owns(nono,C),missile(C).
weapon(D):- missile(D).
hostile(E) :- enemy(E,america).

Paradigms for Programming in Prolog (Use Cases)

• 2. Datalog
• predicates encode facts like tuples in a database
• rules query them like 'joins'
• rules can also define higher concepts, and search for combinations of facts

that satisfy them
• example: define 'outpatient_procedure(X)' based on body parts or equipment

used, and then search database for all outpatient procedures performed
state(al).
state(ak).
state(ca).
state(co).
...
ocean(atlantic).
ocean(pacific).
island(Hi).

eastCoast(S) :- state(S),adjacent(S,atlantic).
westCoast(S) :- state(S),adjacent(S,pacific).
coastal(S) :- state(S),ocean(O),adjacent(S,O).

adjacent(ca,pacific).
adjacent(fl,atlantic).
adjacent(ny,atlantic).
adjacent(tx,atlantic).
adjacent(hi,pacific).
...

Paradigms for Programming in Prolog (Use Cases)

• 3. Calculating mathematical functions
• include multiple args for 'input' values (bound when called) and 'output'

(bound when return)
• double(5,A). => A=10
• factorial(5,F). => F=120

Paradigms for Programming in Prolog (Use Cases)

• 4. Enumerating Combinations of things
• generate all 3-bit strings (assigning values 0/1 to vars A-C)
bits3(A,B,C) :- bit(A),bit(B),bit(C).
bit(0).
bit(1). ?- bits3(A,B,C).

A = 0, B = 0, C = 0 ;
A = 0, B = 0, C = 1 ;
A = 0, B = 1, C = 0 ;
A = 0, B = 1, C = 1 ;
A = 1, B = 0, C = 0 ;
A = 1, B = 0, C = 1 ;
A = 1, B = 1, C = 0 ;
A = 1, B = 1, C = 1.

type semi-colon to
get all 8 solutions

• think about how back-tracking
works by trying A=0, B=0, C=0
first (since bit(A) unifies with
bit(0) hence A is bound to 0...),

• then changes C from 0 to 1 for
second solution, then
backtracks and flips B to 1 and
sets C to 0 again...

Paradigms for Programming in Prolog (Use Cases)

• 5. solving Constraint Satisfaction Problems
• generate possible solution combinatorially; then check to see if they satisfy

constraints (generate-and-test paradigm)
• example: map-coloring (see next slide)
• try implementing cryptarithmetic problems like SEND+MORE=MONEY

• hint: generate all combinations of digit assignments, then check for correctness
• try solving the 5-queens problem

• hint: generate all possible locations for 5 queens, and eliminate any that have attacks

Using Prolog to solve the map-color CSP

color(red). color(green). color(blue).

mapcolor(A,B,C,D,E,F) :-

color(A),color(B),color(C),color(D),color(E),color(F),

A \== D, A \== E, D \== F, E \== F, E \== C, F \== B, B \== C.

?- map_color(A,B,C,D,E,F).

A = red, B = red, C = green, F = green, D = blue, E = blue ;

A = red, B = red, C = blue, F = blue, D = ggreen, E = green ;

...

% apply adjacency
constraints

% generate all
possible colorings

	PROLOG
	Prolog Syntax
	Using Prolog
	Using Prolog
	Prolog does Back-chaining (with unification)
	Prolog files (.pl)
	Colonel West example in Prolog
	Slide Number 8
	Doing Math in Prolog
	Slide Number 10
	Paradigms for Programming in Prolog (Use Cases)
	Paradigms for Programming in Prolog (Use Cases)
	Paradigms for Programming in Prolog (Use Cases)
	Paradigms for Programming in Prolog (Use Cases)
	Paradigms for Programming in Prolog (Use Cases)
	Using Prolog to solve the map-color CSP

