
PROLOG

• install either
• GNU Prolog (gprolog): http://www.gprolog.org/
• SWI-Prolog (swipl): https://www.swi-prolog.org/
• these are generally command-line programs, but there are graphical IDEs

• tutorial
• https://people.engr.tamu.edu/ioerger/prolog.txt



Prolog Syntax

• Definite clauses (fact and conjunctive rules)
• facts: predicates with args, followed by a period.

• color(apple,red).  meat(hamburger).  in(london,england). 
college_of(csceDept,engineering).

• predicate names and constants must start with lower case
• rules: 

• write them backwards, using ‘:-’ for  ← (read it as “if”)
• use commas for ‘and’
• drop ∀; variable must start with upper case
• ∀ x,m,st graduated(x,m)^medicalSchool(m)^passedBoards(x,st)→doctor(x)
• doctor(X) :- graduated(X,M),medicalSchool(M),passedBoards(X,State).

• "X is a doctor IF X graduated from a medical school and passed board exams 
in some state"



Using Prolog

• run it from command-line, get interactive prompt
> swipl
Welcome to SWI-Prolog (threaded, 64 bits, version 7.6.4)
1 ?-

• load .pl files
1 ?- [‘examples.pl’]. // shorthand for consult('examples.pl').

• type in queries (see next slide)
• quitting

2 ?- halt.
• if you trigger an error warning, type ‘a’ to abort back to prompt

3 ?- foo(_).
ERROR: Undefined procedure: foo/1
Exception: (8) foo(_8282) ? a
% Execution Aborted
4 ?-



Using Prolog

• make queries
• solutions are variable bindings, not just T/F – this is how Prolog computes
• get additional solutions by typing ‘;’

4 ?- color(X). // equiv. to: "∃x color(x) ?"
X = red ;
X = green ;
X = blue.

• you can also make queries with multiple goals, with commas:
• lawyer(X),licensedIn(X,alabama).

• X = atticusFinch ...
• teachesAt(Faculty,tamu),degree(Faculty,phd),field(Faculty,math).

• Faculty=stephen_fulling ;
• Faculty=boris_hanin...



Prolog does Back-chaining (with unification)
4 ?- animal(X).
X = fido ;
X = snoopy ;
X = garfield ;
X = tweety ;
X = woodstock ;
X = opus ;
X = hedwig ;

dog(fido).
dog(snoopy).
cat(garfield).
canary(tweety).
canary(woodstock).
penguin(opus). 
owl(hedwig).
person(john).
state(rhode_island).

animal(X) :- mammal(X).
animal(X) :- bird(X).
animal(X) :- fish(X).
mammal(X) :- dog(X).
mammal(X) :- cat(X).
bird(X) :- canary(X).
bird(X) :- penguin(X).
bird(X) :- owl(X).

goal-stack:
animal(X)
mammal(X) // try first rule, choice-point

dog(X).
X=fido (solution 1)
X=snoopy
no more solutions, so back-track

cat(X).
X=garfield

bird(X)
canary(X).

X=tweety
penguin(X).

X

Note - you can
ask Prolog to display
tracing info during a 
query by typing
'trace.' 
Then type the query.
To get out of it, type
'nodebug.'



Prolog files (.pl)

• rules can span across multiple lines
• order matters! (for back-chaining)
• group your facts or rules of same predicate name together 

• otherwise, it might give you a warning, which is harmless

• comments are indicated by '%'

• if ';' isn't working right, try this:
set_prolog_flag(tty_control,false).



Colonel West example in Prolog

colonel_west.pl:

% from AIMA

criminal(X) :- american(X), weapon(Y), sells(west,Y,Z), hostile(Z).

weapon(Y) :- missile(Y).

hostile(Z) :- enemy(Z,america).

sells(west,m1,nono).

missile(m1).

enemy(nono,america).

query: 

?- criminal(A).

A = west.



• there is a lot of other stuff in Prolog
• numerics: there are predicates for doing math (+, *, log...), and operators for 

comparison (<, =, etc)
• negation: (we will talk about this later)
• lists: special notation for using lists as terms, ([Head|Rest])
• 'cut' (!): operator for controlling execution flow
• '_': anonymous variables
• format(): for printing out strings

• this always evaluates to True as an antecedent, but prints out as side-effect of execution.
message(M,Name) :- format("~w from ~w",[M,Name]).
?- message("hello","joe").
hello from joe



Doing Math in Prolog

• suppose you want to write a function for 'doubling' numbers
• write a predicate with 2 args, to be used as 'input' and 'output'
• in the body, use 'is' to bind a variable to a computed value
• this will get unified and returned when the predicate succeeds
double(X,Y) :- Y is 2*X.
?- double(5,A).
A = 10

• other functions are usually available, like sin, exp, sqrt
tan(Theta,Z) :- C is cos(Theta),S is sin(Theta),Z is S/C. % in radians

• can you write a conversion function: radians(Deg,Rad) :- ...?

• comparison operators act like regular antecedents, i.e. tests that are T or F.
• see http://www.gprolog.org/manual/html_node/gprolog030.html
large_frog(X) :- frog(X),length(X,W),W > 10. % large frogs are over 10 cm long
odd(A) :- B is A mod 2,B==1.
even(A) :- B is A mod 2,B\==1. % '\==' is inequality operator in gprolog



• can define mathematical functions in prolog
• typically defined as relations with args for input 

AND output
execution trace:

factorial(10,N) calls
factorial(9,N) calls

factorial(8,N) calls
...

factorial(2,N) calls
factorial(1,N) which returns
factorial(1,1).

factorial(2,2).
factorial(3,6).

factorial(4,24)...
factorial(10,3628800).

You can use this idea to calculate square roots by Newton-
Raphson iteration.  Write Prolog rules to define sqrt(A,B).

factorial(1,1). % base case
factorial(N,F) :- % rule

N>1, 
N1 is N-1, 
factorial(N1,F1), 
F is N * F1.

?- factorial(10,N).
N = 3628800.



Paradigms for Programming in Prolog (Use Cases)

• 1. Expressing FOL sentences that define concepts
• examples

• criminal(X) :-...  weapon(W) :- ...  hostile(C) :- ...
• check(Board,Player) :- % in the sense of chess
• loan_at_risk_of_default(L) :-
• invasive_surgery(P) :-
• can_graduate(P) :-
• grandmother(A,B) :- mother(A,C),mother(C,B). % if there exists a C in between
• safe(Row,Col) :- % from wumpus world
• ...

criminal(X) :- american(X),weapon(Y),hostile(Z),sells(X,Y,Z).
sells(west,C,nono) :- owns(nono,C),missile(C).
weapon(D):- missile(D).
hostile(E) :- enemy(E,america).



Paradigms for Programming in Prolog (Use Cases)

• 2. Datalog
• predicates encode facts like tuples in a database
• rules query them like 'joins'
• rules can also define higher concepts, and search for combinations of facts 

that satisfy them
• example: define 'outpatient_procedure(X)' based on body parts or equipment 

used, and then search database for all outpatient procedures performed
state(al). 
state(ak). 
state(ca). 
state(co). 
...
ocean(atlantic). 
ocean(pacific). 
island(Hi).

eastCoast(S) :- state(S),adjacent(S,atlantic).
westCoast(S) :- state(S),adjacent(S,pacific).
coastal(S) :- state(S),ocean(O),adjacent(S,O).

adjacent(ca,pacific).
adjacent(fl,atlantic).
adjacent(ny,atlantic). 
adjacent(tx,atlantic). 
adjacent(hi,pacific).
...



Paradigms for Programming in Prolog (Use Cases)

• 3. Calculating mathematical functions
• include multiple args for 'input' values (bound when called) and 'output' 

(bound when return)
• double(5,A).  => A=10
• factorial(5,F). => F=120



Paradigms for Programming in Prolog (Use Cases)

• 4. Enumerating Combinations of things
• generate all 3-bit strings (assigning values 0/1 to vars A-C)
bits3(A,B,C) :- bit(A),bit(B),bit(C).
bit(0).
bit(1). ?- bits3(A,B,C).

A = 0, B = 0, C = 0 ;
A = 0, B = 0, C = 1 ;
A = 0, B = 1, C = 0 ;
A = 0, B = 1, C = 1 ;
A = 1, B = 0, C = 0 ;
A = 1, B = 0, C = 1 ;
A = 1, B = 1, C = 0 ;
A = 1, B = 1, C = 1.

type semi-colon to 
get all 8 solutions

• think about how back-tracking 
works by trying A=0, B=0, C=0 
first (since bit(A) unifies with 
bit(0) hence A is bound to 0...), 

• then changes C from 0 to 1 for 
second solution, then 
backtracks and flips B to 1 and 
sets C to 0 again...



Paradigms for Programming in Prolog (Use Cases)

• 5. solving Constraint Satisfaction Problems
• generate possible solution combinatorially; then check to see if they satisfy 

constraints (generate-and-test paradigm)
• example: map-coloring (see next slide)
• try implementing cryptarithmetic problems like SEND+MORE=MONEY

• hint: generate all combinations of digit assignments, then check for correctness
• try solving the 5-queens problem

• hint: generate all possible locations for 5 queens, and eliminate any that have attacks



Using Prolog to solve the map-color CSP

color(red). color(green). color(blue).

mapcolor(A,B,C,D,E,F) :-

color(A),color(B),color(C),color(D),color(E),color(F), 

A \== D, A \== E, D \== F, E \== F, E \== C, F \== B, B \== C. 

?- map_color(A,B,C,D,E,F).

A = red, B = red, C = green, F = green, D = blue, E = blue ;

A = red, B = red, C = blue, F = blue, D = ggreen, E = green ;

...

% apply adjacency 
constraints

% generate all 
possible colorings
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