
Planning

• finding a sequence of actions to achieve goals
• requires reasoning about actions
• knowledge-level representation of the successor()

function in search
• assumptions:

• actions are discrete (state changes) and deterministic
(no probability of failure)

• goals are conjunctive (not disjunctive goals or
maintenance goals, which require more complex algs)

Situation Calculus

• for describing are reasoning about Actions in FOL
• assume actions are discrete state space, fanning out

from an initial state
• add a 'situation' argument to each predicate (fluent)
• could use Sinit to refer to initial state

• other states are denoted using the 'do' function, do(Act,State)
• like anonymous names for all states based on action sequence

• ∀s,x,y on(x,y,s)^clear(x,s)^ gripperEmpty(s) →
holding(x,do(pickup(x,y),s))^clear(y,do(pickup(x,y),s))

• axioms are universal rules over generic
situations s

• LHS=preconditions, RHS=effects

Sinit

state=
do(pickup(b,a), Sinit)

state=
do(pickup(A,table),
do(puton(B,C),
do(pickup(B,A),

Sinit)))

The Frame Problem

• The Frame Problem refers to the need to also specify all the things
that are not changed by an action (p. 239, 249)

• refers to animation frames or cells, background that remains constant

• for example, after we pickup(B,A), suppose we want to puton(B,C)
• preconditions: must be holding B, C must be clear
• holding(B) is a direct effect of pickup(B,A)

• ∀s,x,y on(x,y,s)^clear(x,s)^ gripperEmpty(s) →
holding(x,do(pickup(x,y),s))^clear(y,do(pickup(x,y),s))

• how do we know clear(C)??? not mentioned in rule for pickup(B,A), so how
can we prove it is true in successor state?

• there are ways to do this (called writing 'Frame Axioms'):
• ∀s,x,y,z on(x,y,s)^clear(x,s)^ gripperEmpty(s)^z≠x^z≠y^→

[clear(z,s) ↔ clear(z,do(pickup(x,y),s))]
• i.e. if clear(z) was true before the action, it will still be true after, and vice

versa, for any blocks other than x and y

Frame Axioms
• Approach 1

• for a specific action and unaffected predicate, if preconds hold, then if
predicate was True before, it will be True after, and vice versa

• picking up a block does not affect whether any other block is clear
• ∀s,x,y,z on(x,y,s)^clear(x,s)^gripperEmpty(s)^z≠x^z≠y→

[clear(z,s) ↔ clear(z,do(pickup(x,y),s))]
• picking up a block does not affect whether the light is on in any room
• ∀s,x,y,z on(x,y,s)^clear(x,s)^gripperEmpty(s)^room(z)→

[lightOnIn(z,s) ↔ lightOnIn(z,do(pickup(x,y),s))]
• but you would have to do this for almost all |Actions X Predicates|

• Approach 2 - the light would stay on for any action except turnOff
• ∀s,x,y on(x,y,s)^clear(x,s)^gripperEmpty(s)→ Poss(pickup(x,y),s)
• ∀s,a,z Poss(a,s)^a≠turnOffLight(z)^lightOnIn(z,s)→lightOnIn(z,do(a,s)))

• Approach 3: for each pred in succ state, list the ways it could be T
• ∀s,x,y lightOnIn(z,do(a,s))↔[Poss(a,s) ^ (lightOnIn(z,s)^a≠turnOffLight(z)

v a=turnOnLight(z))]

define Poss()
for convenience;
preconds say when
it is Possible to do
a given action

not scalable

either it was on before and not affected by action, or we turned it on

Planning via Inference

• one could use Precond and Effects and Frame axioms
to infer plans (sequences) of actions that entail the
goal, like proving "∃s on(A,B,s)^on(B,C,s)" using
resolution refutation or natural deduction

• when proof succeeds, look at substitution for s in unifier:
{s/do(puton(A,B),do(pickup(A,table),do(puton(B,C),do(pick
up(B,A),Sinit)))}

• however, this is cumbersome and hard to control
• inference might take many, many steps

• the goal is to develop Planning Algorithms that are
more efficient at searching the space of sequences of
actions

PDDL - Planning Domain Description Language

• for describing operators/actions
• pre-conditions:

• list of literals that must be satisfied to execute action
• effects:

• add-list: list of positive literals that will become true
• delete-list: list of negative literals that will become

false

Example of PDDL operators from Blocksworld
• pickup(x,y):

• pre-conds: on(x,y),clear(x),gripperEmpty()
• effects: holding(x),clear(y),¬clear(x),¬on(x,y),¬ gripperEmpty()

• puton(x,y):
• pre-conds: holding(x),clear(y)
• effects: on(x,y),clear(x),gripperEmpty(),¬holding(x), ¬clear(y),

A

B

C D A

B

C D

pickup(B,A)

pre-conds: on(B,A), clear(B), gripperEmpty() Effects: holding(B), clear(A),
¬on(B,A), ¬gripperEmpty()

note: for simplicity,
assume the table is
always clear

• State Progression
• given a set of literals describing a state, compute the

description of the successor state for a given action
using the state progression function:

• importantly, Progress(St,Op) solves the Frame Problem!
(because all literals not mentioned get copied)

Progress(State,Op) = State \ Del(Op) ∪ Add(Op)

A

B

C D A

B

C D

pickup(B,A)

State s1:
on(B,A) clear(B)
on(A,table) clear(C)
on(C,table) clear(D)
on(D,table) GE()

State s2=Progress(s1,pickup(B,A)):
clear(A)

on(A,table) clear(C)
on(C,table) clear(D)
on(D,table) holding(B)

red=delete-list green=add-list

"Progress()"
qua verb
not noun

Forward State-Space Search

• The state progression function Progress() can be
used to calculate what is true in every state
descended from Sinit

• could use this to do a search for a state in which
the goal literals are true

• use BFS? A*? what would a good heuristic be?

Sinit

state
contains
on(A,B),
on(B,C),
based on
Progress()

Goal Regression

• more efficient than forward State-Space Search
• Principle of Means-Ends Analysis (Newell&Simon)

• identify a difference between the current and goal state, and
find an operator that achieves that predicate as an effect

• more efficient than FSSS because it is goal-directed
• form plan by working backwards from goal(s)

• reduce goals to sub-goals
• analogous to Back-chaining inference (recursive)

from
Weld (1994)

Regress() funtion:Regress(Goals,Op) = Goals \ Add(Op) ∪ Precond(Op)

Goal Regression

• "weakest preimage": what is the minimal set of conditions which
would allow op to be executed as last step and achieve Goals?

(consistency check,
see next slide)

Means-Ends
Analysis:
select action
that is relevant

consistency
check:

Goal Regression

(this can cause backtracking, as we wil see...)

• Example of Goal Regr
• goal: on(a,b),on(b,c)
• In each step, underline

the selected subgoal to
be achieved; becomes an
effect of the action
underneath that is
selected to achieve it.

• can be read-off plan
backwards:

1. pickup(b,table)
2. puton(b,c)
3. pickup(a,table)
4. puton(a,b)

A B C

A

B

C

on(a,b),on(b,c) = Sgoal

↑puton(a,b)

holding(a),clear(b),on(b,c)

↑ pickup(a,table)

on(a,table),clear(b),clear(a),GE,on(b,c)

↑ puton(b,c)

on(a,table),holding(b),clear(c),clear(a)

↑ pickup(b,table)

on(a,table),on(b,table),clear(b),clear(c),clear(a)⊆ Sinit

Sinit Sgoal

• Goal-Regression can
involve Back-tracking

• choice-points depend on
choices of which subgoal
to achieve, and which
operator to use

• for example, if we chose
on(b,c) first, the Goal-
Regression would have
failed, because there is
not plan that ends in
putting b on c

A B C

A

B

C

on(a,b),on(b,c) = Sgoal

↑puton(b,c)

on(a,b),holding(b),clear(c)

↑ pickup(b,table)

inconsistent preimage, so would have to back-track

Sinit Sgoal

on(a,b),on(b,c) = Sgoal

puton(b,c)puton(a,b)

pickup(b,table)puton(a,b)pickup(a,table)puton(b,c)

Xputon(a,b)

...

Subgoal Interactions
• when achieving one subgoal

undoes the achievement of
another

• Sussman Anomaly
• goal: on(a,b), on(b,c)

• The lesson is that we need non-
linear planners that interleave
actions, rather than solving one
subgoal at a time

AB C A

B

C

A

B C

try
achieving
on(a,b) first

try
achieving
on(b,c) first

now, to
achieve on(a,b),
I have to unstack
them...

now, to
achieve on(b,c),
I have to unstack
them...

solution: pickup(c,a)
puton(c,table)
pickup(b,table)
puton(b,c)
pickup(a,table)
puton(a,b)

blue is for
actions for
achieving on(a,b);
red is for actions
for achieving on(b,c)

Other Planners

• SatPlan - translate into a Boolean Satifiability Problem
• graph-based planners (POP, GraphPlan)
• abstraction planners/hierarchical planners (ABSTRIPS)
• Ordered Binary Decision Diagrams
• handling uncertainty in planners
• schedulers
• complexity of planning is NP-hard or worse

(depending on expressiveness of the operator
language)

SatPlan
• translate precond/effect/frame axioms into propositional logic

• make "ground versions" of sentences, one for each time step (for all
combinations of objects and timesteps)

• propositionalization (make ground predicates into prop syms, e.g.
"clear(A,t1)" -> "clear_A_t1"

• add axioms for preconds and effects of each action in each
timestep, like PickupAB1,PickupBA1, PickupAC1...PickupAB2...

• PickupAB1→(ClearA1 ^ OnAB1 ^ HoldingA2 ^ ClearB2)
• PickupAB2→(ClearA2 ^ OnAB2 ^ HoldingA3 ^ ClearB3)

• sentences: {action axioms} U {init_state at t0) U {goals at tN)
• must anticipate the number of steps N
• {action axioms} U {onAB0,clearA0,gripperEmpty0) U {onBA4)

• solve as Boolean Satisfiability (e.g. using DPLL)
• the "plan" is given by which action props are True in the model

• e.g. pickupAB1, putonAtable2, pickupB3,putonBA4

SatPlan

alternatively:
Precond Axiom: Fly(P1,JFK,SFO)0→At(P1,JFK)0 // what must be true at time t to do action?
Effects Axioms: Fly(P1,JFK,SFO)0→At(P1,SFO)1 // what would be true at time t+1?

...and copies for all time steps, and every package, and every pair of cities...
Fly(P1,JFK,SFO)1→At(P1,SFO)2 ; Fly(P1,JFK,SFO)2→At(P1,SFO)3; Fly(P1,JFK,SFO)3→At(P1,SFO)4

"if P1 is at JFK at t=1, then either
a) it was flown there, or
b) it was already there and not flown elsewhere"

or t if you think it will take t steps

Mutual Exclusion axioms for actions

pickupAB1

pickupAC1

pickupBA1

pickupBC1

pickupCA1

pickupCB1

putonAB1

putonAC1

putonBA1

...

pickupAB2
pickupAC2
pickupBA2
pickupBC2
pickupCA2
pickupCB2
putonAB2
putonAC2
putonBA2
putonBC2
...

pickupAB3
pickupAC3
pickupBA3
pickupBC3
pickupBtable3
pickupCA3
pickupCB3
putonAB3
putonAC3
putonBA3
...

• at most on action proposition can be true in each timestep
• pickupAB1->¬pickupAC1^¬pickupBA1^¬pickupBC1^...
• pickupAC1->¬pickupAB1^¬pickupBA1^¬pickupBC1^...
• pickupAB2->¬pickupAC2^¬pickupBA2^¬pickupBC2^...

Sinit

pickup(a,table)

pickup(b,table)

pickup(c,a)

puton(c,table)

puton(b,c)

puton(a,b)

Goal
on(a,b)

on(b,c)

clear(c)

holding(b)

holding(a)

on(a,table)

GE

on(b,table)

2

1

3

4

GE

clear(b)

on(c,a)

GE

holding(c)

5

6

POP: Partial-Order Planning
• "non-linear planning"; search

the space of plan-graphs (not
just action sequences)

• principle of "least
commitment" - don't force
ordering of actions till
necessary

• make a graph with actions as
nodes

• add edges where effects of 1
action achieve preconditions
of another action

• detect conflicts*, and resolve
by adding edges to force
which action comes first

• in the end, extract the plan as
a linearization (topological
sort) of the graph

*conflicts are where effect of action C could undo precondition of B achieved by A (e.g. for
edgeA->B); add edge to force C to come before A or after B

GraphPlan (Blum and Furst)
• an even more complex graph-based planning

algorithm that achieves combinations of subgoals
in "layers"

Complexity of Planning

• complexity: planning is NP-hard
• proved in (David Chapman, 1987, AI journal)
• depends on expressiveness of pre- and post-conditions,

e.g. disjunctive? conditional effects?...
• reduction from...Sat (Boolean Satisfiability)

• fight complexity by simplifying operators by
removing smaller details (pre-conditions that would
be easy to fill-in and achieve later) ("abstraction
planning")

• another approach: decompose the search space by
doing "hierarchical planning"

Abstraction Planners

• focus on finding a correct sequence for the "big steps"
• try dropping/ignoring pre-conditions that are easily

achieved (later)
• similar to defining "relaxed operators" for search, like

sliding tiles over each other in the tile puzzles
• how do you automatically infer which preconditions are

less relevant?

• ABSTRIPS (Craig Knoblock)
• also try state abstraction

• drop variable or dimenstions of the state to reduce the size
of the state space

Hierarchical Planners
• Hierarchical Task Networks (HTNs)

• reduces complexity of planning

• uses "plan libraries" consisting of scripts for
different ways to achieve high-level
activities and low-level activities

• HTNs work by elaboration: choose high-
level actions, then fill in actions to achieve
lower-level tasks

• challenges:
• a) hard to accurately represent preconds and

effects of high-level tasks (before knowing low-
level actions)

• b) does not allow for interactions between tasks
(especially positive: sharing/overlap of steps)

Plan Library:
T0: find lodging for evening
(hotel, campsite, friend's
house...)
T1: setting up camp: put up
tents, build campfire, acquire
water...
T2: building a campfire: get
wood, clear space, assemble
kindling, light with match...
T3a: acquire water: get
bucket, get water from stream
T3b: acquire water: get jug
from backpack
T3c: acquire water: go to
water pump
T4: treating blisters...
T5: cooking fish
T6: cooking canned chili...
...

Hierarchical Plan (HTN) for Camping
Plan Library:
T0: find lodging for evening
(hotel, campsite, friend's
house...)
T1: setting up camp: put up
tents, build campfire, acquire
water...
T2: building a campfire: get
wood, clear space, assemble
kindling, light with match...
T3a: acquire water: get water
from stream;Purify
T3b: acquire water: get jug
from backpack
T3c: acquire water: get water
from pump
T4: treating blisters
...

find lodging for evening

campsite
hotel

1.put up tents, 2. build campfire, 3. acquire water

1. get wood,
2. clear space,

3. assemble kindling,
4. light with match

get water from pump

get water from
stream; Purify

friend's house

clear space...

Adaptive Planners

• plan monitoring and repair
• if something goes wrong (not as expected), do not

want to re-plan from scratch (new initial state)
• can you "modify" the original plan, or "re-use" the

search of the state space?
• online planning; contingent planning...

Scheduling
• what's the difference between planning and

scheduling?
• both have actions with precedence constraints
• in planning we are usually satisfied with finding any

sequence of actions that achieves the goal
• in scheduling

• actions have duration
• actions can overlap (parallel processes)
• actions can have resource/mutual exclusion constraints
• objective is usually to find a sequence of actions with

minimum makespan (e.g. Critical Path Method, CPM)

	Planning
	Situation Calculus
	The Frame Problem
	Frame Axioms
	Planning via Inference
	PDDL - Planning Domain Description Language
	Slide Number 7
	Example of PDDL operators from Blocksworld
	Slide Number 9
	Forward State-Space Search
	Goal Regression
	Goal Regression
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Subgoal Interactions
	Other Planners
	SatPlan
	SatPlan
	Mutual Exclusion axioms for actions
	Slide Number 21
	GraphPlan (Blum and Furst)
	Complexity of Planning
	Abstraction Planners
	Hierarchical Planners
	Hierarchical Plan (HTN) for Camping
	Adaptive Planners
	Scheduling

