Constraint Satisfaction

CSCE 420 — Spring 2022
read: Ch. 6

Constraint Satisfaction

* Constraint Satisfaction Problems (CSPs) are a wide class of problems
can be solved with specialized search algorithms

* these types of problems typically required finding a configuration of
the world that satisfies some requirements (constraints) which
restrict the possible solutions

e examples:
* limited resources that can only be used one at a time
* satisfying precedence order constraints (e.g. taking prerequisite classes first)
 assignments (or matching) of agents to tasks of which they are capable

Constraint Satisfaction

 formal framework:
* variables: {V}

* domains: dom(V,)={a;...a,} — a finite set of possible values for each variable
* constraints:

* the form of constraints can be different for each problem
* sometimes they are presented as equations
* examples (binary constraints) : U+V=6; U and V must be opposite parity: (U%2)#(V%2)

* abstractly, a constraint involving variables can be viewed as a restriction on the allowed
set of tuples in the cross-product of domains:

* constraint C; ={<x;...x,>|x,edom(V\)}=II,_; . dom(V,)
 dom(U)=dom(V)={0,1,2,3,4,5,6,7,8,9}
e U+V=6: {<0,6>,<6,0>,<1,5>,<5,1><4,2>,<2,4>,<3,3>} C
{<0,0>,<0,1>,...<0,9>,<1,0>,<1,1>,<1,2>....<9,9>} (100 possible 2-tuples)
 solution: a complete variable assignment that satisfies all constraints
* for some CSPs, there can be multiple solutions

| Nortem |
CSP Example: Map coloring

| Temtory

I Cueensland
Westemn ! I |
Australi
B I South .
| Australia | New)
|

. : -\ Waes
* no two adjacent states (sharing part of an border) can have same color /v
* (in general, need at most 4 colors — famous Four Color Theorem proved-in-

1997 with the help of a computer to enumerate all possible cases)
 Australia:

 vars = {WA,NT,SA,Q,NSW,V,T}
 domains: dom(S)={R,G,B}
* constraints: WA=NTWA=SA,NT=SA,NT=Q...

* solution: {WA=R,NT=G,SA=B,Q=R,NSW=G,V=R, T=G}

* also: {WA=G,NT=R,SA=B,Q=G,NSW=R,V=G,T=R}
 and so on

2/24/2022

Tasmania

CSP Example: Cryptarithmetic

T WO 7 6 5
+ TWO + 7 6 5
= F OUR =1530
e vars: {FTW,0O,U,R}
* and add carry bits {c1,c2} a solution:
. .« e F=1
 domains: dom(var)={0,1,2...9} (digits) T—7
e domain for c1 and c2 is just {0,1} W=6
* constraints: 0=5
e all var bindings must be distinct: F£T, F£W... ;Jjg

* |leading chars can’t be 0: T=0, T-0

* the math must add up correctly:
e O+0O=R - what if there is a carry? introduce c1, dom(c1)={0,1}
 0+0=R-c1*10
e c1+W+W=U-c2*10
 C24T+T=U-F*10

are there other solutions?

I
=+
O W
2 0 M|
M x 2
K H O

CSP Example: 8-queens

* assume there is one queen in each column

 for each column i, what row is the queen in?

* vars: Q;..Qg
* domains: Q,e{1..8}

* constraints:
* no 2 queens can be in same row: Q=Q; for all i=]
* no 2 queens can be in same diagonal: |Qi-Qj|#|i-j|
e equivalent representation:
* allowed Q1-Q2 pairs: {(1,3),(1,4),(1,5)...(1,8),(2,4)...(2,8),(3,1),(3,5)...(3.8)...}
* allowed Q1-Q3 pairs: {(1,2),(1,4),(1,5)...(1,8),(2,1),(2,3),2,5)...}

2/24/2022 6

CSP Example: scheduling

* Job Shop scheduling

e car assembly tasks: install axles (2), install wheels (4), tighten bolts (4), put on

hubcaps(4), inspection (1)

variables: time steps for each task (integers): T_,.r,

precedence constraints: T ,.r<T,heelrR< Thutir< Vi

(we could also model task durations)

solution: assignment of time slot for each step
axIeF_l T heeIFR_2 T heeIFL_3' T _4 T =15

axleR™
e you can do the same thing with undergrad courses:
 CSCE 313 is needed to graduate
 CSCE 312 is a prerequisite for CSCE 313
* only want to take at most 5 courses per semester
 can you figure out a solution (assignment of courses to semesters)

T T,

axleR” "wheelFR ***

inspection

inspection™

that satisfies all prereqgs and will enable you to graduate in 4 yrs? .

e[1..20] (time limit)

note: Scheduling is a big
field of computer science,
and there are many
variants of scheduling
problems

often, we want to know
more that just whether
there is a feasible solution:
we want to find a schedule
of minimum length (make-
span)

this goes beyond CSPs

Constraint Graphs

* nodes=vars (label with domain, possible values)
* edges=constraints

 easy for binary constraints

 |label edges with pairs of consistent values from each domain

| Morthem

| Temtory
I Cueensland
Westemn | | |
Australi
ustrlia | South —
Anstralia | New '
' | South
l" =, Wales
Victoria |_

2/24/2022

Tazmama

Constraint Graphs

 for ternary constraints (3 or more variables), e.g. O+0O=R-c1*10

» creates a “hypergraph” with special edges that connect >3 nodes (hard to
draw)

e convert to a binary graph:
* create new nodes (green) for each constraint
* label the new nodes with all possible tuples based on cross-product of domains
e connect the new nodes to the constrained variables
 |label the edges to enforce consistency of variable assignment with position in tuple

[OI<XIOIy>]I [1I<XI 1Iy>]l R 4 [9I<X191y>]

{OI1I2I314I5I6I7I8I9}

T W O ‘
«— [0,<0,x,y>],11,<1,x,y>],...,|19,<9,x,y>
e T oW o 4 [y>1[y>],.l y>]
- dom(<O,R,C1>) =
F O U R

{<0,0,0>,<0,1,0>,<1,0,0>...<9,9,1>}
2/24/2022 (0,1} [0,<x,y,0>]...[1,<x,y,1>] 10

vars: WA,NT,SA,Q,NSWV, T
states: <cl,c2,c3,c4,c5,c6,c7>
where cie{R,G,B,?}

Back-tracking

~

T 999799797

* the basic search algorithm for CSPs is very rosiand N
similar to DFS ReRR GRRRRR? B??????‘\‘
* variable assignments represent “states” or “nodes” /R |
* the root node is the empty assignment |/ RRZZP RGPP2ZZ RB?PPZ?

 for a selected variable, the branches represent the
choices from the domain %

* each level assigns one more variable / :
. . " RRRRRRR . BBBBBBS
* there are two important differences: - ~—+ "
 tree depth is uniform (# vars), and all goals occur at
the fringe how many leave are there?

* a5 S00N as assigning any variable at an internal node
causes inconsistency with a constraint, prune that
subtree and backtrack immediately

2/24/2022 11

Back-tracking

PPPPP??

vars: WA,NT,SA,Q,NSWV, T

state representation: RP??272 GP?2227 B2
<cl,c2,c3,c4,c5,c6,c7>
where cie{R,G,B,?}

lates R\

N cGR?777 RGG???? RGB????

ktrack

violates violates
WA=SA, NT=SA,
backtrack back

RGBR??? RGBG??? RGBB???

RRRRRRR RGBRGRG)... BBBBBBB
2/24/2022

12

2/24/2022

function BACKTRACKING-SEARCH(csp) returns a solution or fatlure
return BACKTRACK(csp, { })

function BACKTRACK (csp, assignment) returns a solution or failure
il assignment 1s complete then return assignment
var +— SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
if value 15 consistent with assignment then
add {var = value } to assignment

ignore inferences for now

result +— BACKTRACK(csp, assignment) recursion: bind more variables...

if result i iaﬂure then return result

remove { var = value } from assignment
return failure

13

Tracing Backtracking

initially,
domain={RGB}

suppose the order of vars is given as:

NSW, WA| T, Q} V, NT, SA

RGB RGB RGB
for all states
l o l
RGB | Northem | RGB | Northem | RGB R | Norern | RGB
| Temtory | Temitery | Temtory
I Queensland N] | Queensland N I Queensland
Western | L » Ee;l‘:ﬂl ! o » Western | L
Ausl a
Australia | South S South —_ Australia | South .
| Australia | New P | Australia New | Australia l New -
' | South ' | South R | | South
RGB -\ Wales RGB [\ Wales RGB [\ Jales SR
Victoria _ Victoria |\ Victoria \,_
RGB RGB RGB
Tasmania Tasmama Tasmania
RGB RG
R | ' G |
| Northem | R | Norhem | R | | G
| Termitory | Temitory Northern
) Queensland | Temitory
Westem | Ere:’gj? | [~ Wesem | Queensland
Avstalia | gom) B> Avsmla | o | > Awmba ['
| Australia New | Australia New | Austealiz I —
! | South J | South R
M\ Wales R - Wales
Victoria |
RGB

Tasmama

this is the first time we violate a,
constraint, but only change Rto G

2/24/2022

| New

[591111:: R
RGB | Vicwria) RC lhd‘;:es
R Tasmama / - G
R
crisis: no values remain for SA;

must back-track to WA (ultimately) and ch:ﬂwge itto G,
after trying all combinationsof V, Q, and T

Tracing Backtracking

4. ultimately have to
change this to G, and resume search

RGB

RGB el AN RGB
X \\
| | |
RGB | Noem | RGB | Northem | RGB R | Norern | RGB
| Temtory | Temitery | Temtory
) | Queensland N . | Queensland N) | Queensland
Western | > Western | | » Western | L
Australia | South | - Australia | South o Australia | South ~
| Awsmalia | pew | Ausmalia | e | Awsmalia | e
J | South | | South) | South
RGB /| - Was RGB /| W /R RGB /| s /R
Victoriaw'\ Victora \,_ Victoria \\
RGB RGB - RGB
Tasmania Tasmama \ | _.--T Tasmania 3.t G
————— .try G...
RGB _RGR_-- \ Y
________ then retry all
—————————— subsequent
RGBT RGB RGB choices;
: then try B and all
| RGB ' |
R | Northem | ‘ R | Nortem | G . | o] G su bfsequen.t
|| Temitory || Temiary | | Ty | choices; still
= Wesl | 1 . ueensian .
e — R Awmis || R Vestem | . no choices for SA
| Australia New T | Australia [I‘_H'e'_\\'_] v | Asogtaljli [——
' [Souh | [Souh | — New
o Wales R RGB o Wales R L ‘i?;'i R
Victoria | / Victoria) RGB | o
hGB V\\\ /// V\\ /,' \1ctor:aw?3
Tasmania S s Tasmania S 7)
R ~ ld ~ /’ Tasmama
Sa__-" R \\\s__’,’ R
2. try changing G to B, but still no choices _ ,
. . . 1. no other choices remain for NT, so back
remain that lead to a consistent solution
2/24/2022

track to V and try changing G to B; but
NT is still B and SA still has no values

instead of choosing |
next var arbitrarily
(in order given),

or we could use MRV
heuristic to choose
more intelligently... |

2/24/2022

function BACKTRACKING-SEARCH(csp) returns a solution or fatlure
return BACKTRACK(csp, { })

function BACKTRACK (csp, assignment) returns a solution or failure
if assignment 1s complete then return assignment
— var SELEET—UHASSIGHED—VARIABLE‘{ESF., assignment)
for each value iNfORDER-DOMAIN-VA LUEﬂ(fspf var, assignment) do —

if value 15 consistent with assignment then
add {var = value } to assignment

result +— BACKTRACK(csp, assignment)

if result i iﬂﬂum then return result

remove { var = value } from assignment
return failure

—

instead of choosing
next value arbitrarily
(in domain order),
or we could use LCV
heuristic to choose
more intelligently...

16

CSP Heuristics

* MRV —select var based on Minimum Remaining Values

* in current partial assignment, some variable bindings might preclude choices in
domains for unbound variables based on constrains

» for each unbound variable, rule out values that are inconsistent with curr. assignment

* choose variable with fewest choices Food for thought:
* the best case: if there is a variable with just 1 choice left, choose it! How much would MRV

* forces back-tracking to happen sooner help in coloring the
map of USA, compared

e LCV —select value for var based on Least Constraining Value ' to doing BT on 50 states
« once a var is chosen, can we try the values in an intelligent order? | n alphabetical order?
 pick value that would remove the fewest (leave the most) choices for other variables
* this will tend to delay back-tracking to happen later

* degree heuristic: if all domains are equal-sized, choose the variable that i
involved in the most constraints (connected to the most other vars)

* Tracing BT with MRV

Q and V have 2 options;
choose Q=G

v

RGB
remove R
| from SAV
RGB R RGB NQ
| Temitory
Westem I Queensland
Australia | South]
| Australia [~ I‘_\'e:\'_ T
J | South
RGB |‘ --\,\l\‘:l’al_e_.s
Victoria '-\\
RGB
Tasmania
RGB
RGB
RGB | G
l Northemn |
| Territory
Westem l. . Queensland
Australia | South | >
| Australia [I:Te:\'_ o
! | South R
™= ‘_\‘:E’al_es
B l \-'ictoria-.@
Tasmama
RGB
V only has G left
2/24/2022

No back-tracking! notice how choices tend to propagate to neighbors

cch remove B from NT and V
remove G R&B
| Northem | | Northem | G
| Termitory Quccatiand | Temtory and
irestem l') Westem |] Queenslan
Australia | South '_ - Australia [South |
| _Ausiralia ! I;'e:\'_ o | Australia [I‘_\'e_w_ o
I | South) | South
RGB |ﬁ '—~_‘_\‘_.E’al_es R |ﬁ - Wales R
Victoria | Victoria _
RGB RGB
Tasmama Tasmania
RG RGB
® :
RGB | G @ |
l Jorthermn G
| %e;nr'hi'or}-' | Il I%orrhe'ru |
r | Queensland . Queensland
Western | | | Westemn |. .
Avstralia | o > Awstala | |
| Awsmlia | yew | pdeuth
| - vie /R . =
B | Victoria AN B | hc:rj:es\
Tasmania G G
Tasmama d
efer to last
RGB o8 3 ’
always
SA only has R left WA only has G left

SA has only B remaining;
choose SA=B

ch&ices

Forward-checking (FC)

* MRV is very similar to forward-checking

* technically, MRV is passive; in each iteration, it re-calculates how many
consistent values remain in domain of each unbound var

* FCis active: every time you choose a value for a var, you remove inconsistent
values in domains of other vars (like “propagation”)

* almost identical, except... if making a choice at var X causes domain for var Y
to become empty, back-track immediately and try another value for X (don’t
have to wait till Y is selected to see that it’s domain is empty)

Constraint Propagation

* we can generalize the idea of FC

 whenever we make a choice at one node in the constraint graph, propagate
the consequences to neighboring nodes

* remember, edges are determined by constraints
* sometimes, a choice has no effect on domains of neighbors

* sometimes, choice at node X removes some options from domain of
neighbor Y

 sometimes, choice at X removes all but one option atY
* if so, make this choice at Y, and propagate consequences to its neighbors...

* sometimes, choice at X reduces the domain of neighbor Y to empty, forcing

back-tracking
Qo O

{112I3} {AIBICID}

Constraint Propagation

2/24/2022

suppose we assign WA=R, and then Q=G,
and we are doing Forward checking...

(backtra:k!) o

@

why shouldn't we be able to
propagate one more step and see that
NT is forced to be B, leaving no
choices for SA? (or vice versazjl

AC-3

* formalization of constraint propagation as a graph algorithm
* let (V,E) be the constraint graph (assume all constraints are binary)

 define arc-consistency:

e a graph is arc-consistent if for every variable X, for every value a in dom(X), for every
variable Y it is connected to (by a constraint), there is a value b for Y that is consistent
with X=a

 for all edges (X,Y), ¥V aedom(X) 3 bedom(Y) s.t. X=a and Y=b are consistent
e ensure the initial graph is arc-consistent

 after making a choice for an initial var, it might rule out some choices in
domains of neighbors, so must check that its neighbors are arc-consistent...

e put edges to be checked in a queue

o0

function AC-3(csp) returns false if an inconsistency 1s found and true otherwise ‘

guene +— a quene of arcs, mitially all the arcs in csp initialize queue with all directed edges between nodes

while gueue 1s not empty do
(X, X;)+ POP(queue)

if REVISE(csp, X;, X ;) then Revise() returns true if dom(Xi) was updated
if size of D), = 0 then return false
for each Xy in X, NEIGHBORS - { X;} do every time we delete a value from the domain of Xi,
add (X, X;) to queue put the connected edges in the queue; note the
return frue reverse order: (X,, X)) — list the neighbors first

function REVISE(csp, X;, X ;) returns true iff we revise the domain of X;
revised +— false
for each = in D; do
if no value y in I); allows (z.y) to satisfy the constraint between X; and X; then
delete = from [J);
revised +— true
return revised

suppose the sum of Xi and Xj must be odd, M@%

2/24/2022 and we remove 2 from dom(Xj) {1,2} {1,2} 23

Tracing AC-3

e suppose we start by choosing NSW=R
* all edges connected to NSW must be checked for arc-consistency

e queue: {<Q,NSW>,<SA,NSW>,<V,NSW>}
* pop <Q,NSW>,
e Redom(Q) has no consistent value in dom(NSW)={R} so remove R from dom(Q);
* but G,Bedom(Q) each are consistent with Redom(NSW)
* push neighbors of Q: <NT,Q>,<SA,Q> // note the reverse order

e queue: {<SA,NSW>,<V,NSW>, <NT,Q>,<SA,Q> }

e pop <SA,NSW>, check each choice in dom(SA)={RGB} for a consistent choice in
dom(NSW)={R}; remove R from dom(SA)

* push neighbors of SA: <WA,SA>,<NT,SA>,<V,SA> <NSW,SA>
* queue: {<V,NSW>, <NT,Q>,<SA,Q>, <WA,SA>,<NT,SA>,<V,SA>,<NSW,SA>}

Tasmamia

2/24/2022 24

Maintaining Arc Consistency

 often, the initial graph is arc-consistent, so nothing to do
* after making first choice, run AC-3 till it quiesces

 usually the problem is not solved
e a problem is solved when every node has just 1 value remaining

* if some vars still have multiple values in their domains, we must make more
choices

* if any domain is empty, must back-track to previous choice point and try
another value, followed by calling AC-3 to propagate consequences by
reducing domains

* thus MAC is a wrapper algorithm around AC-3 that iteratively makes
another choice and calls AC-3, till one of these two conditions is met

Maintaining Arc Consistency

MAC (graph G)

if every node has exactly 1 val: return solution (complete assignment)

if some node has no val, return fail (backtrack)

choose a node V that still has multiple values in its domain

for each value a in dom(V) :
G’ = G{V=a} // set node V to the value a
G’’’ = AC3(G’) // make graph arc-consistent based on this choice
result = MAC(G’’) // recurse, try to extend this to a complete solution
if result!=fail: return result

return fail

2/24/2022

26

Complexity of AC-3

what is the time-complexity of AC-3?

function AC-3(csp) returns false if an inconsistency is found and true otherwise

assume there are ¢ edges (num Of quene +— a queue of arcs, initially all the arcs in csp
constraints, c<n?), and d is the max While queue is not empty do
. . . _ (A, Aj) N quele
domaln SIZe: d—maX(l dom(vl) |) if REVISE(esp, X;, X ;) then
. . if size of 1); = 0 then return false
an edge is only put in the queue for each X in X, NEIGHBORS - {X;} do
whenever a value is deleted from the add (X, X;) to queue

return true

domain of a var

function REVISE(csp, X;, X;) returns true iff we revise the domain of X;

so all edges will be processed at most ", iccic falee

cd times in total (calls to Revise()) for each z in D; do | |

. . . if no value y in [); allows (z,y) to satisfy the constraint between X; and X, then
Revise() takes up to d? loop iterations delte 7 from D,
to check for arc-consistency return revised

so AC-3 is O(cd?) = O(n?d°?)

2/24/2022 28

Computational Complexity of CSPs

* Theorem: Solving CSPs is NP-hard.
* one can check whether a given variable assignment satisfies all constraints in
polynomial time
* Theorem: Determining whether CSPs have a solution is NP-complete.
* Proof: Graph Coloring can be reduced to CSP (CSP « graph 3-coloring <
graph cligue <« 3-Sat)
* we have already shown that graph-coloring can be transformed into a CSP in
polynomial size
* thus many discrete problems can be encoded as CSPs

* food for thought: how would you encode Vertex Cover as a CSP?
* does there exists a subset of k nodes that touches every edge?

Computational Complexity of CSPs

* how can CSPs be NP-complete if AC-3 runs in polynomial time, O(n%d3)?
* we might have to call it an exponential number of times from MAC before we
find a complete and consistent solution
* relation to Linear Programming (LP)

* Linear Programs are like CSPs except they use continuous variables instead of
discrete domains, and linear constraints

e example: maximize 5x+3y-z
subject to 8x-7y<12, y+2z<1, 0<x<2, 0<y<10, 0<z52

there exist polynomial time algorithms for LPs (e.g. Simplex Algorithm)
Mixed Integer-Linear Programs (MIPs): some variables are restricted to integers
Integer Programs (IPs) have all discrete values and can encode CSPs: IPs €< CSPs

discrete values makes solving constraints HARDER computationally
* Linear Programmingisin P
* Mixed Integer Programming is in NP (actually NP-hard)

function MIN-CONFLICTS(csp, mar_steps) returns a solution or failure
inputs: csp. a constraint satisfaction problem

. . mar_steps, the number of steps allowed before giving up
Min-Conflicts

current < an mitial complete assignment for csp
. for i = 1 to mazr_steps do
A | go r I t h rr if current 1s a solution for csp then return current
var +— a randomly chosen conflicted variable from csp. VARIABLES
value +— the value v for var that minimizes CONFLICTS(csp, var, v, current)
set var = value in current

turn failure
* Local Search for CSps | "™/

* start by choosing a random variable assignment (which probably violates lots
of constraints)

* pick a variable at random and change its values to something that causes less
conflicts

* repeat until it “plateaus” (number of conflicts stops decreasing)
* note: this is NOT guaranteed to find a complete and consistent solution!
* but it works surprisingly well in practice

* MinConflicts can solve the million-queens problem (on a 10°x10° chess board)
in a few minutes (!)

31

Application of CSP to Computer Vision

* 2D edge-detection - 3D object interpretation
* Waltz Constraint Propagation algorithm

e edges can be ambiguous — which side is part of object, vs background
(or another object behind, i.e. occluded?)

* for any intersection of edge, there are only a finite number of possible
labeling (for realistic 3D images)

* some 3-way intersections can be interpreted as corners

3D Image Interpretation and Waltz Propagation

e from Ch. 12 in Patrick Winston (1984). Artificial Intelligence.
* http://courses.csail.mit.edu/6.034f/ai3/ch12.pdf

* 2D image pre-processing: edge detection
e Gaussian filter + segmentation

* how can you infer the 3D objects from line segments?

* how many object are there in this image?

Sl

_.—'—"‘-_____H__ e T T
-

==

HIE h ~—
* lines are CSP variables with discrete »"\J * |
= |

labels:
* + = cCconvex

e - = concave * junctions acts as constraints;
* ->-=boundary (between foreground converging lines must be labeled
and background; right-hand rule) consistently: &:‘:I

A

Arrow
junctions

L Fork ot
juncﬁ/ow junctions 'antions

o
i USSR
R T~ f +
o e
I N — e
e e
e e
2/24/2022 _ Y
~

i e

AN

+

/\f

* The Waltz Propagation algorithm is a predecessor of modern Constraint Propagation,
which can label these diagrams and extract 3D objects.
* Shadows, cracks, and coincident boundaries are challenges.

2/24/2022 35

