
Constraint Satisfaction
CSCE 420 – Spring 2022

read: Ch. 6

2/24/2022 1

Constraint Satisfaction

• Constraint Satisfaction Problems (CSPs) are a wide class of problems
can be solved with specialized search algorithms

• these types of problems typically required finding a configuration of
the world that satisfies some requirements (constraints) which
restrict the possible solutions

• examples:
• limited resources that can only be used one at a time

• satisfying precedence order constraints (e.g. taking prerequisite classes first)

• assignments (or matching) of agents to tasks of which they are capable

2/24/2022 2

Constraint Satisfaction

• formal framework:
• variables: {Vi}
• domains: dom(Vi)={a1...an} – a finite set of possible values for each variable
• constraints:

• the form of constraints can be different for each problem
• sometimes they are presented as equations
• examples (binary constraints) : U+V=6; U and V must be opposite parity: (U%2)(V%2)
• abstractly, a constraint involving variables can be viewed as a restriction on the allowed

set of tuples in the cross-product of domains:
• constraint Cj ={<x1...xn>|xkdom(Vk)}Pk=1..c dom(Vk)
• dom(U)=dom(V)={0,1,2,3,4,5,6,7,8,9}
• U+V=6: {<0,6>,<6,0>,<1,5>,<5,1>,<4,2>,<2,4>,<3,3>}

{<0,0>,<0,1>,...<0,9>,<1,0>,<1,1>,<1,2>....<9,9>} (100 possible 2-tuples)

• solution: a complete variable assignment that satisfies all constraints
• for some CSPs, there can be multiple solutions

2/24/2022 3

CSP Example: Map coloring

• no two adjacent states (sharing part of an border) can have same color

• (in general, need at most 4 colors – famous Four Color Theorem proved in
1997 with the help of a computer to enumerate all possible cases)

• Australia:
• vars = {WA,NT,SA,Q,NSW,V,T}

• domains: dom(S)={R,G,B}

• constraints: WANT,WASA,NTSA,NTQ...

• solution: {WA=R,NT=G,SA=B,Q=R,NSW=G,V=R,T=G}

• also: {WA=G,NT=R,SA=B,Q=G,NSW=R,V=G,T=R}

• and so on

2/24/2022 4

CSP Example: Cryptarithmetic

• vars: {F,T,W,O,U,R}
• and add carry bits {c1,c2}

• domains: dom(var)={0,1,2...9} (digits)
• domain for c1 and c2 is just {0,1}

• constraints:
• all var bindings must be distinct: FT, FW...
• leading chars can’t be 0: T0, T0
• the math must add up correctly:

• O+O=R - what if there is a carry? introduce c1, dom(c1)={0,1}
• O+O=R-c1*10
• c1+W+W=U-c2*10
• C2+T+T=U-F*10

2/24/2022 5

7 6 5

+ 7 6 5

= 1 5 3 0

T W O

+ T W O

= F O U R

S E N D

+ M O R E

= M O N E Y

c2 c1

a solution:
F=1
T=7
W=6
O=5
U=3
R=0

are there other solutions?

CSP Example: 8-queens

• assume there is one queen in each column

• for each column i, what row is the queen in?

• vars: Q1..Q8

• domains: Qi{1..8}

• constraints:
• no 2 queens can be in same row: QiQj for all ij

• no 2 queens can be in same diagonal: |Qi-Qj||i-j|

• equivalent representation:
• allowed Q1-Q2 pairs: {(1,3),(1,4),(1,5)...(1,8),(2,4)...(2,8),(3,1),(3,5)...(3.8)...}

• allowed Q1-Q3 pairs: {(1,2),(1,4),(1,5)...(1,8),(2,1),(2,3),2,5)...}

2/24/2022 6

• note: Scheduling is a big
field of computer science,
and there are many
variants of scheduling
problems

• often, we want to know
more that just whether
there is a feasible solution:
we want to find a schedule
of minimum length (make-
span)

• this goes beyond CSPs

CSP Example: scheduling

• Job Shop scheduling
• car assembly tasks: install axles (2), install wheels (4), tighten bolts (4), put on

hubcaps(4), inspection (1)
• variables: time steps for each task (integers): TaxleF , TaxleR , TwheelFR ...[1..20] (time limit)
• precedence constraints: TaxleF<TwheelFR<TnutFR< Tinspection

• (we could also model task durations)
• solution: assignment of time slot for each step

• TaxleF=1, TwheelFR=2, TwheelFL=3, TaxleR=4, ...Tinspection=15

• you can do the same thing with undergrad courses:
• CSCE 313 is needed to graduate
• CSCE 312 is a prerequisite for CSCE 313
• only want to take at most 5 courses per semester
• can you figure out a solution (assignment of courses to semesters)

that satisfies all prereqs and will enable you to graduate in 4 yrs?
2/24/2022 7

Constraint Graphs

• nodes=vars (label with domain, possible values)

• edges=constraints
• easy for binary constraints

• label edges with pairs of consistent values from each domain

2/24/2022 9

R,G,B

R,G,B

R,G,B

<RG><GR><RB><RB><BG><GB>

<RG><GR><RB><RB><BG><GB> (NTQ)

Constraint Graphs
• for ternary constraints (3 or more variables), e.g. O+O=R-c1*10

• creates a “hypergraph” with special edges that connect ≥3 nodes (hard to
draw)

• convert to a binary graph:
• create new nodes (green) for each constraint

• label the new nodes with all possible tuples based on cross-product of domains

• connect the new nodes to the constrained variables

• label the edges to enforce consistency of variable assignment with position in tuple

2/24/2022 10

dom(<O,R,C1>) =
{<0,0,0>,<0,1,0>,<1,0,0>...<9,9,1>}

[0,<0,x,y>],[1,<1,x,y>],...,[9,<9,x,y>]

[0,<x,y,0>]...[1,<x,y,1>]

{0,1,2,3,4,5,6,7,8,9}

{0,1}

[0,<x,0,y>],[1,<x,1,y>],...,[9,<x,9,y>]

Back-tracking

• the basic search algorithm for CSPs is very
similar to DFS
• variable assignments represent “states” or “nodes”
• the root node is the empty assignment
• for a selected variable, the branches represent the

choices from the domain
• each level assigns one more variable

• there are two important differences:
• tree depth is uniform (# vars), and all goals occur at

the fringe
• as soon as assigning any variable at an internal node

causes inconsistency with a constraint, prune that
subtree and backtrack immediately

2/24/2022 11

vars: WA,NT,SA,Q,NSW,V,T
states: <c1,c2,c3,c4,c5,c6,c7>
where ci{R,G,B,?}

???????

R?????? G?????? B??????

RRRRRRR RGBRGRG BBBBBBB

how many leave are there?

RR????? RG????? RB?????

Back-tracking

2/24/2022 12

vars: WA,NT,SA,Q,NSW,V,T
state representation:

<c1,c2,c3,c4,c5,c6,c7>
where ci{R,G,B,?}

???????

R?????? G?????? B??????

RR????? RG????? RB?????

violates
WANT,
backtrack RGR???? RGG???? RGB????

violates
WASA,
backtrack

violates
NTSA,
backtrack

RGBR??? RGBG??? RGBB???

RRRRRRR RGBRGRG BBBBBBB

pruned

2/24/2022 13

ignore inferences for now

recursion: bind more variables...

Tracing Backtracking

2/24/2022 14

RGB

RGB

RGB

R

RGB

RGB

RGB

RGB

RGB

R

RGB

RGB

R

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

suppose the order of vars is given as: NSW, WA, T, Q, V, NT, SA

R

R

R

R

R

RGR

R

R

R

RG

this is the first time we violate a,
constraint, but only change R to G

G

RGB

RGB

R

R

R

G

G

RGB

crisis: no values remain for SA;
must back-track to WA (ultimately) and change it to G,
after trying all combinations of V, Q, and T

initially,
domain={RGB}
for all states

Tracing Backtracking

2/24/2022 15

RGB

RGB

RGB

R

RGB

RGB

RGB

RGB

RGB

R

RGB

RGB

RG

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

R

R

R

R

R

R

R

R

RGB

2. try changing G to B, but still no choices
remain that lead to a consistent solution

G

RGB

RGB

R

R

R

G

G

RGB

1. no other choices remain for NT, so back
track to V and try changing G to B; but
NT is still B and SA still has no values

3. try G...
then retry all
subsequent
choices;
then try B and all
subsequent
choices; still
no choices for SA

4. ultimately have to
change this to G, and resume search

RGB

RGB

2/24/2022 16

instead of choosing
next var arbitrarily
(in order given),
or we could use MRV
heuristic to choose
more intelligently...

instead of choosing
next value arbitrarily
(in domain order),
or we could use LCV
heuristic to choose
more intelligently...

CSP Heuristics

• MRV – select var based on Minimum Remaining Values
• in current partial assignment, some variable bindings might preclude choices in

domains for unbound variables based on constrains

• for each unbound variable, rule out values that are inconsistent with curr. assignment

• choose variable with fewest choices
• the best case: if there is a variable with just 1 choice left, choose it!

• forces back-tracking to happen sooner

• LCV – select value for var based on Least Constraining Value
• once a var is chosen, can we try the values in an intelligent order?

• pick value that would remove the fewest (leave the most) choices for other variables

• this will tend to delay back-tracking to happen later

• degree heuristic: if all domains are equal-sized, choose the variable that is
involved in the most constraints (connected to the most other vars) 17

Food for thought:
How much would MRV
help in coloring the
map of USA, compared
to doing BT on 50 states
in alphabetical order?

• Tracing BT with MRV

2/24/2022 18

RGB

RGB

RGB

R

RGB

RGB

RGB

RGB

RGB

R

RGB

RGB

G

RGB

RGB

RGB

RGB

R

R

G

R

R

G

V only has G left

G

R

R

G

G

remove R
from SA,V,Q

Q and V have 2 options;
choose Q=G

remove G
from SA,NT

SA has only B remaining;
choose SA=B
remove B from NT and V

G

B

G

RGB

B

RGB

B

SA only has R left

RGB
G

B

WA only has G left

No back-tracking! notice how choices tend to propagate to neighbors

RGB

RGB RGB RGB
defer to last,
always 3
choices

Forward-checking (FC)

• MRV is very similar to forward-checking
• technically, MRV is passive; in each iteration, it re-calculates how many

consistent values remain in domain of each unbound var

• FC is active: every time you choose a value for a var, you remove inconsistent
values in domains of other vars (like “propagation”)

• almost identical, except... if making a choice at var X causes domain for var Y
to become empty, back-track immediately and try another value for X (don’t
have to wait till Y is selected to see that it’s domain is empty)

2/24/2022 19

Constraint Propagation

• we can generalize the idea of FC

• whenever we make a choice at one node in the constraint graph, propagate
the consequences to neighboring nodes
• remember, edges are determined by constraints

• sometimes, a choice has no effect on domains of neighbors

• sometimes, choice at node X removes some options from domain of
neighbor Y

• sometimes, choice at X removes all but one option at Y
• if so, make this choice at Y, and propagate consequences to its neighbors...

• sometimes, choice at X reduces the domain of neighbor Y to empty, forcing
back-tracking

2/24/2022 20

X Y

{1,2,3} {A,B,C,D}

Constraint Propagation

2/24/2022 21

R

RGB

RGB

R

RGB

GRGB
R

B

(backtrack!)

G

suppose we assign WA=R, and then Q=G,
and we are doing Forward checking...

why shouldn't we be able to
propagate one more step and see that
NT is forced to be B, leaving no
choices for SA? (or vice versa)

RGB

RGB

RGB RGB

AC-3

• formalization of constraint propagation as a graph algorithm

• let (V,E) be the constraint graph (assume all constraints are binary)

• define arc-consistency:
• a graph is arc-consistent if for every variable X, for every value a in dom(X), for every

variable Y it is connected to (by a constraint), there is a value b for Y that is consistent
with X=a

• for all edges (X,Y), adom(X) bdom(Y) s.t. X=a and Y=b are consistent

• ensure the initial graph is arc-consistent

• after making a choice for an initial var, it might rule out some choices in
domains of neighbors, so must check that its neighbors are arc-consistent...

• put edges to be checked in a queue
2/24/2022 22

2/24/2022 23

every time we delete a value from the domain of Xi,
put the connected edges in the queue; note the
reverse order: (Xk , Xi) – list the neighbors first

Revise() returns true if dom(Xi) was updated

Xj Xi

{1,2} {1,2}

Xk

Xk

suppose the sum of Xi and Xj must be odd,
and we remove 2 from dom(Xj)

initialize queue with all directed edges between nodes

Tracing AC-3

• suppose we start by choosing NSW=R
• all edges connected to NSW must be checked for arc-consistency

• queue: {<Q,NSW>,<SA,NSW>,<V,NSW>}
• pop <Q,NSW>,
• Rdom(Q) has no consistent value in dom(NSW)={R} so remove R from dom(Q);
• but G,Bdom(Q) each are consistent with Rdom(NSW)
• push neighbors of Q: <NT,Q>,<SA,Q> // note the reverse order

• queue: {<SA,NSW>,<V,NSW>, <NT,Q>,<SA,Q> }
• pop <SA,NSW>, check each choice in dom(SA)={RGB} for a consistent choice in

dom(NSW)={R}; remove R from dom(SA)
• push neighbors of SA: <WA,SA>,<NT,SA>,<V,SA>,<NSW,SA>

• queue: {<V,NSW>, <NT,Q>,<SA,Q>, <WA,SA>,<NT,SA>,<V,SA>,<NSW,SA>}

2/24/2022 24

Maintaining Arc Consistency

• often, the initial graph is arc-consistent, so nothing to do

• after making first choice, run AC-3 till it quiesces

• usually the problem is not solved
• a problem is solved when every node has just 1 value remaining

• if some vars still have multiple values in their domains, we must make more
choices

• if any domain is empty, must back-track to previous choice point and try
another value, followed by calling AC-3 to propagate consequences by
reducing domains

• thus MAC is a wrapper algorithm around AC-3 that iteratively makes
another choice and calls AC-3, till one of these two conditions is met

2/24/2022 25

Maintaining Arc Consistency

2/24/2022 26

MAC(graph G)

if every node has exactly 1 val: return solution (complete assignment)

if some node has no val, return fail (backtrack)

choose a node V that still has multiple values in its domain

for each value a in dom(V):

G’ = G{V=a} // set node V to the value a

G’’ = AC3(G’) // make graph arc-consistent based on this choice

result = MAC(G’’) // recurse, try to extend this to a complete solution

if result!=fail: return result

return fail

Complexity of AC-3

• what is the time-complexity of AC-3?

• assume there are c edges (num. of
constraints, c≤n2), and d is the max
domain size: d=max(|dom(Vi)|)

• an edge is only put in the queue
whenever a value is deleted from the
domain of a var

• so all edges will be processed at most
cd times in total (calls to Revise())

• Revise() takes up to d2 loop iterations
to check for arc-consistency

• so AC-3 is O(cd3) = O(n2d3)

2/24/2022 28

Computational Complexity of CSPs

• Theorem: Solving CSPs is NP-hard.
• one can check whether a given variable assignment satisfies all constraints in

polynomial time

• Theorem: Determining whether CSPs have a solution is NP-complete.
• Proof: Graph Coloring can be reduced to CSP (CSP graph 3-coloring

graph clique 3-Sat)
• we have already shown that graph-coloring can be transformed into a CSP in

polynomial size

• thus many discrete problems can be encoded as CSPs

• food for thought: how would you encode Vertex Cover as a CSP?
• does there exists a subset of k nodes that touches every edge?

2/24/2022 29

Computational Complexity of CSPs

• how can CSPs be NP-complete if AC-3 runs in polynomial time, O(n2d3)?
• we might have to call it an exponential number of times from MAC before we

find a complete and consistent solution

• relation to Linear Programming (LP)
• Linear Programs are like CSPs except they use continuous variables instead of

discrete domains, and linear constraints
• example:

• there exist polynomial time algorithms for LPs (e.g. Simplex Algorithm)
• Mixed Integer-Linear Programs (MIPs): some variables are restricted to integers
• Integer Programs (IPs) have all discrete values and can encode CSPs: IPs ↔ CSPs
• discrete values makes solving constraints HARDER computationally

• Linear Programming is in P
• Mixed Integer Programming is in NP (actually NP-hard)2/24/2022 30

maximize 5x+3y-z
subject to 8x-7y≤12, y+2z≤1, 0≤x≤2, 0≤y≤10, 0≤z≤2

Min-Conflicts
Algorithm

• Local Search for CSPs
• start by choosing a random variable assignment (which probably violates lots

of constraints)

• pick a variable at random and change its values to something that causes less
conflicts

• repeat until it “plateaus” (number of conflicts stops decreasing)

• note: this is NOT guaranteed to find a complete and consistent solution!

• but it works surprisingly well in practice

• MinConflicts can solve the million-queens problem (on a 106x106 chess board)
in a few minutes (!)

31

. . .

.

.

.

Application of CSP to Computer Vision

• 2D edge-detection → 3D object interpretation

• Waltz Constraint Propagation algorithm

• edges can be ambiguous – which side is part of object, vs background
(or another object behind, i.e. occluded?)

• for any intersection of edge, there are only a finite number of possible
labeling (for realistic 3D images)

• some 3-way intersections can be interpreted as corners

2/24/2022 32

3D Image Interpretation and Waltz Propagation

• from Ch. 12 in Patrick Winston (1984). Artificial Intelligence.
• http://courses.csail.mit.edu/6.034f/ai3/ch12.pdf

• 2D image pre-processing: edge detection
• Gaussian filter + segmentation

• how can you infer the 3D objects from line segments?

• how many object are there in this image?

2/24/2022 33

• lines are CSP variables with discrete
labels:
• + = convex

• - = concave

• ->- = boundary (between foreground
and background; right-hand rule)

2/24/2022 34

• junctions acts as constraints;
converging lines must be labeled
consistently:

2/24/2022 35

+ - + - +

+ + + +
+ +

- - -
+ + - -

+ - + + +
+ - +

+

• The Waltz Propagation algorithm is a predecessor of modern Constraint Propagation,
which can label these diagrams and extract 3D objects.

• Shadows, cracks, and coincident boundaries are challenges.

