
PROLOG

• install either
• GNU Prolog (gprolog): http://www.gprolog.org/

• SWI-Prolog (swipl): https://www.swi-prolog.org/

• these are generally command-line programs, but there are graphical IDEs

• tutorial
• https://people.engr.tamu.edu/ioerger/prolog.txt

Prolog Syntax

• Definite clauses (fact and conjunctive rules)

• facts: predicates with args, followed by a period.
• color(apple,red). meat(hamburger). in(london,england).

college_of(csceDept,engineering).
• predicate names and constants must start with lower case

• rules:
• write them backwards, using ‘:-’ for  (read it as “if”)
• use commas for ‘and’
• drop ; variable must start with upper case
•  x,m,st graduated(x,m)^medicalSchool(m)^passedBoards(x,st)→doctor(x)
• doctor(X) :- graduated(X,M),medicalSchool(M),passedBoards(X,State).

• "X is a doctor IF X graduated from a medical school and passed board exams
in some state"

Using Prolog

• run it from command-line, get interactive prompt
> swipl
Welcome to SWI-Prolog (threaded, 64 bits, version 7.6.4)
1 ?-

• load .pl files
1 ?- [‘examples.pl’]. // shorthand for consult('examples.pl').

• type in queries (see next slide)

• quitting
2 ?- halt.

• if you trigger an error warning, type ‘a’ to abort back to prompt
3 ?- foo(_).
ERROR: Undefined procedure: foo/1
Exception: (8) foo(_8282) ? a
% Execution Aborted
4 ?-

Using Prolog

• make queries
• solutions are variable bindings, not just T/F – this is how Prolog computes

• get additional solutions by typing ‘;’
4 ?- color(X). // equiv. to: "x color(x) ?"

X = red ;

X = green ;

X = blue.

• you can also make queries with multiple goals, with commas:
• lawyer(X),licensedIn(X,alabama).

• X = atticusFinch ...

• teachesAt(Faculty,tamu),degree(Faculty,phd),field(Faculty,math).
• Faculty=stephen_fulling ;

• Faculty=boris_hanin...

Prolog does Back-chaining (with unification)
4 ?- animal(X).

X = fido ;

X = snoopy ;

X = garfield ;

X = tweety ;

X = woodstock ;

X = opus ;

X = hedwig ;

dog(fido).

dog(snoopy).

cat(garfield).

canary(tweety).

canary(woodstock).

penguin(opus).

owl(hedwig).

person(john).

state(rhode_island).

animal(X) :- mammal(X).

animal(X) :- bird(X).

animal(X) :- fish(X).

mammal(X) :- dog(X).

mammal(X) :- cat(X).

bird(X) :- canary(X).

bird(X) :- penguin(X).

bird(X) :- owl(X).

goal-stack:

animal(X)

mammal(X) // try first rule, choice-point

dog(X).

X=fido (solution 1)

X=snoopy

no more solutions, so back-track

cat(X).

X=garfield

bird(X)

canary(X).

X=tweety

penguin(X).

X=opus

Note - you can
ask Prolog to display
tracing info during a
query by typing
'trace.'
Then type the query.
To get out of it, type
'nodebug.'

Prolog files (.pl)

• rules can span across multiple lines

• order matters! (for back-chaining)

• group your facts or rules of same predicate name together
• otherwise, it might give you a warning, which is harmless

• comments are indicated by '%'

• if ';' isn't working right, try this:

set_prolog_flag(tty_control,false).

Colonel West example in Prolog

colonel_west.pl:

% from AIMA

criminal(X) :- american(X), weapon(Y), sells(west,Y,Z), hostile(Z).

weapon(Y) :- missile(Y).

hostile(Z) :- enemy(Z,america).

sells(west,m1,nono).

missile(m1).

enemy(nono,america).

query:

?- criminal(A).

A = west.

• there is a lot of other stuff in Prolog
• numerics: there are predicates for doing math (+, *, log...), and operators for

comparison (<, =, etc)

• negation: (we will talk about this later)

• lists: special notation for using lists as terms, ([Head|Rest])

• 'cut' (!): operator for controlling execution flow

• '_': anonymous variables

• format(): for printing out strings
• this always evaluates to True as an antecedent, but prints out as side-effect of execution.

message(M,Name) :- format("~w from ~w",[M,Name]).

?- message("hello","joe").

hello from joe

Doing Math in Prolog

• suppose you want to write a function for 'doubling' numbers
• write a predicate with 2 args, to be used as 'input' and 'output'

• in the body, use 'is' to bind a variable to a computed value

• this will get unified and returned when the predicate succeeds
double(X,Y) :- Y is 2*X.

?- double(5,A).

A = 10

• other functions are usually available, like sin, exp, sqrt
tan(Theta,Z) :- C is cos(Theta),S is sin(Theta),Z is S/C. % in radians

• can you write a conversion function: radians(Deg,Rad) :- ...?

• comparison operators act like regular antecedents, i.e. tests that are T or F.
• see http://www.gprolog.org/manual/html_node/gprolog030.html
large_frog(X) :- frog(X),length(X,W),W > 10. % large frogs are over 10 cm long

odd(A) :- B is A mod 2,B==1.

even(A) :- B is A mod 2,B\==1. % '\==' is inequality operator in gprolog

• can define mathematical functions in prolog

• typically defined as relations with args for input
AND output

execution trace:
factorial(10,N) calls

factorial(9,N) calls
factorial(8,N) calls

...
factorial(2,N) calls

factorial(1,N) which returns
factorial(1,1).

factorial(2,2).
factorial(3,6).

factorial(4,24)...
factorial(10,3628800).

You can use this idea to calculate square roots by Newton-

Raphson iteration. Write Prolog rules to define sqrt(A,B).

factorial(1,1). % base case

factorial(N,F) :- % rule

N>1,

N1 is N-1,

factorial(N1,F1),

F is N * F1.

?- factorial(10,N).

N = 3628800.

Paradigms for Programming in Prolog (Use Cases)

• 1. Expressing FOL sentences that define concepts
• examples

• criminal(X) :-... weapon(W) :- ... hostile(C) :- ...

• check(Board,Player) :- % in the sense of chess

• loan_at_risk_of_default(L) :-

• invasive_surgery(P) :-

• can_graduate(P) :-

• grandmother(A,B) :- mother(A,C),mother(C,B). % if there exists a C in between

• safe(Row,Col) :- % from wumpus world

• ...

criminal(X) :- american(X),weapon(Y),hostile(Z),sells(X,Y,Z).

sells(west,C,nono) :- owns(nono,C),missile(C).

weapon(D):- missile(D).

hostile(E) :- enemy(E,america).

Paradigms for Programming in Prolog (Use Cases)

• 2. Datalog
• predicates encode facts like tuples in a database

• rules query them like 'joins'

• rules can also define higher concepts, and search for combinations of facts
that satisfy them

• example: define 'outpatient_procedure(X)' based on body parts or equipment
used, and then search database for all outpatient procedures performed

state(al).
state(ak).
state(ca).
state(co).
...
ocean(atlantic).
ocean(pacific).
island(Hi).

eastCoast(S) :- state(S),adjacent(S,atlantic).
westCoast(S) :- state(S),adjacent(S,pacific).
coastal(S) :- state(S),ocean(O),adjacent(S,O).

adjacent(ca,pacific).
adjacent(fl,atlantic).
adjacent(ny,atlantic).
adjacent(tx,atlantic).
adjacent(hi,pacific).
...

Paradigms for Programming in Prolog (Use Cases)

• 3. Calculating mathematical functions
• include multiple args for 'input' values (bound when called) and 'output'

(bound when return)

• double(5,A). => A=10

• factorial(5,F). => F=120

Paradigms for Programming in Prolog (Use Cases)

• 4. Enumerating Combinations of things
• generate all 3-bit strings (assigning values 0/1 to vars A-C)
bits3(A,B,C) :- bit(A),bit(B),bit(C).

bit(0).

bit(1). ?- bits3(A,B,C).

A = 0, B = 0, C = 0 ;

A = 0, B = 0, C = 1 ;

A = 0, B = 1, C = 0 ;

A = 0, B = 1, C = 1 ;

A = 1, B = 0, C = 0 ;

A = 1, B = 0, C = 1 ;

A = 1, B = 1, C = 0 ;

A = 1, B = 1, C = 1.

type semi-colon to
get all 8 solutions

• think about how back-tracking
works by trying A=0, B=0, C=0
first (since bit(A) unifies with
bit(0) hence A is bound to 0...),

• then changes C from 0 to 1 for
second solution, then
backtracks and flips B to 1 and
sets C to 0 again...

Paradigms for Programming in Prolog (Use Cases)

• 5. solving Constraint Satisfaction Problems
• generate possible solution combinatorially; then check to see if they satisfy

constraints (generate-and-test paradigm)

• example: map-coloring (see next slide)

• try implementing cryptarithmetic problems like SEND+MORE=MONEY
• hint: generate all combinations of digit assignments, then check for correctness

• try solving the 5-queens problem
• hint: generate all possible locations for 5 queens, and eliminate any that have attacks

Using Prolog to solve the map-color CSP

color(red). color(green). color(blue).

mapcolor(A,B,C,D,E,F) :-

color(A),color(B),color(C),color(D),color(E),color(F),

A \== D, A \== E, D \== F, E \== F, E \== C, F \== B, B \== C.

?- map_color(A,B,C,D,E,F).

A = red, B = red, C = green, F = green, D = blue, E = blue ;

A = red, B = red, C = blue, F = blue, D = ggreen, E = green ;

...

% apply adjacency

constraints

% generate all

possible colorings

