Limitations of First-Order Logic

* FOL is very expressive, but...consider how to translate
these:
* "most students graduate in 4 years"
* Vxstudent(x) - duration(undergrad(x))<years(4) (all???)
* "only a few students switch majors"

* ds,m1,m2,t1,t2 student(s)*major(s,m1,t1)Amajor(s,m2,t2)
Amlzm2 A t1#£t2 (exists???)

 "all birds can fly, except penguins, stuffed birds, plastic birds,
birds with broken wings..."

* The problem(s) with FOL involve expressing:
 default rules & exceptions
» degrees of truth

e strength of rules




Practical needs for modeling
Jncertainty in KBS

 What happens if you do not know whether an antecedent is
TorF?

* neither T nor F, but 'unknown' (not allowed in Boolean logic)

e FOL treats 'unasserted' facts as "could be either T or F" when
determining entailment, e.g. { AAB—C, A } does not entail C

* what we often want to do is assume the most likely state (B
or -B) by default

* examples:

* what if a doctor has to make a diagnosis before white blood cell
count is available?

e or treat a patient even if history of seizures is unknown (because
they are unconscious)?



 We will show how to:

* make default assumptions that are most likely, and
derive inferences from them

e utilize prior and conditional probabilities

* marginalize over unknowns (which is like weighted
averaging by conditional probability of T or F)



Limitation of First-Order Logic

* FOL is not good at handling exceptions
e universal quantifier means ALL; can't say "most" birds fly
o X bird(x)—>flies(x)

 asserting bird(opus) -flies(opus) in the KB would cause it to
be inconsistent

* FOL is monotonic: if o |= 3, then aA®m |= 3
* adding new facts does not undo conclusions

e we could say: Vx bird(x)r-penguin(x) =>flies(x)

* but we can't enumerate all possible exceptions
* what about a robin with a broken wing?
* what about birds that are made out of plastic?
* what about Big Bird?
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* Uncertainty in reasoning about actions:
* If a gun is loaded and you pull the trigger, the
gun will fire, right?
* ...unless it is a toy gun
e ...unless it is defective
e ...unless it is underwater
e ...unless the barrel is filled with concrete




Possible Solutions

* Rule Strengths
* Semantic Networks
 Default Logic/Non-monotonic logics

* Closed-World Assumption and Negation-as-failure
in PROLOG

* Fuzzy Logic
* Bayesian Probability



Add rule strengths or priorities

* label each rule with a number indicating its
"strength" or "degree of belief"

* stronger rules override conclusions from weaker
rules

penguin(x) 2,4 —flies(x)

bird(x) =, 5 flies(x)
* an old ad-hoc approach (with unclear semantics)
e common approach in early Expert Systems
* "salience" attribute of rules in CLIPS



Semantic Networks

 graphical representation of knowledge
* nodes, slots, edges, "isa" links

* procedural mechanism for answering queries

* follow links to get answers
e different than formal definition of "entailment"”

* inheritance TN
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Semantic Networks

* semantic nets are a nice, graphical way of representing
information

e an advantage is how the handle default info

* but there are different variations on the graphical
symbology and how to express different things (like
negation, universal, existence info)

» difference between thin, thick, and dashed arcs?

* how to express "safeDrivers are drivers who haven't been in
an accident" graphically?

 what does a ]Partlcular Sem Net formalism mean???
(semantics ot edges, etc)

e try to translate it into a logic. (heed more than FOL)



Non-monotonic Logics

* allow retractions later (popular for truth-maintenance
systems)

"birds fly", "penguins are birds that don't fly"
e Vx bird(x)=>fly(x)
e ¥x penguin(x)->bird(x), ¥x penguin(x)—>-fly(x)
» {bird(tweety), bird(opus)} | = fly(opus)
* |later, add that opus is a penguin, change inference
e penguin(opus) |= -fly(opus)

Definition: A logic is monotonic if everything that is
entailed by a set of sentences a is entailed by any
superset of sentences aAf

* opus example is non-monotonic



Default Logic

* example syntax of a default rule:
e bird(x): fly(x) / fly(x) or bird(x) > fly(x)
e analogous to Vx bird(x) = fly(x) , but allows exceptions

* meaning: "if PREMISE is satisfied and it is not inconsistent to
believe CONSEQUENT, then CONSEQUENT"

 {bird(tweety),bird(opus),—fly(opus), bird(x): fly(x) / fly(x) }
| ={fly(tweet),—fly(opus)}
* requires fixed-point semantics (different model theory
and inference procedures)



Circumscription

* an alternative approach to default logic

e add abnormal predicates to rules
* Vx bird(x)A-abnormal,(x)>fly(x)
* Vx penguin(x) *~abnormal,(x) - bird(x)
* Vx penguin(x) *-~abnormal;(x) >-fly(x)
 algorithm: minimize the number of abnormals needed to make
the KB consistent

» {bird(tweety),fly(tweety),bird(opus),penguin(opus), -fly(opus)} is
INCONSISTENT

« {bird(tweety),fly(tweety),bird(opus),penguin(opus), -fly(opus),
abnormal,(opus)} is CONSISTENT



Fuzzy Logic

average tall
[

1.50  1.75 2.00 meters

some expressions involve "degrees" of truth, like "John
is tall"

membership functions
"most students with high SATs have high GPAs"

inference by computing with membership funcs.

* "only days that are warm and not windy are good for playing
frisbee"

e suppose today is 85 and the wind is 15 kts NE
* T(A”B) = min(T(A),T(B))
e T(AvB) = max(T(A),T(B))

popular for control applications (like thermostats...)



Fuzzy Logic

* doing inference in FL involve computing truncation
(min) and intersection with membership functions
* i.e. to evaluate satisfaction of antecedents of a rule
e (temp is warm) and (wind is not-windy) -> playFrisbee
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temp: 30
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Handling Defaults in Prolog

* Vx bird(x)A-penguin(x) ->flies(x)
* bird(tweety)
* bird(woodstock)
* bird(opus) penguin(opus)

initial KB has 4 facts



Handling Defaults in Prolog

* Vx bird(x)A-penguin(x) ->flies(x)

* bird(tweety)
* bird(woodstock)
* bird(opus)

penguin(opus)

e Vx bird(x)A-penguin(x) —>flies(x)

* bird(tweety)
* bird(woodstock)
* bird(opus),

-penguin(tweety)
-penguin(woodstock)
penguin(opus)

initial KB has 4 facts

the problem here is that, if you add
a qualifying condition like -penguin
to arulein FOL, then you have to
explicitly say whether

every individual is a penguin or not
(which is not scalable to large KBs)



Handling Defaults in Prolog

e Vx bird(x)A-penguin(x) =>flies(x)

* bird(tweety)
* bird(woodstock)
* bird(opus)

penguin(opus)

e Vx bird(x)A-penguin(x) —>flies(x)

* bird(tweety)
* bird(woodstock)
* bird(opus),

-penguin(tweety)
—~penguin(woodstock)
penguin(opus)

initial KB has 4 facts

the problem here is that, if you add
a qualifying condition like =penguin
to arulein FOL, then you have to
explicitly say whether

every individual is a penguin or not

* VX bird(x)/\—-penguin(x)’\ ﬂemu(x) 9f|ieS(X\)/hich is not scalable to large KBs)

* bird(tweety)
* bird(woodstock)
* bird(opus),

-penguin(tweety)
-penguin(woodstock)
penguin(opus)

-emu(tweety)
—-emu(woodstock)
-emu(opus)

if we add another condition
like ~emu, then we have
explicitly identify all the non-emus



e other examples:

* a football player is eligible to play in a game, unless they
have not passed a physical, or are on academic probation

e an item is on sale (50% off), unless it is already discounted
* a house can be sold, as long as it does not have a lien on it

fish is a healthy option for protein, unless it has high
mercury levels (shark, swordfish, orange roughy...)

in all these cases, you would have to add a negative
antecedent to a FOL rule, but then have to assert things
like —academic_probation(<player>) for all players, or
—highMg(trout), —highMg(bass), —highMg(catfish)...



ANB ->C ... -Av-BvC

Handling Defaults in Prolog

e Potential problems:
* 1) can't assert negative facts, e.g. —-penguin(tweety)

e 2) can't have negative literals as antecedents in definite
clauses
dog (fido) .
dog (snoopy) .
canary (tweety) .
canary (woodstock) .
penguin (opus) .
animal (X) :- mammal (X) .
animal (X) :- bird(X).

dangerous_animal (X) :- animal (X)  has_sharp teeth (X),h aggressive (X).



Closed-World Assumption (CWA)
in PROLOG

 every fact that is not explicitly asserted (or provable) is
assumed to be false

 can include negated antecedents in rules ("\+" = not)
stench(l1,2). // col,row

stench (2, 3) .

stench(1,4).

wumpus free (X,Y) :- room(X,Y),adjacent(X,Y,P,Q),\+ stench(P,Q).

?- wumpus_ftree(1,3). N ESE T a

e | “Peae

?- wompus_free(2,2) RG] - Je==

Yes (because no stench in 2,1) il TR

555 B

this prolog rule is equivalent to: S e e
vX,y,p,q room(x,y)*adjacent(x,y,p,q)"-stench(p,q) - wumpus_free(x,y) &) e | |
which is not a definite clause (because CNF has 2 positive literals), so LG T

technically, we could not do back-chaining; can't put =stench on goal stack ; ) 5 .



* using CWA for default reasoning

bird(X) :- canary(X). ?- bird(tweety) . Yes
bird(X) :- penquin (X). ?- canFly (tweety) . Yes
canary (tweety) . ?- bird(opus). Yes
penquin (opus) . ?- canFly(opus). No
canFly (X) :- bird(X),\+ penguin (X).

* how is negation-as-failure implemented?
* modify back-chaining to handle negative antecedents

* when trying to prove -P(X) on goal stack, try proving
P(X) and if fail then -=P(X) succeeds

goal stack: canFly(tweety) goal stack: canFly(opus)
X
bird(tweety) -penguin(tweety) bird(opus) -penguin(opus)
sucgeeds X .
fails
canary(tweety) pengu)i(n(tweety) penguin(opus) penguin(opus)

*kEE fqils* F* ***succeeds***




Probability (Ch. 12)

* an alternative route to encoding default rules like "most
birds fly" is to quantify it using probability, p(fly | bird)=0.95

* probabilistic reasoning has had a major impact on Al over
the years

e conferences and journals on UAI (Uncertainty in Al)

* probabilistic models has led to major algorithms like:
Hidden Markov Models (applications to speech, genomics...)
SLAM (simultaneous localization and mapping) for robotics
Bayesian networks/graphical models (as knowledge bases)
Kalman filters, ICA, POMPDs, ...

Reinforcement Learning



Axioms of Probability

 for event e: 0<P(e)<1
* for mutually exclusive events e;..e, : 2. P(e,) =
* negation: P(-e) = 1-P(e)

* Kolmogorov axiom for non-exclusive events:
P(avb)=P(a)+P(b)-P(a,b)



Prior and Conditional Probabilities

* encode knowledge in the form of prior probabilities
and conditional probabilities
* P(x speaks portugese)=0.012
* P(x is from Brazil)=0.007 prior probs
* P(x speaks portugese|xis from Brazil)=0.9
* P(x flies|x is a bird)=0.9 (?)

* inference is done by calculating posterior
probabilities given evidence (using Bayes' Rule)

e compute P(cavity | toothache, flossing, dental history,
recent consumption of candy...)

e compute P(fed will raise interest rate |
unemployment=5%, inflation=0.5%, GDP=2%, recent
geopolitical events...)

conditional probs



Bayes' Rule

* product rule : joint prob P(A,B) = P(A|B)*P(B)
 P(A|B) is read as "probability of A given B"
* in general, P(A,B)#P(A)*P(B) (unless A and B are independent)

* Bayes' Rule: convert between causal and diagnostic

. P[E H) - P[H H = hypothesis (cause, disease)
P{H | E} — |PIL?E':|' } E = evidence (effect, symptoms)

* joint probabilities: P(E,H), priors: P(H)

* conditional probabilities play role of "rules”
* people with a toothache are likely to have a cavity
* p(cavity|toothache) =0.6



Causal vs. diaghostic knowledge

* causal: P(x has a toothache|x has a cavity)=0.9
* diagnostic: P(x has a cavity|x has a toothache)=0.6

* typically it is easier to articulate knowledge in the
causal direction, but we often want to use itin a
diagnostic way to make inferences from
observations



e Joint probability table (JPT)
* you can calculate answer to any question from JPT

* the problem is there are exponential # of entries (2",
where N is the number of binary random variables)

toothache =1 toothache

catch | 1 carchlcarch | 1 carch

cavire | 108 | .012 072 | .008
- caviry | 016 | .064 144 | 576

P(—cavity | toothache) = ?
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e Joint probability table (JPT)

* you can calculate answer to any question from JPT

 the problem is there are exponential # of entries (2N,
where N is the number of binary random variables)

toothache =1 toothache

catch | 1 carchlcarch | 1 carch

cavire | 108 | .012 072 | .008
- caviry | 016 | .064 144 | 576

P(—cavity | toothache) = P(—cavity A toothache) / P(toothache)
= 0.016+0.064
(0.108 + 0.012 + 0.016 + 0.064)
=0.4
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e Joint probability table (JPT)

* you can calculate answer to any question from JPT

 the problem is there are exponential # of entries (2N,
where N is the number of binary random variables)

toothache =1 toothache

catch | 1 carchlcarch | 1 carch

cavire | 108 | .012 072 | .008
= caviry | 016 | .084 144 | 576

P(—cavity | toothache) = P(—cavity A toothache) / P(toothache)
= 0.016+0.064
(0.108 + 0.012 + 0.016 + 0.064)
=0.4
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* marginalization - summing out unknown variables

P(cavity) = P(cavity,toothache,catch)+P(cavity,toothache,-catch)
+P(cavity,-toothache,catch)+P(cavity,-toothache,-catch)

P(caviry) =0.108 +0.012+0.072 +0.008 =0.2

toothache

- toothache

carch | 1 catch) catch| — carch
4_cavirv | .108| .012 072 .00} =0.2
— caviry | 016 | .064 Jd44 | 576

11/26/2023



* normalization

suppose we want to compute a conditional prob, like P(X|Y,Z)
using the product rule, we could calculate it using joint probs:
* P(X]Y,2) = P(X,Y,2)/P(Y,2)
would have to marginalize over X to compute the denominator
* P(Y,2) = P(X,Y,Z)+P(-X)Y,Z)
a simpler way to calculate the conditional prob is to compute 2
joint probabilities, P(X,Y,Z) and P(-X,Y,Z), and normalize them so
they sumup to 1 (X hasto be T or F in context of Y and Z)
this represents the evidence "for" and "against" X, given Y and Z
* P(X]Y,2) = aP(X\Y,Z) ; a=1/(P(X,Y,Z)+P(-X,Y,Z))
since we have to compute probs both for and against, it is
conventional to represent them as a vector:
* <P(X)Y,2),P(-X)Y,2)>
technically, they don't add up to 1, but we can make them sum
to one by dividing by the sum to normalize them
e a<P(X)Y,Z2),P(-X,Y,Z2)> ; a=1/(P(X,Y,Z)+P(=-X)Y,Z))
* P(X]Y,2) = P(XY,2)/(P(X)Y,2)+P(-X)Y,Z))



Conditional Independence

Applying Bayes' Rule in larger domains has a scalability problem
* the size of the JPT grows exponentially with the number of

variables (2" for n variables)

e Solution to reduce complexity:
 employ the Independence Assumption

* Most variables are not strictly independent; most variables are at

least partially correlated (but which is cause and which is effect?).
* However, many variables are conditionally independent.

A and B are conditionally independent given C if:
P(A,B|C) = P(A|C)P(B|C), or equivalently
P(A[B,C) = P(A[C)



Conditional Independence

If | have a cavity, the probability that the probe catches in it doesn't depend
on whether | have a toothache:
(1) P(catchltoothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catch|toothache, —cavity) = P(catch|—cavity)

C'atch is conditionally independent of T'oothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)
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e conditional independence gives us an efficient way to

combine evidence

* consider P(Cav|toothache,catch)

e using Bayes' Rule:
* P(Cav|toothache,catch) oc P(toothache”catch|Cav)*P(Cav)
* this requires a mini JPT for all combinations of evidence

e assuming toothache is conditionally independent of catch

given Cavity:

* P(toothache”catch|Cav) = P(toothache|Cav)*P(catch|Cav)

* therefore...
P(Cav|toothache,catch) oc P(toothache|Cav)*P(catch|Cav)*P(Cav)



Naive Bayes algorithm

e suppose you have a phenomenon that causes several
different effects that could be observed

* Cause — Effect,, Effect,,..., Effect,

* each effect is probabilistic, but assume they are all
conditionally independent of each other

* Then an efficient method for detecting or classifying probable

causes is:
P(Cause, Effect,.... Effect,) = P(Cause) n P(Effect;| Cause)
;

* if you have some unobserved vars (y), could marginalize them
out, but it leads to same Eqn above

P(Cause |e) = o Z P(Cause.e,y)
N

* Example: classifying documents as Bag-of-Words

* P(doctype=sports|words) = P(sports)*(has "score" |sports)*(has "referee" |sports)*...



Bayesian Networks (sec. 13.1 and
the first page of Sec 13.2)

* graphical models where edges represent conditional probabilities

 efficient representation because missing edges are assumed to be
conditionally independent given the nodes in between

e popular for modern Al systems (expert systems)
e important for handling uncertainty

all vars are correlated, O(n?) edges, Naive Bayes: compute probability of 1

requires full JPT with 2" rows

var depending on all the others (n-1)

Bayesian Network: selected edges
represent conditional dependence

burglary

Qomenlary

burglary

Cohncalls>  MaryCalls™

burglary

requires independence assumption

more natural: links follow causality




Bayesian Networks (Sec. 13.1-2)

* prob of each node depends on parents; specify with a mini-JPT

 full JPT has 2°=32 entries - can answer any query from JPT

. lik .
e joint prob of full state <j,m,a-b-e> is product of prob over all nodes

* prob of each node is conditioned on parents

_E_J:L.I'l... . s

P(B)
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0.9 x 0.7 x 0.001 x 0.999 x 0.998
0.00063



e Efficient algorithms for computing inferences or
outcomes conditioned on observations/evidence

* Variable elimination: factor computations into a tree of
products and sums (algebraic calculation from formula)

* rearrange to minimize number of adds and mults...

P(Burglary | JohnCalls = true. MarvCalls =true)

P(-alb,e) P(alb,—e)
05 .94

P(b|jm)=a ZE P(b)P(e)P(a|b,e)P(j|a)P(m|a)
(o i

P(jla)
90

P( jl-a) P(jla)

05 90

P(b|j,m)=a F“J:]Z F(E)Z Pla|b,e)P(j|a)P(m|a)
[ ia

P(mla)
70

P(ml-a)
.01

P(ml-a)
01

P(mla)
70

» Belief propagation: graph algorithm that updates probs
of neighboring nodes when belief of any node changes
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Figure 13.9 A Bayesian network for evaluating car insurance applications.
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Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

11/26/2023
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* Many modern knowledge-based systems are based on
probabilistic inference

 including Bayesian networks, Hidden Markov Models, (HMMs),
Markov Decision Problems (MDPs)

* example: Bayesian networks are used for inferring user goals or
help needs from actions like mouse clicks in an automated software
help system (think 'Clippy')

* Decision Theory combines utilities with probabilities of outcomes to
decide actions to take p

* the challenge is capturing all the numbers needed for the M
prior and conditional probabilities

* objectivists (frequentists) - probabilities represent outcomes of
trials/experiments

» subjectivists - probabilities are degrees of belief

 probability and statistics is at the core of many Machine
Learning algorithms



