
Propositional Logic
CSCE 420 – Fall 2023

read: Ch. 7

10/24/2023 1

Knowledge-based programming

• As Feigenbaum said, one route to designing intelligent systems is to
give them knowledge (expertise) to solve problems

• We need a general language for encoding knowledge.

• English is not sufficient (too ambiguous)

• The history of AI is tied to the search for higher-level languages that
are “more expressive”.
• AI drove advances in functional, object-oriented, and logic programming

• LISP, Prolog, Smalltalk...

10/24/2023 2

Logic

• Logic has become the standard for expressing knowledge in KBS

• Logic has advantages over procedural languages
• context-independence: easier to judge correctness of a rule that 1 line buried in code

(hence, easier to debug and maintain)
• logic has a well-defined semantics (not subject to order, global variables, side-effects...)
• rules can be used in many different ways (lots of different inferences)

• declarative vs. procedural programming: say “what”, not “how”
• procedural languages require you to say HOW to do something
• declarative languages let you describe the world, and the system can autonomously

figure out the right thing to do as a consequence of the situation

• KBS: Knowledge-Based Systems
• programming by writing “rule bases”

10/24/2023 3

Example: Driving

• think about all the knowledge and inference you use while driving...
• traffic laws (can you cross a yellow line?)

• mechanics of vehicle operation

• right of away, turn signal, yellow lights...

• safety (speed, following distance , changing lanes, pedestrians)

• slippery roads, fire trucks, school buses...

• other drivers: do they see you? can you infer their intentions? are they
displaying erratic behavior?

• it is better to put this all in a giant KB, rather than trying to program
an enormous if-then-else to handle all possible situations

10/24/2023 4

Inference Algorithms

• Of course, we need a way to extract conclusions and make decisions
from a rule base

• synonyms: "inference", "automated deduction", "theorem-proving"

• Inference algorithms are a foundation for Expert Systems

• expert systems “shells” are the architecture/environment in which you:
1. load your rule base

2. describe current situation

3. ask questions...or what to do...or whether something is a consequence...

4. get an explanation of the information used to get the answer (i.e. “proof”)

10/24/2023 5

Defining a “logic”

• There are actually many types of logics
• propositional/Boolean logic
• First-order logic (FOL), higher-order logics...
• modal logics, epistemic logics (beliefs), temporal logics (used for program analysis)...
• fuzzy logics, probabilistic logics...
• non-sentential logics (like maps)

• These logics differ in expressiveness and computational complexity
• First-order logic (FOL) is the lingua franca for most KR in AI

• Each of these logic has its own:
1. Syntax – the rules defining what sentences are legal expressions
2. Semantics – defines “truth” of sentences, and relationship of meaning between

sentences
3. Proof theory – a method for answering queries

10/24/2023 6

Syntax of Propositional Logic

• well-defined sentences

• atomic sentences = propositional symbols (A, P, battery_low,
lights_on_room124)

• complex sentences: generated using operators
• binary opers: and (^), or (v), xor (), implication (→), biconditional (↔)

• unary oper: negation (¬)

• parentheses

10/24/2023 7

Syntax

• BNF grammar (Backus-Naur Form, production rules)
• atomic ::= <prop> // tokens like “P”, “gas_tank_filled”...

• binop ::= ^ | v | →|↔|

• complex ::= <atomic> | ¬ complex | <complex> <binop> <complex> | (<complex>)

• examples:
• legal: P, PvQ, ¬¬X^¬¬Y, ¬(¬X^(¬(¬Y)), Light ↔ Dark

• not syntactically legal: "Win vv Lose", "(→Draw)"

• these can be used to derive the parse tree(s) for an expression
• (I’m not going to give the algorithm for parsing this grammar here...)

• a^b→pv¬q

10/24/2023

→

^ v

a b p ¬

q

Syntax

• of course, there are other possible parse trees...
• a^b→pv¬q

• the grammar is ambiguous

• one can always disambiguate an expression by adding parentheses
• (a^b)→(pv¬q) vs a^(b→pv¬q) vs a^(b→p)v¬q

10/24/2023 9

→

^ v

a b p ¬

q

^

a →

b v

p ¬

q

v

^ ¬

a → q

a b

Syntax

• ...or one can rely on rules of precedence among operators
• ¬ (highest)
• ^
• v,
• →,↔ (lowest)

• There can still be parsing ambiguity: AvBvC = (AvB)vC or Av(BvC) ?

• each operator is left-associative: (AvB)vC

• these syntax rules are similar to mathematics:
• all opers are left associative, except ^ (which is right associative)
• 1+2*3/4/5+6^7^2 = (1+(((2*3)/4)/5))+(6^(7^2))
• 1-2+3 = ? (2 or -4?)

10/24/2023 10

- (unary minus) (highest)
^ (exponentiation)
*, /
+, -
=,<,> (lowest)

Example: Map-coloring

• A propositional encoding of the Australia map-color problem could
look like this:
• propositional symbols: WAR (Western Australia is Red), WAG, WAB, NTR, NTG,

NTB (Northern Territories is Blue), QR, QG, QB... each can be True or False
• KB:

• WAR v WAG v WAB, NTR v NTG v NTB, QR v QG v QB... // each state is 1 of 3 colors
• WAR→¬WAG^¬WAB, WAG→¬WAR^¬WAB, WAB→¬WAR^¬WAG,... // at most 1 color
• // adjacent states must be different colors
• WAR →¬NTR^¬SAR, WAG→¬NTG^¬SAG, WAB→¬NTB^¬SAB...
• NTR →¬WAR^¬SAR^¬QR...

• note: KB WAR (does not entail)
• however, KB╞ WAB→VB, and KB {WAB}╞ VB

10/24/2023 11

Example: Wumpus World

• the goal of the agent is to find the gold without falling in
a pit or getting eaten by the wumpus (there is only 1,
and it can’t move)

• the agent does not know a priori where the pits or
wumpus are located

• the agent can only sense breezes, stenches, and glitter

• a breeze is felt in rooms adjacent to pits, and a stench
can be sensed in rooms adjacent to the wumpus

• a room is safe to explore if it is known not have the pit or
wumpus

10/24/2023 12

• after visiting rooms (1,1), (1,2), and (2,1), the agent should be able to
infer that room (2,2) is safe

• KB{S12,B21}╞ safe22

KB = { 1. W11->S21^S12
2. W12->S22^S11^S13
3. W13->S23^S12^S14
4. W14->S24^S13
5. W21->S11^S31^S22
6. W22->S12^S32^S21^S23
7. W23->S13^S33^S22^S24
8. W24->S14^S34^S23
9. W31->S21^S41^S32
10. W32->S22^S42^S31^S33
11. W33->S23^S43^S32^S34
12. W34->S24^S44^S33
13. W41->S31^S42
14. W42->S32^S41^S43
15. W43->S33^S42^S44
16. W44->S34^S43

17. P11->B21^B12
18. P12->B22^B11^B13
19. P13->B23^B12^B14
20. P14->B24^B13
21. P21->B11^B31^B22
22. P22->B12^B32^B21^B23
23. P23->B13^B33^B22^B24
24. P24->B14^B34^B23
25. P31->B21^B41^B32
26. P32->B22^B42^B31^B33
27. P33->B23^B43^B32^B34
28. P34->B24^B44^B33
29. P41->B31^B42
30. P42->B32^B41^B43
31. P43->B33^B42^B44
32. P44->B34^B43

33. -W11^-P11->safe11
34. -W12^-P12->safe12
35. -W13^-P13->safe13
36. -W14^-P14->safe14
37. -W21^-P21->safe21
38. -W22^-P22->safe22
39. -W23^-P23->safe23
40. -W24^-P24->safe24
41. -W31^-P31->safe31
42. -W32^-P32->safe32
43. -W33^-P33->safe33
44. -W34^-P34->safe34
45. -W41^-P41->safe41
46. -W42^-P42->safe42
47. -W43^-P43->safe43
48. -W44^-P44->safe44 }

We can use propositions like:
• W44=“the wumpus is in room 4,4”
• B22 = “there is a breeze in 2,2”
• S13 = “there is a stench in 1,3”
• pit32 = “there is a pit in room 3,2”
• safe33 = “room 3,3 is safe”

Semantics

• semantics refers to “meaning” of sentences, and relationships among them
• this is defined using Model Theory
• models describe states of the world, and are used to give “interpretations” of

sentences

• Truth-functional semantics
• each sentence is assumed to be either True or False in the world
• (Law of the Excluded Middle) – there is no in-between
• propositions correspond to “facts” about the state of the world, which can only be

True or False
• good example: plutoCold, mercuryCold (in our universe, the first is T, the second is F)
• bad example: surface_temp_of_pluto (value can only be T or F)

• in Propositional Logic, models are truth assignments over all propositional
symbols (that appear in the KB)
• {A=F, B=F, C=T ... P=T, Q=F, R=F}
• {mercuryCold=F, mercuryWarm=F, mercuryHot=T...earthCold=F, earthWarm=T,

earthHot=F... plutoCold=T, plutoWarm=F, plutoHot=F}
10/24/2023 15

also, uncertainty will
be accounted for via
multiple models...

Semantics

• Compositionality
• a model defines the truth value for all atomic sentences

• given a model, the truth value of ANY sentence can be computed by
combining truth values of sub-sentences using truth tables

• these are pretty straightforward in PropLog (except for →)

10/24/2023 16

A B ¬A AvB A^B AB A→B A↔B

T T F T T F T T

T F F T F T F F

F T T T F T T F

F F T F F F T T

in a model M={p=F , q=F , r=T}:

¬pv(q^r) (¬F)v(F^T) = TvF = T

p→(q→p) F→(F→F) = F→T = T

p^¬p F^(¬F) = F^T = F
P→Q: if the LHS (antecedents) are F, it doesn’t matter
what the RHS (consequent) is; only T->F is disallowed here's how you figure these out...

Semantics

• We say a model M satisfies a sentence s iff the interpretation (or
truth value) of s in M is True

• a sentence s is satisfiable if there is at least 1 model that satisfies it

• a sentence s is unsatisfiable if no model that satisfies it

• a sentence s is a tautology (or valid) if it is satisfied by ALL models

• examples:
• satisfiable: X, XvYvZ, (X^¬Y)→Z (what models make each of these True?)

• unsatisfiable: X^¬X, PP, ¬Q↔Q (convince yourself there are no models)

• tautologies: Av¬A, P→(Q→P) (will be True in any model)

10/24/2023 17

Semantics

• semantic relationship between 2 sentences (or sets of sentences)
• examples: {P} and {¬P} can’t both be True (i.e. satisfied by same models)
• if {PvQ, P→R, Q→S, ¬P} is True, then {S} must be True

• two sentences are semantically equivalent if they are satisfied by
exactly the same models: a b iff M(a)=M(b)
• example: A→B AVB

• note: a set of sentences is True (or satisfied in a model) iff each
sentence is True (equivalent to an implicit conjunction)

• Entailment
• a╞ b iff all models that satisfy a also satisfy b
• captures the notion of “logical consequence”

10/24/2023 18

{PvQ ^ P→R ^ Q→S ^ ¬P}

Semantics

• show that {PvQ, Q→R, ¬P}╞ {R}
• models that satisfy the premises (as a conjunction): {M3}
• models the satisfy the consequents ({R}): {M1,M3,M5,M7}
• {M3} {M1,M3,M5,M7}

10/24/2023 19

P Q R PvQ Q→R ¬P {PvQ, Q→R, ¬P}

M0 0 0 0 0 1 1 0

M1 0 0 1 0 1 1 0

M2 0 1 0 1 0 1 0

M3 0 1 1 1 1 1 1

M4 1 0 0 1 1 0 0

M5 1 0 1 1 1 0 0

M6 1 1 0 1 0 0 0

M7 1 1 1 1 1 0 0

premises premises as
conjunction

Semantics

• Deduction Theorem
• note that P → Q is valid looks like P╞ Q, and they seem similar

• but they are different:
• P→Q is a sentence (defined by syntax)

• P╞ Q means P entails Q (defined by semantics)

• the Deduction Theorem shows that they are related:
• a╞ b iff a → b is valid

• (proof =>) see Venn diagram

• (proof <=) if a → b is valid, then all models satisfy it, so all models either make a false or
b true; hence those model that satisfy a also satisfy b; hence a╞ b

10/24/2023 20

models
satisfying a

models
satisfying B

in all models,
either a is false or
b is true,
hence a → b is
valid

a model M(i):
{A=F, B=T, C=F
D=T, E=F...}

.
.

.

Inference

• is there a procedure to determine if a╞ b? (or KB╞ query)

• model-checking (truth tables)
• of course, we can just enumerate all models and check if those satisfy a also

satisfy b

• how many models are there? 2n (for n propositional symbols)

• it is finite, so the procedure will halt and return yes (entailed) or no

10/24/2023 21

Inference

• model-checking is inefficient
• we need a more practical procedure to determine whether a╞ b

• Proof Procedures: methods to determine whether a╞ b purely by
syntactic manipulation
• aka “Inference Methods”, “Theorem-Proving”, “Automated Deduction”...

• Propositional Rules of Inference (ROI)
• rules for generating new sentences from old sentences
• a sound ROI only generates new sentences that are entailed
• in this context, ‘Ⱶ’ means ‘derives’ by a ROI, i.e. ‘a Ⱶ b’ means ‘b is derived from a’
• hence a rule R is sound iff for all sentences a,b, if a Ⱶ b, then a╞ b

• an ROI a Ⱶ b is truth preserving if the derived sentence b is semantically
equivalent to a (satisfied by exactly the same models)

10/24/2023 22

Rules of Inference

• example: Modus Ponens
• from P and P→Q, we can derive Q

• {P,P→Q} Ⱶ Q

• is MP sound?

• all the models that satisfy the premises (conjunction of P and P→Q) also
satisfy the derived sentence Q, so Q is entailed, so MP is sound

10/24/2023 23

P Q P→Q premises (conj) derived (Q)

0 0 1 0 0

0 1 1 0 1

1 0 0 0 0

1 1 1 1 1

Rules of Inference

10/24/2023 24

from this... derive this... comments

AndElimination (AE) A^B A

AndIntroduction (AI) A, B A^B

OrIntroduction A, B AvB no such things as OrElimination!

Commutativity A^B B^A truth-preserving

Distributivity Av(B^C)
A^(BvC)

(AvB)^(AvC)
(A^B)v(A^C)

DoubleNegationElim (DN) ¬¬A A

DeMorgan’s Laws (DM) ¬(AvB)
¬(A^B)

¬A^¬B
¬Av¬B

flip the operator

ImplicationElimination (IE) A→B ¬AvB truth-preserving

Modus Ponens (MP) A, A→B B pattern-matching, if LHS is matched, can derive RHS

Modus Tolens A→B, ¬B ¬A

contraposition A→B ¬B→¬A

Resolution AvB, ¬AvC BvC requires 2 clauses with opposite literals

Can you prove that each of
these is sound?
Make truth tables.
AE and MP are easy.
Resolution is worth doing...

These are inference ‘schemas’.
A, B, and C are patterns
representing sub-sentences.

Natural Deduction

• Proof procedure to show that a╞ b

• start by listing sentences in premise a

• derive additional sentences using sound ROI

• must be a finite sequence of steps ending in b

• number your sentences

• label each new sentence with ROI and sentences it was derived from

10/24/2023 25

a1

..

an

an+1 (from 3 using AE)
an+2 (from 5 and 7 using MP)
...

b

premises

derived
sentences

Example of Nat Ded (1)

1. P→Q

2. L^M→P

3. B^L→M

4. A^P→L

5. A^B→L

6. A

7. B

10/24/2023 26

8. A^B [AndIntr, 6,7]

9. L [MP, 5,8]

10. B^L [AndIntr, 7,9]

11. M [MP, 10,3]

12. L^M [AndIntr, 9,11]

13. P [MP, 12,2]

14. ¬PvQ [ImplElim, 1]

15. Q [Reso, 13,14]

from this...

...show that Q is entailed

premises derivations

Natural Deduction

• Why does Natural Deduction work?
• it is not enough to show that KB{an+1,... an+m}╞ Q (for last step, assuming sound ROI)
• we have to show that if Q is derived after a sequence of steps an+1,... an+m using sound

ROI, then KB╞ Q (i.e. the original KB entails Q)
• whenever we derive a new sentence by a sound ROI and add it to the premises, the set

of entailments stays the same
• suppose KB╞ Q, and M(KB)M(Q)
• so if KB Ⱶ an+1 (an intermediate sentence in proving Q) by a sound ROI, then KB╞ an+1,

so M(KB)M(an+1), M(KB an+1)=M(KB)M(an+1)=M(KB), so KB{an+1}╞ Q
• this property is known as “monotonicity” (i.e. adding entailed intermediate conclusions

doesn’t affect what else is entailed)
• similarly, if KB an+1 Ⱶ an+2, then KB{an+1}╞ an+2 and M(KB{an+1, an+2})M(Q),

so KB{an+1, an+2}╞ Q
• if proof has m+1 steps KB, an+1, an+m,Q, then KB{an+1, an+m}╞ Q (by induction)

10/24/2023 27

KB = { 1. W11->S21^S12
2. W12->S22^S11^S13
3. W13->S23^S12^S14
4. W14->S24^S13
5. W21->S11^S31^S22
6. W22->S12^S32^S21^S23
7. W23->S13^S33^S22^S24
8. W24->S14^S34^S23
9. W31->S21^S41^S32
10. W32->S22^S42^S31^S33
11. W33->S23^S43^S32^S34
12. W34->S24^S44^S33
13. W41->S31^S42
14. W42->S32^S41^S43
15. W43->S33^S42^S44
16. W44->S34^S43

17. P11->B21^B12
18. P12->B22^B11^B13
19. P13->B23^B12^B14
20. P14->B24^B13
21. P21->B11^B31^B22
22. P22->B12^B32^B21^B23
23. P23->B13^B33^B22^B24
24. P24->B14^B34^B23
25. P31->B21^B41^B32
26. P32->B22^B42^B31^B33
27. P33->B23^B43^B32^B34
28. P34->B24^B44^B33
29. P41->B31^B42
30. P42->B32^B41^B43
31. P43->B33^B42^B44
32. P44->B34^B43

33. -W11^-P11->safe11
34. -W12^-P12->safe12
35. -W13^-P13->safe13
36. -W14^-P14->safe14
37. -W21^-P21->safe21
38. -W22^-P22->safe22
39. -W23^-P23->safe23
40. -W24^-P24->safe24
41. -W31^-P31->safe31
42. -W32^-P32->safe32
43. -W33^-P33->safe33
44. -W34^-P34->safe34
45. -W41^-P41->safe41
46. -W42^-P42->safe42
47. -W43^-P43->safe43
48. -W44^-P44->safe44 }

Example of Nat Ded (2): Wumpus World

after visiting rooms (1,1), (1,2), and (2,1), the agent should be able to infer that room (2,2) is safe

Natural Deduction Proof of KB^Facts |= safe22:

Facts = { 49. -B11, 50. -S11, 51. -B12, 52. S12, 53. B21, 54. -S21 }

55. -W22v(S12^S32^S21^S23) [Impl Elim, 6]
56. (-W22vS12)^ (-W22vS32))^ (-W22vS21)^ (-W22vS23) [Distrib, 55]
57. (-W22vS21) [And Elim, 56]
58. S21v-W22 [Commut, 57]
59. -S21->-W22 [Impl Intro, 58]
60. -W22 [MP, 59, 54]
61. -P22v(B12^B32^B21^B23) [Impl Elim, 22]
62. (-P22vB12)^ (-P22vB32))^ (-P22vB21)^ (-P22vB23) [Distrib, 61]
63. -P22vB12 [And Elim, 62]
64. B12v-P22 [Commut, 63]
65. -B12->-P22 [Impl Intro, 64]
66. -P22 [MP, 65, 51]
67. -W22^-P22 [And Intro, 60, 66]
68. safe22 [MP, 38, 67]

Natural Deduction

• limitations
• it can be difficult (but not impossible) to find the right sequence of

derivations automatically
• you could use a Search and try applying all ROI to all combinations of sentences till you

generate the query (i.e. as the goal)

• in theory, is Nat Ded a complete proof procedure???
• can every query that is entailed by a KB be proved in a finite number of steps?

• one can show that certain combinations of ROI are sufficient to guarantee
that a proof always exists for entailed sentences (in Propositional Logic)

10/24/2023 30

Forward Chaining

• let’s explore more practical theorem-proving methods

• Forward-Chaining (FC) is super-easy: you only need Modus Ponens!

• however, FC only works on definite-clause KBs
• a clause is a disjunction of literals, e.g. A v ¬B v C v ¬D
• a Horn clause is a clause with at most one positive literal, e.g. ¬ A v B v ¬C
• a definite clause is a clause with exactly one positive literal

• where do definite clauses come from? facts and conjunctive rules
• facts: A, B (note – negations are not allowed!)
• rules with conjunct. of pos. lits as antecedents and 1 consequent

A ^ B ^ C → D (conjunctive rule)
¬A v ¬B v ¬C v D (definite clause, by Implication Elimination)

10/24/2023 31

10/24/2023 32

• the key idea in FC is to use a queue (sometimes called an ‘agenda’) to keep track of facts
that have been inferred (initially, just the given facts)

• with each new fact inferred, we check which rules can be triggered (i.e. when all their
antecedents have been satisfied), and then we put the consequents in the queue

• there are ways to make this efficient for large KBs by indexing on which rules have which
propositions as antecedents (to quickly figure out which rules are triggered by new facts)

in this context,
‘clause’ means
‘rule’ (i.e. definite
clause)

initial facts

Example of Forward Chaining

• agenda:
• 1. A, B

• 2. A, B, L // rule 5 is triggered

• 3. A, B, L, M // rule 3

• 4. A, B, L, M, P // rule 2

• 5. A, B, L, M, P, Q // rule 1 fires

• stop since query was generated

10/24/2023 33

note, in this illustration,
I am not popping things out
of the queue

count

1. P→Q 1

2. L^M→P 2

3. B^L→M 2

4. A^P→L 2

5. A^B→L 2

6. A 0

7. B 0

Forward Chaining

• so using FC requires the KB to be formulated as definite clauses (i.e. a
rule base)

• in theory, this is not always possible
• for example, if {¬P} or {PvQ} or {P^Q→RvS} is in the KB, it can’t be

transformed into definite clauses

• these examples represent uncertainty, which isn’t permitted

• hence this requirement limits expressiveness (not full Propositional Logic)

• in practice, it is often possible to express KBs for real problems in
definite clause form, with judicious choice of propositions

10/24/2023 34

1. C11->PF21
2. C11->PF12
3. C12->PF22
4. C12->PF11
5. C12->PF13
6. C13->PF23
7. C13->PF12
8. C13->PF14
9. C14->PF24
10. C14->PF13
11. C21->PF11
12. C21->PF31
13. C21->PF22
14. C22->PF12
15. C22->PF32
16. C22->PF21
17. C22->PF23
18. C23->PF13
19. C23->PF33
20. C23->PF22
21. C23->PF24
22. C24->PF14
23. C24->PF34
24. C24->PF23

25. C31->PF21
26. C31->PF41
27. C31->PF32
28. C32->PF22
29. C32->PF42
30. C32->PF31
31. C32->PF33
32. C33->PF23
33. C33->PF43
34. C33->PF32
35. C33->PF34
36. C34->PF24
37. C34->PF44
38. C34->PF33
39. C41->PF31
40. C41->PF42
41. C42->PF32
42. C42->PF41
43. C42->PF43
44. C43->PF33
45. C43->PF42
46. C43->PF44
47. C44->PF34
48. C44->PF43

49. US11->WF21
50. US11->WF12
51. US12->WF22
52. US12->WF11
53. US12->WF13
54. US13->WF23
55. US13->WF12
56. US13->WF14
57. US14->WF24
58. US14->WF13
59. US21->WF11
60. US21->WF31
61. US21->WF22
62. US22->WF12
63. US22->WF32
64. US22->WF21
65. US22->WF23
66. US23->WF13
67. US23->WF33
68. US23->WF22
69. US23->WF24
70. US24->WF14
71. US24->WF34
72. US24->WF23

73. US31->WF21
74. US31->WF41
75. US31->WF32
76. US32->WF22
77. US32->WF42
78. US32->WF31
79. US32->WF33
80. US33->WF23
81. US33->WF43
82. US33->WF32
83. US33->WF34
84. US34->WF24
85. US34->WF44
86. US34->WF33
87. US41->WF31
88. US41->WF42
89. US42->WF32
90. US42->WF41
91. US42->WF43
92. US43->WF33
93. US43->WF42
94. US43->WF44
95. US44->WF34
96. US44->WF43

97. WF11^PF11->safe11
98. WF12^PF12->safe12
99. WF13^PF13->safe13
100. WF14^PF14->safe14
101. WF21^PF21->safe21
102. WF22^PF22->safe22
103. WF23^PF23->safe23
104. WF24^PF24->safe24
105. WF31^PF31->safe31
106. WF32^PF32->safe32
107. WF33^PF33->safe33
108. WF34^PF34->safe34
109. WF41^PF41->safe41
110. WF42^PF42->safe42
111. WF43^PF43->safe43
112. WF44^PF44->safe44

To show that safe22 in
the Wumpus World,
we have to re-write
the KB as definite
clauses, which can be
achieved by using new
propositions...

PropSyms:
• WF = wumpus-free
• PF = pit-free
• C = calm
• US = unstenchy

note that we chose
new propositional
symbols representing
information in a
negative way

FC proof of KB^Facts╞ safe22

Facts:
113. C11 // room 1,1 is calm (no breeze)
114. US11 // room 1,1 is unstenchy
115. C12 // room 1,2 is calm
116. US21 // room 2,1 is unstenchy

inferred agenda

C11 US11 C12 US21 // initialize by pushing facts

C11 US11 C12 US21 PF12 PF21 // C11 causes 2 new facts to be pushed onto agenda from rules 1&2

US11 C12 US21 PF12 PF21 WF12 WF21

C12 US21 PF12 PF21 WF12 WF21 PF11 PF22 PF13 // C12 causes rules 3-5 to fire

US21 PF12 PF21 WF12 WF21 PF11 PF22 PF13 WF11 WF31 WF22 // rules 59-61

PF12 PF21 WF12
WF21 PF11 PF22
PF13

// these just pop off without pushing anything new

WF11 WF31 WF22 safe11 // since WF11 and PF11 have been inferred, rule 97 fires

WF31 WF22 safe11

WF22 safe11 safe22 // since WF22 and PF22 have been inferred, rule 102 fires

safe11 safe22

safe22 // found what we were looking for, showing the query is entailed; also, agenda becomes empty

Back-Chaining

• one of the problems with FC is that it can waste time generating a lot
of unnecessary inferences that are irrelevant to the query

• back-chaining (BC) also works on definite-clause KBs, but it works
backwards from the goal to find supporting facts

• hence BC is more efficient because it is goal-directed

• BC is in fact the basis of PROLOG (as we will see later when we cover
FOL)

10/24/2023 37

Back-Chaining

• BC uses a goal stack (initialized by pushing the query)

• with each iteration:
• pop the goal on the top of the stack
• check to see if it is a known fact
• otherwise, find a rule that has the goal as consequent, and push the

antecedents onto the stack as subgoals
• the algorithm terminates when the stack becomes empty (success, showing

the query is entailed, because it has been reduced to known facts)

• important: back-tracking
• if some subgoals cannot be proved, BC must back-track and try another rule

to prove goal

10/24/2023 38

Example of Backward Chaining
• Q // initialize with query
• P // pop Q, replace with antecedent of rule 1
• L, M // replace P with ants. of rule 2
• A, Z, M // pop L, push A,P from rule 4
• Z, M // pop A (known fact)
• // since Z is not provable, back-track to other rule for L
• A, B, M
• B, M // pop A (fact)
• M // pop B (fact)
• B, L // pop M, try rule 3, push B,L
• L // pop B (fact)
• A,Z // pop L, try rule 4
• Z // pop A (fact)
• // since Z is not provable, back-track to other rule for L
• A, B
• B // pop A (fact)
• // pop B (fact); stack becomes empty; return success!

39

1. P→Q

2. L^M→P

3. B^L→M

4. A^Z→L

5. A^B→L

6. A

7. B

(note: This example is modified from Fig 7.16 in the book to simplify for illustration purposes. The P in A^P→L
was replaced with Z, to avoid the complication of checking for repeated subgoals, which would succeed
implicitly, representing a loop. In this context, however, that technical detail is an unnecessary distraction.)

visualizing the
proof tree as an
“and-or” graph

Q

P

L M

A B

Z

Back-chaining using Propositional Logic
(Recursive stack-based version)

Backchain(KB,query)

stack.push(query) // initialize

return BC(KB,stack)

BC(KB,stack)

if stack empty, return True

subgoal stack.pop()

if subgoalKB, return BC(KB,stack) // a known fact

for each rule a1..an→subgoal in KB: // choice point for back-tracking

stack.push(a1..an)

result BC(KB,stack)

if result=True, return True

else remove a1..an from stack

return False

BC proof of KB^Facts |= safe22
(using the definite-clause KB from slide 34)

Facts:
113. C11
114. US11
115. C12
116. US21

goal stack

safe22 push query

WF22 PF22 rule102

US12 PF22 try rule 51 for WF22

US21 PF22 fail, back-track; try rule 61 for WF22

PF22 succeed (116); US21 pops off

C21 try rule 21 for PF22

C12 fail; back-track; try rule 61

 C12 is a known fact (115); pop off
stack becomes empty; proof succeeds

Resolution Refutation

• FC and BC are effective proof procedures, but they are limited
because the are not complete (not all KBs are in definite-clause form)

• Is there a complete proof procedure that is simpler than Nat. Ded.?

• Resolution Refutation proofs – you can prove any entailed sentence,
and all you need is one ROI: resolution

• prerequisite: you have to convert your KB into CNF (Conjunctive-
Normal Form, i.e. clauses), which you can always do

10/24/2023 42

simple example: A^B^¬C→D^E can be transformed
into 2 clauses (not necessarily Horn) that are equivalent:
(¬A v ¬B v C v D) , (¬A v ¬B v C v E)

A v B v... , ¬A v C v...
B v... v C v...

Conversion to CNF

• procedure for converting any propositional sentence to CNF (p. 227)
1. eliminate implications (and biconditionals)

2. push negations inward (using DoubleNegElim and DeMorgan’s)

3. distribute Or’s over And’s (till expression is 2-level Boolean CNF)

4. break final conjunction into multiple clauses

• example: A^B^¬C→D^E
1. ¬(A^B^¬C) v D^E // implication elimination

2. (¬Av¬Bv¬¬C) v (D^E) // push negations inward

3. (¬Av¬BvCvD) ^ (¬Av¬BvCvE) // distribution

4a. (¬A v ¬B v C v D)

4b. (¬A v ¬B v C v E)
10/24/2023 43

clause = disjunction, e.g. (AvB)
CNF = conjunction of clauses, e.g. (AvB)^(Cv-D)
these can be treated like multiple sentences, {(AvB),(Cv-D)}

Refutation Proofs

• negate the query and add it to the KB

• if the query was entailed, this creates an inconsistency (unsatisfiable),
M(KB{¬q})=

• thus we should be able to derive the empty clause (which means
“false” or “inconsistent”)

44

simple example:
suppose KB={A,A→B} and q=B
negate query and append it: {A,A→B,¬B}
convert to CNF { A , ¬A v B, ¬B }
1. A
2. ¬A v B
3. ¬B
4. ¬A // resolve 2 and 3
5. // resolve 1 and 4, empty clause
this means we proved KB╞ B

Refutation Proofs

• Why do refutation proofs work?

• like “proof by contradiction”

• no models satisfy both KB and ¬q (empty intersection)
• if KB╞ q, then M(KB{¬q})= , hence unsatisfiable

45

models
satisfying KB

models
satisfying q

models
satisfying ¬q

Example of Resolution Refutation Proof

KB:

1. P→Q

2. L^M→P

3. B^L→M

4. A^P→L

5. A^B→L

6. A

7. B

query: Q

9. ¬P // reso on 1 and 8 (eliminate Q)

10. ¬L v ¬M // reso 2,9

11. ¬A v ¬B v ¬M // reso 5,10 (eliminate L)

12. ¬A v ¬B v ¬B v ¬L // reso 11,3 (eliminate M)

13. ¬A v ¬B v ¬L // (factoring, combine ¬Bs)

14. ¬A v ¬B v ¬A v ¬B // reso 13,5

15. ¬A v ¬B // factoring

16. ¬B // reso 15,7

17. // reso 16,8; empty clause!

CNF:

1. ¬P v Q

2. ¬L v ¬M v P

3. ¬ B v ¬L v M

4. ¬A v ¬P v L

5. ¬A v ¬B v L

6. A

7. B

8. ¬Q

// negated query

Resolution Proof Procedure

10/24/2023 47

1. -W11vS21
2. -W11vS12
3. -W12vS22
4. -W12vS11
5. -W12vS13
6. -W13vS23
7. -W13vS12
8. -W13vS14
9. -W14vS24
10. -W14vS13
11. -W21vS11
12. -W21vS31
13. -W21vS22
14. -W22vS12
15. -W22vS32
16. -W22vS21
17. -W22vS23
18. -W23vS13
19. -W23vS33
20. -W23vS22
21. -W23vS24
22. -W24vS14
23. -W24vS34
24. -W24vS23

25. -W31vS21
26. -W31vS41
27. -W31vS32
28. -W32vS22
29. -W32vS42
30. -W32vS31
31. -W32vS33
32. -W33vS23
33. -W33vS43
34. -W33vS32
35. -W33vS34
36. -W34vS24
37. -W34vS44
38. -W34vS33
39. -W41vS31
40. -W41vS42
41. -W42vS32
42. -W42vS41
43. -W42vS43
44. -W43vS33
45. -W43vS42
46. -W43vS44
47. -W44vS34
48. -W44vS43

49. -P11vB21
50. -P11vB12
51. -P12vB22
52. -P12vB11
53. -P12vB13
54. -P13vB23
55. -P13vB12
56. -P13vB14
57. -P14vB24
58. -P14vB13
59. -P21vB11
60. -P21vB31
61. -P21vB22
62. -P22vB12
63. -P22vB32
64. -P22vB21
65. -P22vB23
66. -P23vB13
67. -P23vB33
68. -P23vB22
69. -P23vB24
70. -P24vB14
71. -P24vB34
72. -P24vB23

73. -P31vB21
74. -P31vB41
75. -P31vB32
76. -P32vB22
77. -P32vB42
78. -P32vB31
79. -P32vB33
80. -P33vB23
81. -P33vB43
82. -P33vB32
83. -P33vB34
84. -P34vB24
85. -P34vB44
86. -P34vB33
87. -P41vB31
88. -P41vB42
89. -P42vB32
90. -P42vB41
91. -P42vB43
92. -P43vB33
93. -P43vB42
94. -P43vB44
95. -P44vB34
96. -P44vB43

97. W11 v P11 v safe11
98. W12 v P12 v safe12
99. W13 v P13 v safe13
100. W14 v P14 v safe14
101. W21 v P21 v safe21
102. W22 v P22 v safe22
103. W23 v P23 v safe23
104. W24 v P24 v safe24
105. W31 v P31 v safe31
106. W32 v P32 v safe32
107. W33 v P33 v safe33
108. W34 v P34 v safe34
109. W41 v P41 v safe41
110. W42 v P42 v safe42
111. W43 v P43 v safe43
112. W44 v P44 v safe44

Wumpus World
Clauses (CNF) for
Resolution

ResoRef proof of KB^Facts╞ safe22

Facts:
113. -B11
114. -S11
115. -B12
116. S12
117. B21
118. -S21
119. -safe22 // negation of query

new clauses annotation

120. -P22 Reso on 115 & 62 (-P22vB12)

121. -W22 Reso on 118 & 16 (-W22vS21)

122. W22 v safe22 Reso on 120 & 102 (W22 v P22 v safe22)

123. safe22 Reso on 121 & 122

124.

derived empty clause; proof succeeds
Reso on 119 & 123

Resolution Refutation

• Resolution as a Search for the empty clause
• nodes in Search Tree = clauses, but they have multiple parents
• there are often many clauses that can be resolved (most are irrelevant)

• heuristics to make the resolution search more efficient:
• unit-clause heuristic:

• choose pairs of clauses that can resolve, where at least one clause is just a single literal
• rationale: size of resolvent of clauses of size n and m is n+m-2, so if one is a unit clause, the

resolvent shrinks in size to n-1 (closer to the goal of size 0 for the empty clause)
• this is effective, but incomplete (there are some proofs you can’t do if you always use the

unit-clause heuristic)
10/24/2023 50

Resolution Refutation

• other resolution heuristics (resolution strategies)
• input resolution: always choose one of the clauses from the input set

(premise clauses)

• linear resolution: always choose the previously resolved clause

• we will discuss these heuristics in more detail Ch. 9 (Inference in FOL)

10/24/2023 51

Resolution Refutation

• Is it complete proof procedure? can it determine whether any sentence is entailed?

• Ground Resolution Theorem:
• if a set of sentences S is unsatisfiable, then there exists a finite sequence of resolution steps that

will generate the empty clause.

• the textbook restates this as “the empty clause will be contained in the resolution closure”

• the proof involves showing that: suppose S is unsat but RC(S) does not contain the empty clause;
then we can construct a model out of the clauses in RC(S) - contradiction

• Theorem: Resolution refutation is a complete proof procedure.
• if a╞ b , then there exists a finite sequence of resolution steps (starting from the CNF of {a ^ ¬b})

that will generate the empty clause.

• generally, we do not try to show the converse, i.e. that if b is not entailed, resolution
should stop and say so, e.g. when it runs out of clauses that can be resolved
• theoretically you could do it in Prop Log, but it depend on the RC(S) being finite (requires

factoring) 52

Satisfiability

• another propositional theorem-proving strategy

• Sat methods can test if a set of sentences is unsatisfiable (like in a
Refutation proof)

• more commonly, Sat methods are used on satisfiable KBs – the goal is
to generate a model (where the truth values are the solution to a
problem)

• this is a (slightly) more efficient form of model-checking

10/24/2023 53

DPLL
• a truth assignment (as a model) is a specification of truth values (T,F,?) for all propositional

symbols in a KB
• examples: {F,F,F,F,F}, {T,F,?,?,?}

• Search for complete truth assignment (like CSP)
• KB = {¬DvC,A^B→E,¬D→¬E,C→E,¬B^D}, CNF={¬DvC,¬Av¬BvE,Dv¬E,¬CvE,¬B,D}
• props are {A,B,C,D,E}
• initial state={?,?,?,?,?}
• goal states={F,F,T,T,T} and {T,F,T,T,T}

• “Davis-Putnam-Logemann-Loveland” (DPLL) procedure
• convert propositional KB into CNF
• start with an empty truth assignment {?,?,?,...,?}
• try binding one more variable at a time
• back-track whenever a clause is violated
• quit when a complete assignment is found that satisfies all clauses

10/24/2023 54

DPLL

10/24/2023 55

?,?,?,?,?

T,?,?,?,? F,?,?,?,?

T,T,?,?,? T,F,?,?,? F,T,?,?,? F,F,?,?,?

find a model for:
{¬DvC,¬Av¬BvE,Dv¬E,¬CvE,¬B,D}

X
(violates
clause 5)

{T,F,T,T,T}

(this tree assigns the
props in alphabetical
order by default,
but DPLL could choose
a different prop at each
node using the unit-clause
or pure symbol heuristics
discussed on the next slide)

(A,B,C,D,E)

the essence of DPLL is
guessing a truth value
for each proposition,
and backtracking when
a conflict is discovered

heuristics

57

DPLL

• DPLL systematically explores the space of models (which can be slow)

• heuristics to speed up DPLL
• we can bias the choice of which proposition to assign next
• Unit Clause heuristic – given a partial assignment, if there is a clause where all but

one literal is False and the last is unknown (?), then add the appropriate truth value
to the model

• example: {¬B, D, ¬DvC , ¬Av¬BvE , Dv¬E , ¬CvE}
• Pure Symbol heuristic - given a partial assignment, if proposition X=? and X appears

only as positive literal (X) in all unsatisfied clauses remaining, bind X=T
• if it appears only as neg. lit. (¬X) in all unsatisfied clauses remaining, bind X=F
• it doesn’t mean X has to have that truth value, only it can (if there is a model of the KB, then

there is a model in which X=T)

• important: apply these incrementally; as the model gets more vars bound:
• ignore clauses that are satisfied by the partial model (have at least 1 var that is true)
• mark off vars in a clause that evaluate to false; non-Unit clauses might become Unit clauses

Example of DPLL heuristics

• CNF={¬B, D, ¬DvC , ¬Av¬BvE , Dv¬E , ¬CvE}

• init: m0={?,?,?,?,?}

• step 1: clause 1 is Unit, bind B=F: m1={?,F,?,?,?}

• step 2: clause 2 is Unit, bind D=T: m2={?,F,?,T,?}

• step 3: are there any new unit clauses?
• clauses 1,2,4,5 are satisfied (at least 1 var is true in each), so these can be ignored
• clause 3: ¬DvC evaluates to “Fv?” in current model m2, so C must be true (since all vars are

false except 1): m3={?,F,T,T,?}

• step 4: now clause 6 becomes Unit because –CvE = “Fv?” in m3, so E must be true:
m4={?,F,T,T,T}
• could halt, since this model now satisfies all clauses (2 solutions: {T,F,T,T,T} or {F,F,T,T,T})

• by the way, A only appears as a negative literal in all clauses, so the Pure Symbol
heuristic would bind it to false: m5={F,F,T,T,T}

10/24/2023 58

Solving Problems via Satisfiability

• example: map-coloring
• convert KB (slide 11) to CNF

• there are 21 propositions (7 states X 3 colors)

• clauses={WAR v WAG v WAB, ¬WAR v ¬WAB, ¬WAR v ¬NTR, ...} (100-200 CNF sentences)

• DPLL(<?,?,?,?.....?>,clauses) returns a complete truth assignment
• <WAR=T, WAG=F, WAB=F, NTR=F, NTG=T, NTB=F, SAR=F...>

• 7 T's and 14 F's

• the DPLL algorithm can be modified to return additional models

• how many times does back-tracking occur?

• when does the unit-clause heuristic get invoked?

• how much back-tracking would there be without the UC or PS heuristics?

• size of search space?

10/24/2023 59

Solving Problems via Satisfiability

• using DPLL to find other solutions
• find a coloring of the map where Queensland is green

• DPLL(<?,?,?,?.....?>,clauses{QG}) returns
• <WAR=F,WAG=T,WAB=F,NTR=T,NTG=G,NTB=F,SAR=F,SAG=F,SAB=T,QR=F,QG=T,QB=F...>

• using DPLL to show something is entailed
• show that if WA is red, then V has to be red: WAR→VR

• negate the sentence and add to clauses: (WAR→VR) = WAR ^ ¬VR (as CNF)

• DPLL(<?,?,?,?.....?>,clauses{WAR, ¬VR}) returns unsatisfiable

10/24/2023 60

DPLL

• many other problems can be solved by encoding them as Sat problems
• CSPs

• Sammy's sport shop, Wumpus world

• planning (SatPlan), scheduling,

• multi-agent coordination,...

• vertex cover, knapsack,...

• program verification (write a Boolean expression describing the steps in a
piece of code, and an invariant or property it is supposed to maintain)

10/24/2023 61

Complexity of Propositional Inference

• Cook’s Theorem: Boolean SAT is NP-complete.

• proof involves showing that you can describe or "encode" a Turing machine

that simulates any non-det. computation in the form of a Boolean expression

with at size at most a polynomial in the number of states, tape symbols, etc

• Hence, complete proof procedures can’t be guaranteed to halt and

return an answer in polynomial time (unless P=NP)

• so we could wait a long time for a resolution proof to finish

• however, restricted methods, like FC and BC can potentially run in poly time

10/24/2023 62

WalkSAT - a stochastic approach to satisfiability
• not guaranteed to be complete, but it is fast and often effective at

finding models of a set of clauses

this is what makes the search efficient;
kind of like the MinConflicts alg. for CSPs

10/24/2023 64

Is this set of clauses satisfiable?
How hard would it be to find a model?

here is a solution:

a = True

b = True

c = True

d = True

e = False

f = False

g = False

h = False

i = False

j = False

k = True

l = True

m = False

n = True

o = True

Hard Satisfiability Problems - The "Computational Cliff"

• experiments with randomly generated Sat problems (1000s of Boolean clauses)
• "computational cliff" at ~4.3 clauses per symbol

Results of the
SAT 2009
Competition

