Constraint Satisfaction

CSCE 420 - Fall 2023
read: Ch. 6

Constraint Satisfaction

- Constraint Satisfaction Problems (CSPs) are a wide class of problems can be solved with specialized search algorithms
- these types of problems typically required finding a configuration of the world that satisfies some requirements (constraints) which restrict the possible solutions
- examples:
- limited resources that can only be used one at a time
- satisfying precedence order constraints (e.g. taking prerequisite classes first)
- assignments of agents to tasks based on capabilities
- computer vision: parsing scenes into 3D objects after edge-detection (constraints about possible meetings of edges and corners and faces vs background patches)

Constraint Satisfaction

- formal framework:
- variables: $\left\{V_{i}\right\}$
- domains: $\operatorname{dom}\left(\mathrm{V}_{\mathrm{i}}\right)=\left\{\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}}\right\}$ - a finite set of possible values for each variable
- constraints:
- the form of constraints can be different for each problem
- sometimes they are presented as equations
- examples (binary constraints) : $\mathrm{U}+\mathrm{V}=6 ; \mathrm{U}$ and V must be opposite parity: ($\mathrm{U} \% 2$) $\neq(\mathrm{V} \% 2)$
- abstractly, a constraint involving variables can be viewed as a restriction on the allowed set of tuples in the cross-product of domains:
- constraint $\mathrm{C}_{\mathrm{j}}=\left\{\left\langle\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}\right\rangle \mid \mathrm{x}_{\mathrm{k}} \in \operatorname{dom}\left(\mathrm{V}_{\mathrm{k}}\right)\right\} \subset \Pi_{\mathrm{k}=1 . . \mathrm{c}} \operatorname{dom}\left(\mathrm{V}_{\mathrm{k}}\right)$
- $\operatorname{dom}(\mathrm{U})=\operatorname{dom}(\mathrm{V})=\{0,1,2,3,4,5,6,7,8,9\}$
- $\mathrm{U}+\mathrm{V}=6$: $\{<0,6\rangle,<6,0\rangle,<1,5\rangle,<5,1\rangle,<4,2\rangle,<2,4\rangle,<3,3\rangle\} \subset$ $\{<0,0\rangle,<0,1\rangle, \ldots<0,9>,<1,0\rangle,<1,1\rangle,<1,2>\ldots<9,9>\}$ (100 possible 2-tuples)
- solution: a complete variable assignment that satisfies all constraints
- for some CSPs, there can be multiple solutions

CSP Example: Map coloring

- no two adjacent states (sharing part of an border) can have same color
- (in general, need at most 4 colors - famous Four Color Theorem provedin 1997 with the help of a computer to enumerate all possible cases)
- Australia:
- vars $=\{W A, N T, S A, Q, N S W, V, T\}$
- domains: $\operatorname{dom}(S)=\{R, G, B\}$
- constraints: $W A \neq N T, W A \neq S A, N T \neq S A, N T \neq Q$...
- solution: $\{W A=R, N T=G, S A=B, Q=R, N S W=G, V=R, T=G\}$
- also: $\{W A=G, N T=R, S A=B, Q=G, N S W=R, V=G, T=R\}$
- and so on

CSP Example: Cryptarithmetic

c2 c1

- vars: $\{F, T, W, O, U, R\}$

$$
\begin{array}{r}
\text { TWO } \\
+\mathrm{TWO} \\
\hline=\mathrm{FOUR}
\end{array} \begin{array}{r}
765 \\
+765 \\
\hline 1530
\end{array}
$$

- and add carry bits $\{\mathrm{c} 1, \mathrm{c} 2\}$
a solution:
- domains: dom(var)=\{0,1,2...9\} (digits)
$\mathrm{F}=1$
- domain for c1 and c2 is just $\{0,1\}$
$\mathrm{T}=7$
W=6
- constraints:
$\mathrm{O}=5$
- all var bindings must be distinct: $F \neq T, F \neq W$...
- leading chars can't be $0: T \neq 0, \mathrm{~T} \neq 0$
- the math must add up correctly:
- $O+O=R$ - what if there is a carry? introduce $c 1$, dom(c1)=\{0,1\}
- $\mathrm{O}+\mathrm{O}=\mathrm{R}-\mathrm{c} 1 * 10$
- $\mathrm{c} 1+\mathrm{W}+\mathrm{W}=\mathrm{U}-\mathrm{c} 2 * 10$
- $\mathrm{C} 2+\mathrm{T}+\mathrm{T}=\mathrm{U}-\mathrm{F}^{*} 10$

CSP Example: 8-queens

- assume there is one queen in each column
- for each column i , what row is the queen in?

- vars: $\mathrm{Q}_{1} . . \mathrm{Q}_{8}$
- domains: $\mathrm{Q}_{\mathrm{i}} \in\{1 . .8\}$
- constraints:
- no 2 queens can be in same row: $Q_{i} \neq Q_{j}$ for all $i \neq j$
- no 2 queens can be in same diagonal: $\left|Q_{i-Q j}\right| \neq|i-j|$
- equivalent representation:
- allowed Q1-Q2 pairs: $\{(1,3),(1,4),(1,5) \ldots(1,8),(2,4) \ldots(2,8),(3,1),(3,5) \ldots(3.8) \ldots\}$
- allowed Q1-Q3 pairs: $\{(1,2),(1,4),(1,5) . . .(1,8),(2,1),(2,3), 2,5) \ldots\}$

CSP Example: scheduling

- Job Shop scheduling
- car assembly tasks: install axles (2), install wheels (4), tighten bolts (4), put on hubcaps(4), inspection (1)
- variables: time steps for each task (integers): $T_{\text {axlef }}, T_{\text {axler }}, T_{\text {wheelfr }} \ldots \in[1 . .20]$ (time limit)
- precedence constraints: $\mathrm{T}_{\text {axlef }}<\mathrm{T}_{\text {wheelfR }}<\mathrm{T}_{\text {nutFR }}<\mathrm{T}_{\text {inspection }}$
- (we could also model task durations)
- solution: assignment of time slot for each step
- $T_{\text {axlef }}=1, T_{\text {wheelfR }}=2, T_{\text {wheelfL }}=3, T_{\text {axleR }}=4, \ldots T_{\text {inspection }}=15$
- you can do the same thing with undergrad courses:
- CSCE 313 is needed to graduate
- CSCE 312 is a prerequisite for CSCE 313
- only want to take at most 5 courses per semester
- can you figure out a solution (assignment of courses to semesters)
- note: Scheduling is a big field of computer science, and there are many variants of scheduling problems
- often, we want to know more that just whether there is a feasible solution: we want to find a schedule of minimum length (makespan)
- this goes beyond CSPs
that satisfies all prereqs and will enable you to graduate in 4 yrs?

CSP Example: Jobs Puzzle

- There are four people: Roberta, Thelma, Steve, and Pete.
- Among them, they hold eight different jobs.
- Each holds exactly two jobs.
- The jobs are chef, guard, nurse, clerk, police officer (gender not implied), teacher, actor, and boxer.
- The job of nurse is held by a male.
- The husband of the chef is the clerk.
- Roberta is not a boxer.
- Pete has no education past the ninth grade.
- Roberta, the chef, and the police officer went golfing together.
-Who has what jobs?
10/2/2023

Constraint Graphs

- nodes=vars (label with domain, possible values)
- edges=constraints
- easy for binary constraints
- label edges with pairs of consistent values from each domain

- realistically, a computer would only process variables in given order (e.g. alphabetically): NSW, NT, Q, SA, T, V, WA
- it does not "know" the order that would be most useful
- the constraint graph really looks like this:

- would have to choose color for NSW first, then choose NT (no constraints to check), then choose Q
- then check consistency by looking at back-edges between Q-NSW, and Q-NT
- and so on...

Constraint Graphs

- for ternary constraints (3 or more variables), e.g. O+O=R-c1*10
- creates a "hypergraph" with special edges that connect ≥ 3 nodes (hard to draw)
- convert to a binary graph:
- create new nodes (green) for each constraint
- label the new nodes with all possible tuples based on cross-product of domains
- connect the new nodes to the constrained variables
- label the edges to enforce consistency of variable assignment with position in tuple

Back-tracking

- the basic search algorithm for CSPs is very similar to DFS
- variable assignments represent "states" or "nodes"
- the root node is the empty assignment
- for a selected variable, the branches represent the choices from the domain
- each level assigns one more variable
- there are two important differences:

BBBBBBB

- tree depth is uniform (\# vars), and all goals occur-at the fringe
- as soon as assigning any variable at an internal node how many leave are there? causes inconsistency with a constraint, prune that subtree, and try next value in the domain
- when a domain runs out of values, must backtrack to most recent choice-point

Back-tracking


```
function BACKTRACKING-SEARCH(csp) returns a solution or failure
    return BACKTRACK(csp, {})
function BACKTRACK(csp,assignment) returns a solution or failure
    if assignment is complete then return assignment
    var \leftarrowSELECT-UNASSIGNED-VARIABLE(csp,assigmment)
    for each value in ORDER-DOMA&N-VALUES(csp, var, assignment) do
        if value is consistent)with assignment then
            add {var = value } to assignment
                think of
                consistent(assignment) as a
                function you call on partial
                                    assignments to check if
                                    bound variables satisfy all
                                    known constraints
```

ignore inferences for now
result \leftarrow BACKTRACK (csp, assignment)
if result \neq failure then return result remove $\{$ var $=$ value $\}$ from assignment return failure
recursion: bind more variables...

Tracing Backtracking

initially,
suppose the order of vars is given as: NSW, WA, T, Q, V, NT, SA domain $=\{\mathrm{RGB}\}$ for all states

this is the first time we violate a, constraint, but only change R to G 10/2/2023
crisis: no values remain for SA; must back-track to WA (ultimately) and change it to G, after trying all combinations of V, Q, and T^{15}

Tracing Backtracking

2. try changing G to B, but still no choices remain that lead to a consistent solution

1. no other choices remain for NT, so back track to V and try changing G to B; but

Alternative ways to Trace BT

suppose the order of vars is given as: NSW, WA, T, Q, V, NT, SA

step	NSW	WA	T	Q	v	NT	SA	explanation
	R							
	R	R						
	R	R	R					
	R	R	R	G				choose G because Q!=NSW
	R	R	R	G	G			choose G because V!=NSW
	R	R	R	G	G	B		
	R	R	R	G	G	B		back-track, no choices for SA are consistent
	R	R	R	G	B			change previous choice: V->B
	R	R	R	G	B	B		back-track again, no more choices for SA
	R	R	R	B				no more choices for V, so go back to Q->B
	R	R	R	B	G	G		back-track, no choices for SA (WA=R, $\mathrm{NT}=\mathrm{G}, \mathrm{V}=\mathrm{B}$)
	R	R	R	R	B			
	R	R	R	B				back up to Q and change to B
	...							

Alternative ways to Trace BT

- or you could write out the steps using indentation...
- suppose the order of vars is given as: NSW, WA, T, Q, V, NT, SA try NSW=R

```
try WA=R
    try T=R
        try Q=G (can't be red because of NSW)
            try V=G (can't be read because of NSW)
                try NT=B (because WA=R and Q=G)
                    back-track; no consistent choices left for SA
                back-track; no choices left for NT
                change V->B
                try NT=B
                    back-track, no choices left for SA
                back-track, no choices left for NT
            back-track, no choices left for V
        change V->B
```

 try \(\mathrm{V}=\mathrm{G} \ldots\)
 function BACKTRACKING-SEARCH(csp) returns a solution or failure return BACKTRACK (csp, $\}$)
instead of choosing next var arbitrarily (in order given), or we could use MRV heuristic to choose more intelligently...
function BACKTRACK (csp, assignment) returns a solution or failure
if assignment is complete then return assignment war \& SELECT-UNASSIGNED-VARIABLE (csp, assignment)
for each value in ORDER-DOMAIN-VALUES (csp, var, assignment) do
if value is consistent with assignment then add $\{v a r=$ value $\}$ to assignment
instead of choosing next value arbitrarily (in domain order), or we could use LCV heuristic to choose more intelligently...

CSP Heuristics

- MRV - select var based on Minimum Remaining Values
- in current partial assignment, some variable bindings might preclude choices in domains for unbound variables based on constrains
- for each unbound variable, rule out values that are inconsistent with curr. assignment
- choose variable with fewest choices
- the best case: if there is a variable with just 1 choice left, choose it!
- forces back-tracking to happen sooner
- LCV - select value for var based on Least Constraining Value
- once a var is chosen, can we try the values in an intelligent order?
- pick value that would remove the fewest (leave the most) choices for

Food for thought: How much would MRV help in coloring the map of USA, compared to doing BT on 50 states in alphabetical order?

- this will tend to delay back-tracking to happen later
- degree heuristic: if all domains are equal-sized, choose the variable that is involved in the most constraints (connected to the most other vars)

- Tracing BT with MRV
Q and V have 2 options; choose $\mathrm{Q}=\mathrm{G}$

SA has only B remaining; choose $S A=B$
remove B from $N T$ and V

No back-tracking! notice how choices tend to propagate to neighbors

Forward-checking (FC)

- MRV is very similar to forward-checking
- technically, MRV is passive; in each iteration, it re-calculates how many consistent values remain in domain of each unbound var
- FC is active: every time you choose a value for a var, you remove inconsistent values in domains of other vars (like "propagation")
- almost identical, except... if making a choice at var X causes domain for var Y to become empty, back-track immediately and try another value for X (don't have to wait till Y is selected to see that it's domain is empty)

Constraint Propagation

- we can generalize the idea of FC
- whenever we make a choice at one node in the constraint graph, propagate the consequences to neighboring nodes
- remember, edges are determined by constraints
- sometimes, a choice has no effect on domains of neighbors
- sometimes, choice at node X removes some options from domain of neighbor Y
- sometimes, choice at X removes all but one option at Y
- if so, make this choice at Y , and propagate consequences to its neighbors...
- sometimes, choice at X reduces the domain of neighbor Y to empty, forcing back-tracking

Constraint Propagation

suppose we assign $W A=R$, and then $Q=G$, and we are doing Forward checking...

(T)

why shouldn't we be able to propagate one more step and see that NT is forced to be B, leaving no choices for SA? (or vice versá)

- formalization of constraint propagation as a graph algorithm
- let (V,E) be the constraint graph (assume all constraints are binary)
- define arc-consistency:
- an edge $X \rightarrow Y$ is arc-consistent if, for every value a in the domain of X, there is a value b for Y that is consistent with $X=a$ (i.e. satisfies the constraint)
- for all edges $(X, Y), \forall a \in \operatorname{dom}(X) \exists b \in \operatorname{dom}(Y)$ s.t. $X=a$ and $Y=b$ are consistent
- a graph is arc-consistent if every edge is arc-consistent (bi-directionally for each constraint)
- ensure the initial graph is arc-consistent
- after making a choice for an initial var, it might rule out some choices in domains of neighbors, so must check that its neighbors are arc-consistent...
- put edges to be checked in a queue
function $\mathrm{AC}-3$ (csp) returns false if an inconsistency is found and true otherwise

queue \leftarrow a queue of arcs, initially all the arcs in csp initialize queue with all directed edges between nodes
while queue is not empty do

```
(Xi, Xj)\leftarrow\operatorname{POP(queue)}
if Revise(csp, Xi, Xj) then
if size of Di}=0\mathrm{ then return false
    for each }\mp@subsup{X}{k}{}\mathrm{ in }\mp@subsup{X}{i}{}\mathrm{ .NEIGHBORS - { }\mp@subsup{X}{j}{}}\mathrm{ do
        add ( }\mp@subsup{X}{k}{},\mp@subsup{X}{i}{})\mathrm{ ) to queue
return true
```

Revise() returns true if dom(Xi) was updated
every time we delete a value from the domain of Xi, put the connected edges in the queue; note the reverse order: $\left(X_{k}, X_{i}\right)$ - list the neighbors first
function REVISE ($\operatorname{csp}, X_{i}, X_{j}$) returns true iff we revise the domain of X_{i}
revised \leftarrow false
for each x in D_{i} do
if no value y in D_{j} allows (x, y) to satisfy the constraint between X_{i} and X_{j} then
delete x from D_{i}
revised \leftarrow true
return revised
suppose the sum of X_{i} and X_{j} must be odd,

Tracing AC-3

- suppose we start by choosing NSW=R
- all edges connected to NSW must be checked for arc-consistency
- queue: $\{<Q, N S W>,<S A, N S W>,<V, N S W>\}$
- pop <Q,NSW>,
- $R \in \operatorname{dom}(Q)$ has no consistent value in dom(NSW)=\{R\} so remove R from dom(Q);
- but $G, B \in \operatorname{dom}(Q)$ each are consistent with $R \in \operatorname{dom}(N S W)$
- push neighbors of $\mathrm{Q}:<\mathrm{NT}, \mathrm{Q}\rangle,<\mathrm{SA}, \mathrm{Q}>/ /$ note the reverse order of each pair
- queue: $\{<S A, N S W\rangle,<V, N S W\rangle,<N T, Q\rangle,\langle S A, Q\rangle\}$
- pop $<S A, N S W>$, check each choice in dom $(S A)=\{R G B\}$ for a consistent choice in dom(NSW) $=\{$ R\}; remove R from $\operatorname{dom}(S A)$
- push neighbors of SA: <WA,SA $\rangle,\langle N T, S A\rangle,\langle V, S A\rangle,\langle Q, S A\rangle$
- queue: $\{<\mathrm{V}, \mathrm{NSW}\rangle,\langle\mathrm{NT}, \mathrm{Q}\rangle,\langle\mathrm{SA}, \mathrm{Q}\rangle,\langle W \mathrm{~A}, \mathrm{SA}\rangle,\langle\mathrm{NT}, \mathrm{SA}\rangle,\langle\mathrm{V}, \mathrm{SA}\rangle,\langle\mathrm{Q}, \mathrm{SA}\rangle\}$

Maintaining Arc Consistency (MAC)

- often, the initial graph is arc-consistent, so nothing to do
- after making first choice, run AC-3 till it quiesces
- usually the problem is not solved
- a problem is solved when every node has just 1 value remaining
- if some vars still have multiple values in their domains, we must make more choices
- if any domain is empty, must back-track to previous choice point and try another value, followed by calling AC-3 to propagate consequences by reducing domains
- thus MAC is a wrapper algorithm around AC-3 that iteratively makes another choice and calls AC-3, till one of these two conditions is met

Maintaining Arc Consistency

```
MAC(graph G)
    if every node has exactly 1 val: return solution (complete assignment)
    if some node has no val, return fail (backtrack)
    choose a node V that still has multiple values in its domain
    for each value a in dom(V):
        G' = G{V=a} // set node V to the value a
        G'' = AC3 (G') / / make graph arc-consistent based on this choice
        result = MAC(G'') // recurse, try to extend this to a complete solution
        if result!=fail: return result
    return fail
```


path-consistency and k-consistency

- the concept of arc-consistency can be generalized to path-consistency
- mutually consistent choice of values for 3 variables related by two constraints
- suppose variables A, B, and C are involved in constraints, connected by edges $A \rightarrow B$ and $B \rightarrow C$
- $\forall \mathrm{a} \in \operatorname{dom}(\mathrm{A})$ and $\forall \mathrm{b} \in \operatorname{dom}(\mathrm{B}), \exists \mathrm{c} \in \operatorname{dom}(\mathrm{C})$ s.t. $\mathrm{A}=\mathrm{a}, \mathrm{B}=\mathrm{b}, \mathrm{C}=\mathrm{c}$ are consistent
- can be generalized further to k-consistency (any sequence of k nodes)
- however, the number of paths increases exponentially with k
- so ensuring k-consistency in a graph takes more processing time
- in the limit: n-consistency (for all n nodes in graph) means every node has at least 1 choice consistent with some choice at every other node
- a) if there is 1 value at every node, this is a unique solution for the CSP
- b) if some nodes have multiple value, there might be multiple solutions; still have to run MAC to make some choices
- c) it is possible there are no choices left for some vars: CSP is infeasible (has no solutions)

Complexity of AC-3

- what is the time-complexity of AC-3?
- assume there are $2 c$ edges (num. of constraints, $c \leq n^{2}$), and d is the max domain size: $d=\max \left(\left|\operatorname{dom}\left(V_{i}\right)\right|\right)$
- an edge is only put in the queue whenever a value is deleted from the domain of a var
- so all edges will be processed at most cd times in total (calls to Revise())
- Revise() takes up to d^{2} loop iterations to check for arc-consistency
function AC-3(csp) returns false if an inconsistency is found and true otherwise queue \leftarrow a queue of arcs, initially all the arcs in csp
while queue is not empty do
$\left(X_{i}, X_{j}\right) \leftarrow \operatorname{POP}($ queue $)$
if $\operatorname{Revise}\left(c s p, X_{i}, X_{j}\right)$ then
if size of $D_{i}=0$ then return false
for each X_{k} in X_{i}.NEIGHBORS - $\left\{X_{j}\right\}$ do $\operatorname{add}\left(X_{k}, X_{i}\right)$ to queue
return true
function Revise($\operatorname{csp}, X_{i}, X_{j}$) returns true iff we revise the domain of X_{i} revised \leftarrow false
for each x in D_{i} do
if no value y in D_{j} allows (x, y) to satisfy the constraint between X_{i} and X_{j} then delete x from D_{i} revised \leftarrow true
return revised
- so $A C-3$ is $O\left(c d^{3}\right)=O\left(n^{2} d^{3}\right)$

Computational Complexity of CSPs

- Theorem: Solving CSPs is NP-hard.
- one can check whether a given variable assignment satisfies all constraints in polynomial time
- Theorem: Determining whether CSPs have a solution is NP-complete.
- Proof: Graph Coloring can be reduced to CSP (CSP \leftarrow graph 3-coloring \leftarrow graph clique $\leftarrow 3$-Sat)
- we have already shown that graph-coloring can be transformed into a CSP in polynomial size
- thus many discrete problems can be encoded as CSPs
- food for thought: how would you encode Vertex Cover as a CSP?
- does there exists a subset of k nodes that touches every edge?

Computational Complexity of CSPs

- how can CSPs be NP-complete if AC-3 runs in polynomial time, $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{3}\right)$?
- we might have to call it an exponential number of times from MAC before we find a complete and consistent solution
- relation to Linear Programming (LP)
- Linear Programs are like CSPs except they use continuous variables instead of discrete domains, and linear constraints
- example:
maximize $5 x+3 y-z$
subject to $8 x-7 y \leq 12, y+2 z \leq 1,0 \leq x \leq 2,0 \leq y \leq 10,0 \leq z \leq 2$
- there exist polynomial time algorithms for LPs (e.g. Simplex Algorithm)
- Mixed Integer-Linear Programs (MIPs): some variables are restricted to integers
- Integer Programs (IPs) have all discrete values and can encode CSPs: IPs \leftrightarrow CSPs
- discrete values makes solving constraints HARDER computationally
- Linear Programming is in P
- Mixed Integer Programming is in NP (actually NP-hard)

Min-Conflicts Algorithm

```
function MIN-CONFLICTS(csp,max_steps) returns a solution or failure
    inputs: csp, a constraint satisfaction problem
    max_steps, the number of steps allowed before giving up
    current }\leftarrow\mathrm{ an initial complete assignment for csp
    for }i=1\mathrm{ to max_steps do
    if current is a solution for csp then return current
    var \leftarrowa randomly chosen conflicted variable from csp.VARIA BLES
    value}\leftarrow\mathrm{ the value v}\mathrm{ for var that minimizes CONFLICTS(csp,var,v,current)
    set var = value in current
    return failure
```

- Local Search for CSPs
- start by choosing a random variable assignment (which probably violates lots of constraints)
- pick a variable at random and change its values to something that causes less conflicts
- repeat until it "plateaus" (number of conflicts stops decreasing)
- note: this is NOT guaranteed to find a complete and consistent solution!
- but it works surprisingly well in practice
- MinConflicts can solve the million-queens problem (on a $10^{6} \times 10^{6}$ chess board) in a few minutes (!)

Application of CSP to Computer Vision

- 2D edge-detection \rightarrow 3D object interpretation
- Waltz Constraint Propagation algorithm
- edges can be ambiguous - which side is part of object, vs background (or another object behind, i.e. occluded?)
- for any intersection of edge, there are only a finite number of possible labeling (for realistic 3D images)
- some 3-way intersections can be interpreted as corners

3D Image Interpretation and Waltz Propagation

- from Ch. 12 in Patrick Winston (1984). Artificial Intelligence.
- http://courses.csail.mit.edu/6.034f/ai3/ch12.pdf
- 2D image pre-processing: edge detection
- Gaussian filter + segmentation
- how can you infer the 3D objects from line segments?
- how many object are there in this image?

- lines are CSP variables with discrete labels:
- + = convex
- - = concave
- ->- = boundary (between foreground and background; right-hand rule)

10/2/2023

- junctions acts as constraints; converging lines must be labeled consistently:

- The Waltz Propagation algorithm is a predecessor of modern Constraint Propagation, which can label these diagrams and extract 3D objects.
- Shadows, cracks, and coincident boundaries are challenges.

