Constraint Satisfaction

CSCE 420 — Fall 2023
read: Ch. 6

Constraint Satisfaction

* Constraint Satisfaction Problems (CSPs) are a wide class of problems
can be solved with specialized search algorithms

* these types of problems typically required finding a configuration of
the world that satisfies some requirements (constraints) which
restrict the possible solutions

e examples:
* limited resources that can only be used one at a time
* satisfying precedence order constraints (e.g. taking prerequisite classes first)

e assignments of agents to tasks based on capabilities

e computer vision: parsing scenes into 3D objects after
edge-detection (constraints about possible meetings
of edges and corners and faces vs background patches)

Constraint Satisfaction

 formal framework:
* variables: {V}

* domains: dom(V,)={a;...a,} — a finite set of possible values for each variable
* constraints:

* the form of constraints can be different for each problem
* sometimes they are presented as equations
« examples (binary constraints) : U+V=6; U and V must be opposite parity: (U%2)#(V%2)

* abstractly, a constraint involving variables can be viewed as a restriction on the allowed
set of tuples in the cross-product of domains:

* constraint C; ={<x;...x,>|x,edom(V\)}II,_; . dom(V,)
« dom(U)=dom(V)={0,1,2,3,4,5,6,7,8,9}
e U+V=6: {<0,6>,<6,0>,<1,5><5,1>,<4,2>,<2,4>,<3,3>} C
{<0,0>,<0,1>,...<0,9>,<1,0>,<1,1>,<1,2>....<9,9>} (100 possible 2-tuples)
 solution: a complete variable assignment that satisfies all constraints
* for some CSPs, there can be multiple solutions

| Nortem |
CSP Example: Map coloring

| Temtory

I Cueensland
Westemn ! I !
Anstrali
ustralia [South o
| Australia | New)
|

| South
. . T Wales
* no two adjacent states (sharing part of an border) can have same color /v
* (in general, need at most 4 colors — famous Four Color Theorem proved-in-

1997 with the help of a computer to enumerate all possible cases)
* Australia:

 vars = {WA,NT,SA,Q,NSW,V,T}
 domains: dom(S)={R,G,B}
* constraints: WA=NTWA=SA,NT=SA,NT-Q...

* solution: {WA=R,NT=G,SA=B,Q=R,NSW=G,V=R, T=G}

* also: {WA=G,NT=R,SA=B,Q=G,NSW=R,V=G,T=R}
 and so on

10/2/2023

Tasmania

CSP Example: Cryptarithmetic

Od Jd
W o o
olu1 On

+
1

e vars: {FTW,0O,U,R}
* and add carry bits {c1,c2} a solution:

* domains: dom(var)={0,1,2...9} (digits) .

T=
e domain for c1 and c2 is just {0,1} W=6
* constraints: 0=5
* all var bindings must be distinct: F=T, F£W... ;J=g

* leading chars can’t be 0: T#0, T#0

* the math must add up correctly:
* 0+0=R - what if there is a carry? introduce c1, dom(c1)={0,1}
e 0+O=R-c1*10
e c1+W+W=U-c2*10
 C24T+T=U-F*10

are there other solutions?

CSP Example: 8-queens

* assume there is one queen in each column

e for each column i, what row is the queen in?

* vars: Q;..Qg
* domains: Q,e{1..8}

* constraints:
* no 2 queens can be in same row: Q=Q; for all i=]
* no 2 queens can be in same diagonal: |Qi-Qj|#]i-j|
e equivalent representation:
 allowed Q1-Q2 pairs: {(1,3),(1,4),(1,5)...(1,8),(2,4)...(2,8),(3,1),(3,5)...(3.8)...}
* allowed Q1-Q3 pairs: {(1,2),(1,4),(1,5)...(1,8),(2,1),(2,3),2,5)...}

10/2/2023 6

CSP Example: scheduling

* Job Shop scheduling

e car assembly tasks: install axles (2), install wheels (4), tighten bolts (4), put on

hubcaps(4), inspection (1)

variables: time steps for each task (integers): T_,.r,

precedence constraints: T_,.;.<Theeltr< Thutrr< T:

(we could also model task durations)

solution: assignment of time slot for each step
axIeF_l T heeIFR_2 T heeIFL_3' T _4 T =15

axleR™
e you can do the same thing with undergrad courses:
* CSCE 313 is needed to graduate
e CSCE 312 is a prerequisite for CSCE 313
* only want to take at most 5 courses per semester
* can you figure out a solution (assignment of courses to semesters)

T T,

axleR” "wheelFR ***

inspection

inspection™

that satisfies all preregs and will enable you to graduate in 4 yrs?.

€[1..20] (time limit)

note: Scheduling is a big
field of computer science,
and there are many
variants of scheduling
problems

often, we want to know
more that just whether
there is a feasible solution:
we want to find a schedule
of minimum length (make-
span)

this goes beyond CSPs

CSP Example: Jobs Puzzle

* There are four people: Roberta, Thelma, Steve, and Pete.
« Among them, they hold eight different jobs.
e Each holds exactly two jobs.

* The jobs are chef, guard, nurse, clerk, police officer (gender not implied),
teacher, actor, and boxer.

* The job of nurse is held by a male.

* The husband of the chef is the clerk.

* Roberta is not a boxer.

* Pete has no education past the ninth grade.

* Roberta, the chef, and the police officer went golfing together.
* Who has what jobs?

Constraint Graphs

* nodes=vars (label with domain, possible values)
e edges=constraints

;‘
c?'$
 easy for binary constraints

e |label edges with pairs of consistent values from each domain

| Morthemn

| Temtory

I Cuesensland
Westem | I
Australia [|

South —
Australia | New '
| | South

l" N Wales

Victoria |_
10/2/2023

Tasmama

realistically, a computer would only process variables in given order
(e.g. alphabetically): NSW, NT, Q, SA, T, V, WA

e it does not “know” the order that would be most useful

» the constraint graph really looks like this:

(R,G,B} W R, cK} m%ﬁ}
NSW NT V A

all edges are initially labeled with
pairs of consistent values: e.g.
{ <R,G>, <R,B>, <G,R>, <G,B>, ...}

would have to choose color for NSW first, then choose NT (no constraints to
check), then choose Q

* then check consistency by looking at back-edges between Q-NSW, and Q-NT

e and so on...

Constraint Graphs

 for ternary constraints (3 or more variables), e.g. O+0O=R-c1*10

 creates a “hypergraph” with special edges that connect 23 nodes (hard to
draw)

e convert to a binary graph:
* create new nodes (green) for each constraint
* label the new nodes with all possible tuples based on cross-product of domains
e connect the new nodes to the constrained variables
* label the edges to enforce consistency of variable assignment with position in tuple

[OI<XIOIy>]I [1I<XI 1Iy>]l R 4 [9I<X191y>]

dom(0)={0,1,2,3,4,5,6,7,8,9}

I W o
— [OI<OIXI >]I[1I<1IXI >]I“'I[9I<9IXI >]
+~ T W O Y Y Y
- dom(<O,R,C1>) = feasible combinations
F o U R

= {<1,2,0>,<2,4,0>...<9,8,1>}

10/2/2023 [0,<x,y,0>]...[1,<x,y,1>] H

vars: WA,NT,SA,Q,NSWV, T
states: <cl,c2,c3,c4,c5,c6,c7>
where cie{R,G,B,?}

Back-tracking

'~
~

<7 5999997 .

* the basic search algorithm for CSPs is very similar
to DFS

variable assignments represent “states” or “nodes” /N """ \\‘
the root node is the empty assighment RR?777? RG?2777 RB?7772

for a selected variable, the branches representthe .~
choices from the domain

e each level assigns one more variable

* there are two important differences: ,/'RRRRRR/R BBBBBBB;‘
* tree depth is uniform (# vars), and all goals occuratthe ... "7
fringe
* assoon as assigning any variable at an internal node how many leave are there?

causes inconsistency with a constraint, prune that
subtree, and try next value in the domain

 when a domain runs out of values, must backtrack to
most recent choice-point

12

Back-tracking

PPPPP??

vars: WA,NT,SA,Q,NSW\V,T

state representation: ~ Ree?PRe Griiees Broesd
<cl,c2,c3,c4,c5,c6,c7>
where cie{R,G,B,?}

#NT,
next () RGR???7? RGG???? RGB????

violates violates
WA=SA, NT#SA,
try next

try n

RGBR??? RGBG??? RGBB???

RRRRRRR RGBRGRG)... BBBBBBB
10/2/2023

13

function BACKTRACKING-SEARCH(csp) returns a solution or fatlure
return BACKTRACK(csp,{ })

function BACKTRACK(csp, assignment) returns a solution or failure think of
if assignment is complete then return assignment consistent(assignment) as a
var + SELECT-UNASSIGNED-VARIABLE(csp. assignm function you call on partial
for each value in ORDER-DO =VALUES(csp, var, assignment) do assignments to check if

if value 1s with assignment then bound varlable.s satisfy all
known constraints

add {var = value } to assignment

ignore inferences for now

result +— BACKTRACK(csp, assignment) recursion: bind more variables...

if result i iuﬂum then return reswlt

remove { var = value } from assignment
return failure

10/2/2023 14

Tracing Backtracking

initially,
domain={RGB}

suppose the order of vars is given as:

NSW, WA, T, Q} V) NT| SA

RGB RGB RGB
for all states
| | |
RGB | Northem | RGB <::> | Northem | RGB R | Northem | RGB
| Temtory | Temitory | Temtory
) | Queensland o i | Queensland .) | Queensland
Western | L > Western | o » Western | L
Australia | South - Australia | South o Australia | South -
| Australia [I‘_\'e:\'_ iy | Australia | I;'e:\'_ o | Australia [I‘_\'e_w—
J | South I | South) | South
RGB /| |~ Wil RGB /| W /R RGB | [~Te= /R
Victoria \,_ Victoria | Victoria \,_
RGB RGB RGB
Tasmania Tasmania Tasmania
RGB RG <::>
| | Northem G
| Ropen | R | o | R | e |
r |) | Queensland i Queensland
Western | Western | L Western | |
Awmba [> Awstraa | o > Australiz | , |
| Australia New | Awsmalia | e | pSouth —
| oul ! ot W
v /R e /R | | s o
Victoria \ RGB | Vietoriz) RGB | .‘:"“-&?l-e-f
‘RGB Victoria \G
Tasmania R Tasmama Tasmania
R R
this is the first time we violate a,
constraint, but only change Rto G

10/2/2023

crisis: no values remain for SA;

must back-track to WA (ultimately) and ch:laSnge itto G,
after trying all combinationsof V, Q, and T

Tracing Backtracking

4. ultimately have to

change this to G, and resume search

RGB

——_——

RGB -7 TNl RGB
\\
RGB | Noem | RGB | Northem | RGB R | Norern | RGB
| Temtory | Temitory Quccatiand | Temitory -
Western l. | QIHRDS]MG > E’e;t;? l,) > Western l. Qlueells .
Australia | South o Austraba | South] Australia | South -
| Australia [New P | Austalia [New | Australia [New
J | South I | South) | South
RGB [\ Weles RGB MW /R RGB Jles SR
Victoria W'\ Victoria ‘1\ Victoria \\
RGB RGB - RGB
Tasmania Tasmama \ | _.-=T Tasmania
RGB RGR - ---~""~ \3. try G...
_________ then retry all
———————— subsequent
R8T RGB RGB choices;
: then try B and all
' RGB '
R | ‘ R - | G [c subsequent
Northemn Northern R | Northern | . .
| ey | T ueensang | Temor | Choices; still
Wi West . | ueenslan .
b . i > e e N Nostn | — | no choices for SA
| Australia New e | ot
' | South ' | South | .‘?ﬂr\l;
o Wales R - Wales R | Sou R
—— % RGB | o) T\ Wales
Victoria hGB w // Victor: ’ RGB Victoria ‘1\
AN . RGB A S .
Tasmamia R RS ,’/ Tasmania \\\ P T) G
S<o _- R N e asmania
- S _-- R
2. try changing G to B, but still no choices

remain that lead to a consistent solution
10/2/2023

1. no other choices remain for NT, so back
track to V and try changing G to B; but

16
NT is still B and SA still has no values

Alternative ways to Trace BT
suppose the order of vars is given as: NSW, WA, T, Q, V, NT, SA

I Northem
| Temtory
| Queensland
Western | |
Australi
vt I South ———
| Anstralia New
’ | South
7o Wales

Victoria i'\

Tasmamia

step__[Nsw__{wA__T____Ja |V ___[NT___SA__Jelanation

2 xX©XxX X©X® X®¥ X¥®¥ XHX X XHX$® X XXV X XIJ XD

2 X©XxX X©® X®¥ X¥¥ X X®¥ XNV XX XV XN XD

x X X©X® X®¥ X® XN XX XV X_X XNV XD

o X T® T O 6O 6O 6O o O

® T O O O

choose G because Q!=NSW
choose G because VI=NSW

back-track, no choices for SA are consistent
change previous choice: V->B

back-track again, no more choices for SA
no more choices for V, so go back to Q->B

back-track, no choices for SA (WA=R, NT=G, V=B)

back up to Q and change to B

17

6

| Northem | 4
2 |I Temitory Queenstand
Alternative ways to Trace BT = T E
Tasmm:’imﬂa \5

e or you could write out the steps using indentation... 3
e suppose the order of vars is given as: NSW, WA, T, Q, V, NT, SA
try NSW=R

try WA=R

try T=R

try Q=G (can’t be red because of NSW)
try V=G (can’t be read because of NSW)
try NT=B (because WA=R and Q=G)
back-track; no consistent choices left for SA

back-track; no choices left for NT
change V->B

try NT=B
back-track, no choices left for SA
back-track, no choices left for NT

back-track, no choices left for Vv
change V->B

try V=G ...

instead of choosing |
next var arbitrarily
(in order given),

or we could use MRV
heuristic to choose
more intelligently...

10/2/2023

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK (csp, assignment) returns a solution or failure
if assignment 1s complete then return assignment
— var SELEET—UHASSIGHED—VARIABLE‘{ESE assignment)
for each value iNfORDER-DOMAIN-VA LT_IE5|[|:‘515r+ var, assignment) do —

if value 15 consistent with assignment then
add {var = value } to assignment

result +— BACKTRACK(csp, assignment)

if result i iﬂﬂurﬂ then return result

remove { var = value } from assignment
return failure

P

instead of choosing
next value arbitrarily
(in domain order),
or we could use LCV
heuristic to choose
more intelligently...

19

CSP Heuristics

* MRV —select var based on Minimum Remaining Values

* in current partial assignment, some variable bindings might preclude choices in
domains for unbound variables based on constrains
» for each unbound variable, rule out values that are inconsistent with curr. assignment
* choose variable with fewest choices
* the best case: if there is a variable with just 1 choice left, choose it!
» forces back-tracking to happen sooner

Food for thought:
How much would MRV
help in coloring the

e LCV —select value for var based on Least Constraining Value map of USA, compared
* once a var is chosen, can we try the values in an intelligent order? to doing BT on 50 states
« pick value that would remove the fewest (leave the most) choices for « 1 @lphabetical order?
* this will tend to delay back-tracking to happen later

» degree heuristic: if all domains are equal-sized, choose the variable that i
involved in the most constraints (connected to the most other vars)

* Tracing BT with MRV

Q and V have 2 options;
choose Q=G

v

RGB
remove R
| from SAV
RGB R RGB NQ
| Temitory
Westem | Queensland
Australia | South]
| Australia [~ I‘_\'e:\'_ T
J | South
RGB [\ Wales
Victoria '-\\
RGB
Tasmania
RGB
RGB
RGB ' G
l Northemn |
| Termitory
Westem I Queensland
Australia | South . | >
| Australia [New
| | South R
™= ‘_\‘:E’al_es
B l \-'ictor:'a-'@
Tasmama
RGB
V only has G left
10/2/2023

RGB
remove G
RGB | frOm SAI NT RGB
l Northermn |
| Termitory ueensland
Western l- ’ Q|
Australia | South —
| Australia | New
| | South
REB V\ [/
RGB
Tasmama
RG
RGB | G
Northern |
| Temtory usensland
Western l- ' Q|
Australia | South _ >
| Australia | New
| 0T
- wue /R
B | Vietora |
G
Tasmania
RGB

SA only has R left

WA only has G left
No back-tracking! notice how choices tend to propagate to neighbors

SA has only B remaining;
choose SA=B

remove B from NT and V

RGB
| G
I Northemn |
| Temitory
| Queensland
Westemn | 1 |
Australi
ustralia | South

| Australia [I‘_\'e_w— T

) | South
(™, Wales
™ R

Victoria |,

 RGB
Tasmania
RGB
R
|
[| G
Northern
| Termitory
I Queensland
Westerm | —
Australia | South o
| Australia | New
| Soul
~wae /R
B Victoria _
G
Tasmama
defer to last,
RGB <+——

always 3
chgices

Forward-checking (FC)

* MRV is very similar to forward-checking

e technically, MRV is passive; in each iteration, it re-calculates how many
consistent values remain in domain of each unbound var

* FCis active: every time you choose a value for a var, you remove inconsistent
values in domains of other vars (like “propagation”)

* almost identical, except... if making a choice at var X causes domain for var Y
to become empty, back-track immediately and try another value for X (don’t
have to wait till Y is selected to see that it’s domain is empty)

Constraint Propagation

e we can generalize the idea of FC

 whenever we make a choice at one node in the constraint graph, propagate
the consequences to neighboring nodes

* remember, edges are determined by constraints
* sometimes, a choice has no effect on domains of neighbors

 sometimes, choice at node X removes some options from domain of
neighbor Y

 sometimes, choice at X removes all but one option atY
* if so, make this choice at Y, and propagate consequences to its neighbors...

* sometimes, choice at X reduces the domain of neighbor Y to empty, forcing

back-tracking
Qo O

{112)3} {AIBICID}

Constraint Propagation

10/2/2023

suppose we assign WA=R, and then Q=G,
and we are doing Forward checking...

I
!

N
(backtra:k!) o
@

why shouldn't we be able to
propagate one more step and see that
NT is forced to be B, leaving no
choices for SA? (or vice versazf1

AC-3

* formalization of constraint propagation as a graph algorithm
* let (V,E) be the constraint graph (assume all constraints are binary)

 define arc-consistency:

* an edge X->Y is arc-consistent if, for every value a in the domain of X, there is a value
b for Y that is consistent with X=a (i.e. satisfies the constraint)

e for all edges (X)Y), V aedom(X) d bedom(Y) s.t. X=a and Y=b are consistent

* a graph is arc-consistent if every edge is arc-consistent (bi-directionally for each
constraint)

* ensure the initial graph is arc-consistent

e after making a choice for an initial var, it might rule out some choices in
domains of neighbors, so must check that its neighbors are arc-consistent...

* put edges to be checked in a queue

o 9

function AC-3(csp) returns false if an inconsistency 1s found and true otherwise .

guene +— a quene of arcs, mitially all the arcs in csp initialize queue with all directed edges between nodes

while gueue 1s not empty do
(Xi, X;)+ POP(queue)

if REVISE(csp, X;, X ;) then Revise() returns true if dom(Xi) was updated
if size of D), = 0 then return false
for each Xy in X, NEIGHBORS - { X;} do every time we delete a value from the domain of Xi,
add (X, X;) to queue put the connected edges in the queue; note the
return true reverse order: (X,, X)) — list the neighbors first

function REVISE(csp, X;, X ;) returns true iff we revise the domain of X;
revised +— false
for each = in D; do
if no value y in I); allows (z.y) to satisfy the constraint between X; and X; then
delete = from [J);
revised +— true
return revised

suppose the sum of Xi and Xj must be odd, @‘/\0%

10/2/2023 and we remove 2 from dom(Xj) {1,2} {1,2) 26

Tracing AC-3

* suppose we start by choosing NSW=R
* all edges connected to NSW must be checked for arc-consistency

e queue: {<Q,NSW>,<SA,NSW>,<V,NSW>}
* pop <Q,NSW>,
e Redom(Q) has no consistent value in dom(NSW)={R} so remove R from dom(Q);
* but G,Bedom(Q) each are consistent with Redom(NSW)
* push neighbors of Q: <NT,Q>,<SA,Q> // note the reverse order of each pair

e queue: {<SA,NSW>,<V,NSW>, <NT,Q>,<SA,Q> }

e pop <SA,NSW>, check each choice in dom(SA)={RGB} for a consistent choice in
dom(NSW)={R}; remove R from dom(SA)

* push neighbors of SA: <WA,SA>,<NT,SA>,<V,SA>,<Q,SA>
e queue: {<V,NSW>, <NT,Q>,<SA,Q>, <WA,SA>,<NT,SA>,<V,SA>,<Q,SA>}

Tasmamia

10/2/2023 27

Maintaining Arc Consistency (MAC)

 often, the initial graph is arc-consistent, so nothing to do
 after making first choice, run AC-3 till it quiesces

 usually the problem is not solved
e a problem is solved when every node has just 1 value remaining

* if some vars still have multiple values in their domains, we must make more
choices

* if any domain is empty, must back-track to previous choice point and try
another value, followed by calling AC-3 to propagate consequences by
reducing domains

* thus MAC is a wrapper algorithm around AC-3 that iteratively makes
another choice and calls AC-3, till one of these two conditions is met

Maintaining Arc Consistency

MAC (graph G)

if every node has exactly 1 val: return solution (complete assignment)

if some node has no val, return fail (backtrack)

choose a node V that still has multiple values in its domain

for each value a in dom(V) :
G’ = G{V=a} // set node V to the value a
G'’ = AC3(G’) // make graph arc-consistent based on this choice
result = MAC(G’’) // recurse, try to extend this to a complete solution
if result!=fail: return result

return fail

10/2/2023

29

path-consistency and k-consistency

* the concept of arc-consistency can be generalized to path-consistency
* mutually consistent choice of values for 3 variables related by two constraints

e suppose variables A, B, and C are involved in constraints, connected by edges A-B
and B—->C
e YV aedom(A) and V bedom(B), 3 cedom(C) s.t. A=a, B=b, C=c are consistent

e can be generalized further to k-consistency (any sequence of k nodes)
* however, the number of paths increases exponentially with k
* SO ensuring k-consistency in a graph takes more processing time

* in the limit: n-consistency (for all n nodes in graph) means every node has
at least 1 choice consistent with some choice at every other node

e a)if there is 1 value at every node, this is a unigue solution for the CSP

* b) if some nodes have multiple value, there might be multiple solutions; still have to
run MAC to make some choices

e c)itis possible there are no choices left for some vars: CSP is infeasible (has no
solutions)

Complexity of AC-3

what is the time-complexity of AC-3?

function AC-3(csp) returns false if an inconsistency is found and true otherwise

assume there are 2C edges (num Of quene +— a queue of arcs, initially all the arcs in csp

constraints, c<n?), and d is the max **'lﬁi{;j quee is ;?:ﬁmw f;ﬂ
. . . _ (A, Aj) N quele
domaln SlZe: d—maX(l dom(vl) |) if REVISE(esp, X;, X ;) then
. . if size of D); = 0 then return false
an edge is only pU’F in the queue for each X, in X;.NEIGHBORS - {X,} do
whenever a value is deleted from the add (X, X;) to queue

return true

domain of a var

function REVISE(csp, X;, X;) returns true iff we revise the domain of X;

so all edges will be processed at most ", iccic falee

cd times in total (calls to Revise()) for each z in D; do | |

. . . if no value y in I); allows (z,y) to satisfy the constraint between X; and X, then
Revise() takes up to d? loop iterations delete _frc;n} D;
to check for arc-consistency return revised

so AC-3 is O(cd?) = O(n?d°?)

10/2/2023 31

Computational Complexity of CSPs

* Theorem: Solving CSPs is NP-hard.
e one can check whether a given variable assignment satisfies all constraints in
polynomial time
* Theorem: Determining whether CSPs have a solution is NP-complete.
* Proof: Graph Coloring can be reduced to CSP (CSP <— graph 3-coloring <«
graph cligue <« 3-Sat)
* we have already shown that graph-coloring can be transformed into a CSP in
polynomial size
* thus many discrete problems can be encoded as CSPs

* food for thought: how would you encode Vertex Cover as a CSP?
* does there exists a subset of k nodes that touches every edge?

Computational Complexity of CSPs

* how can CSPs be NP-complete if AC-3 runs in polynomial time, O(n?d3)?

 we might have to call it an exponential number of times from MAC before we find a
complete and consistent solution

* relation to Linear Programming (LP)

* Linear Programs are like CSPs except they use continuous variables instead of discrete
domains, and linear constraints

e example: maximize 5x+3y-z

subject to 8x-7y<12, y+2z<1, 0<x<2, 0<y<10, 0<z52
there exist polynomial time algorithms for LPs (e.g. Simplex Algorithm)

Mixed Integer-Linear Programs (MIPs): some variables are restricted to integers
Integer Programs (IPs) have all discrete values and can encode CSPs: IPs € CSPs

discrete values makes solving constraints HARDER computationally
* Linear Programmingisin P
* Mixed Integer Programming is in NP (actually NP-hard)

function MIN-CONFLICTS(csp, mar_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
maz_steps, the number of steps allowed before giving up

I\/I I n _CO nf I CtS current +— an initial complete assignment for csp
. for i =1 to maz_steps do
A | go r | t h I | if current is a solution for csp then return current

var +— a randomly chosen conflicted variable from csp. VARIABLES
value +— the value v for var that minimizes CONFLICTS(csp, var, v, current)
set var = value In current

return failure

e Local Search for CSPs

e start by choosing a random variable assignment (which probably violates lots
of constraints)

* pick a variable at random and change its values to something that causes less
conflicts

* repeat until it “plateaus” (number of conflicts stops decreasing)
* note: this is NOT guaranteed to find a complete and consistent solution!
* but it works surprisingly well in practice

* MinConflicts can solve the million-queens problem (on a 10°x10° chess board)
in a few minutes (!)

34

Application of CSP to Computer Vision

* 2D edge-detection - 3D object interpretation
* Waltz Constraint Propagation algorithm

* edges can be ambiguous — which side is part of object, vs background
(or another object behind, i.e. occluded?)

* for any intersection of edge, there are only a finite number of possible
labeling (for realistic 3D images)

* some 3-way intersections can be interpreted as corners

3D Image Interpretation and Waltz Propagation

e from Ch. 12 in Patrick Winston (1984). Artificial Intelligence.
 http://courses.csail.mit.edu/6.034f/ai3/ch12.pdf

* 2D image pre-processing: edge detection
e Gaussian filter + segmentation

* how can you infer the 3D objects from line segments?

* how many object are there in this image?

Sl

_.—'—"‘-_____H__ e T T
-

==

HIIJ h ~—
* lines are CSP variables with discrete »’\J * |
= |

labels:
* + = cCconvex

e - = concave * junctions acts as constraints;
* ->-=boundary (between foreground converging lines must be labeled
and background; right-hand rule) consistently: &:':I

A

Arrow
junctions

L | Fork ,// T
juncti/OQS/ junctions 'antions

~o e
i CER
~ ~_ f +
o e
RN & —
A I
N e
10/2/2023 _ Y
~__

i e

AN

+

/\,ﬂ/

* The Waltz Propagation algorithm is a predecessor of modern Constraint Propagation,
which can label these diagrams and extract 3D objects.
* Shadows, cracks, and coincident boundaries are challenges.

10/2/2023 38

