
Game Search
CSCE 420 – Fall 2023

read: Ch. 5

2/19/2023 1

Game Search
• games are useful to study for AI because they represent adversarial

environments
• the world state is not controlled solely by the agent
• the world state can change because of actions by other agents (players)
• different agents might have different objectives
• this can lead to competitive behavior, or cooperative behavior

• there are many different kinds of games
• simultaneous vs. sequential vs. iterated
• single-player, two-player, multi-player
• stochastic games with an element of chance
• complete vs. incomplete information (partially observable)
• also applies to economics: pricing of goods, auctions, contract negotiations...

• Of course, DeepBlue and AlphaGo are widely-recognized successes in AI,
representing achievement of intelligent behaviour

2/19/2023
2

Sequential Games

• multiple steps – players take turns

• each player has a utility function

• ui(s) (where i is the player, and s is a game state)

• +1 for win; -1 for lose; 0 for draw (tic-tac-toe); 0 for non-terminal states

• money (poker)

• rewards for achieving goals - cost of actions or resources used

• simplest form: 2-player, 0-sum games
• Σi ui(s) = 0 or u1(s) = -u2(s)

• examples: tic-tac-toe, checkers, chess...

2/19/2023 4

Minimax Search

• in a 2-player, 0-sum game like tic-tac-toe, how can we decide what
move to make?

• method 1: write a bunch of rules that encode a strategy

• method 2: use systematic search
• use look-ahead for each possible action to imagine what opponent response

might be
• key idea: we can anticipate what move the opponent will make, because their

utility is assumed to be the opposite of ours
• thus the opponent will change the game in the way that is best for them,

which is worst for us
• recursion: of course, to simulate the opponent’s reasoning, they will have to

consider our response to their response, and so on...

2/19/2023 5

O
X X

Minimax Search

• recall that ui(s)=0 for non-terminal states

• label alternating levels in search tree as max nodes and min nodes

• define minimax value for each state s as follows:
ui(s) if s is a terminal state

minimax(s) = max { minimax(s’) for s’∈ succ(s) } if s is a max node

min { minimax(s’) for s’∈ succ(s) } if s is a min node

• decision at root node: argmax { minimax(s’) for s’∈ succ(s) }
• i.e. choose the action that leads to the successor with highest score, which has the

highest expected payoff

2/19/2023 6

Minimax Search

2/19/2023 7

double-recursion:
each function calls
the other

2/19/2023 8

2/19/2023 9

2/19/2023 10

representing player 1,
who wants to maximize u1(s)

representing player 2,
who wants to
maximize u2(s),
which is the same as
minimizing u1(s)

Minimax Search

• note: this only determines next move (by player 1)

• then player 2 chooses an action

• then we have to recompute the game tree from that state to decide
the next move

• minimax does not determine the entire sequence of play; you cannot
force the choices of the other player

• we assume the opponent will make optimal choices (for them)

• what happens if they make a sub-optimal move (e.g. a mistake)?

2/19/2023 11

Complexity of Game Search

• the problem with applying Minimax to most games is that the search
space is too large
• estimates for chess: avg game=70 moves, avg branching factor=35, state

space = ~3570 = ~10108

• so we can’t search all the way to leaves (end-games) where utility is defined
to propagate the minimax values back up

• solution 1: use intelligent pruning to reduce the search space
• sometimes we can infer parts of the space that do not need to be searched

2/19/2023 12

α/β-pruning

• at each node, keep track of 2 additional values α, β (along with
minimax value)
• α is the best possible value for any max node above so far (initially −∞)
• β is the best possible value for any min node above so far (initially +∞)

• as we process children, update these params
• at max nodes, update α: α=max{α, minimax(s’)} for each s’∈children(s)}

• at min nodes, update β: β=min{β,minimax(s’)} for each s’∈children(s)}

• pruning condition:
• at min nodes: when v<α (i.e. best choice of parent max node)

• at max nodes: when v>β (i.e. best choice of parent min node)

• equivalently: when interval of v at node no longer overlaps interval of parent
2/19/2023 13

2/19/2023 14

(this example is for
a simplified version
of the alpha-beta pruning
algorithm where we
initialize minimax value v
to the range [-∞,∞]
at every node (instead of
passing α and β in as
parameters), and the
pruning condition is
evaluated by checking
the overlap between the
range of each node and
it’s parent)

2/19/2023 15

max nodes update α prune if score becomes greater than upper-bound
of parent’s interval, since parent would never
choose this branch

min nodes update β

2/19/2023 16

[-
∞,∞]
[-∞,3]

[-
∞,∞]
[-∞,3]

[-
∞,∞]
[-∞,3]
mm=3

[3,∞]
[3,2]x

α=3,v=2;
prune
remaining
children
since v<α
(min node)

[3,∞]
[3,2]x

[3,∞
]

[3,∞]
[3,14]

[3,∞]
[3,2]x

[3,∞]
[3,14]
[3,5]
[3,2]x

update: no
update

finalize:

finalize:

this version
traces the
α/β algorithm

more faithfully

Complexity of Game Search

• solution 2: use a depth-limit while searching a game tree
• need a board-evaluation function to assign scores to internal nodes

(or non-terminal states, or non-end-games)
• the value estimates the probability of winning or expected payoff

from each state (heuristically)
• the computer can then perform Minimax (possibly with α/β-

pruning) down to a fixed level, apply the board evaluation function,
and propagate values upward

• choose depth limit based on time available (and CPU speed)
• expressed as number of “ply” (moves, or levels)
• 2-6 ply (a few sec): rudimentary chess performance (amateur skill level)
• 6-10 ply (a few min): much better moves due to deeper search/look-ahead

2/19/2023 17

Board Evaluation Functions

• a board evaluation function must guess the value (probable outcome)
of each state

• they are typically based on features

• examples from chess:
• piece differential (#PlayerPieces - #OpponentPieces)

• material value (pawn=1, knight/bishop=3, rook=5, queen=9)

• center control

• # of pieces threatened or constrained

• patterns or special arrangements of pieces

2/19/2023 18

Eval(s) = w1f1(s) + w2f2(s) + ... + wnfn(s)

In-class Exercise

• How would you design a
board evaluation
function for tic-tac-toe?

• Suppose that you were
limited to a look-ahead
of only 2 levels while
doing minimax.

19

O
X X

O O
X X

O
X O X

O O
X X

O
X X

O

...

...

X O O
X X

O
X O X

X

O O
X X

X

O X
X X

O

...

...

Scores: ? ? ? ?

(6 nodes)

(6*5=30

nodes)

search truncated at depth limit

......

Board Evaluation Functions

• problems with using board evaluation functions
• non-quiescence

• board evaluation function should only be applied to quiescent states, where the value
has stopped changing (i.e. “converged”)

• if there have been large changes in value, extend the search to allow it to quiesce

• rather than enforcing a strict depth limit, can be non-uniform

• use a dynamic IS-CUTOFF(s) test

• horizon effect
• sometimes, enough dodging moves can be made to forestall a bad outcome so it occurs

just beyond the depth limit (like moving a bishop back and forth to delay capture, or
repeatedly checking the opponent’s king)

• delaying the inevitable – it might change our decision if we knew this

• hard to detect and mitigate

2/19/2023 20

DeepBlue

• developed by IBM

• achieved grandmaster rating in 1990’s

• defeated Gary Kasparov in 1997

• a supercomputer with custom ASICs for very fast α/β-Minimax search
• 30-node IBM RS/6000 SP computer; 120 MHz and 1GB per proc.
• 16 “chess chips” on each node, for generating moves and computing a board

evaluation function
• explored ~100 million moves/s, down to 10-12 ply (though non-uniform)

• included an end-game database (for example, once there are only 5
pieces left, lookup optimal moves in a pre-computed table)

• What did we learn about Intelligence?
2/19/2023 21

(images from Wikipedia)

Connect4

2/19/2023 24

image obtained from
https://en.wikipedia.org/wiki/Connect_Four

• pieces are dropped in vertical columns; 4-in-a-row wins the game
• here is an online app you can play around with:

https://www.cbc.ca/kids/games/all/connect-4

• Challenge: Can you come up with a board evaluation function for playing
Connect4?
• it would not be hard to implement this on the command line (similar to tic-tac-toe)
• the State Space is much larger, so you would have to use a depth cutoff in the

Minimax search and apply a board evaluation function to incomplete states
• (try pausing the animation above and estimating the value of the state)

.

.

.

.

. . O X X . .

. O O X O . .

. X X O O . .

Expectiminimax

• stochastic games – games with an element of
chance (e.g. dice, cards...)
• examples: backgammon, yahtze...

• can we apply minimax search?
• yes, if we interleave min and max nodes with a

level of chance nodes

• at chance nodes, the score is the weighted sum
over the children, weighted by probability, i.e.
“expected outcome”

2/19/2023 25

Expectiminimax(s) =
u1(s) if is a terminal node
max{Expectiminimax(s’)|s’∈succ(s)} if max node
min{Expectiminimax(s’)|s’∈succ(s)} if min node
Σs’∈succ(s) P(s’)⋅ Expectiminimax(s’) if chance node

a famous backgammon program called TDgammon
(by Gary Tesauro) used Reinforcement Learning

Monte Carlo Tree Search (MCTS)

• instead of exhaustively exploring search tree, sample random paths (“rollouts”) all
the way to terminal states (end-games with defined utility)

• the value of a state is taken as the statistical average outcome of trajectories passing
through it (“back-propagate” outcomes)

• also keep track of n (# trial trajectories passing through each node) and variance (σ2)
at each state to assess certainty

2/19/2023 26

(Sec 5.4)

Monte Carlo Tree Search (MCTS)

• think of MCTS as an alternative to manually creating a board evaluation
function

• estimate quality of each state (prob of winning) by simulating random
game trajectories (playouts)

• at each node, keep track of how many times it led to a win; more
trajectories provide higher confidence

• can use these values to select children in minimax search

• select a node (game state) whose value is uncertain

• run simulation: play game to see outcome from that state

• back-propagation: update nodes along path with outcome
2/19/2023 27

Monte Carlo Tree Search (MCTS)

2/19/2023 28

• selection policy – which states could use more sampling?
• expansion vs. exploration

• is it better to refine value estimate at good nodes, or increase
certainty of bad nodes?

• allow occasional sub-optimal choices for the sake of seeing how
they turn out

• playout policy
• there are many choices about how to make moves during simulation

• just making subsequent random moves is not realistic

• it helps to define an initial strategy to play against, even if weak

Monte Carlo Tree Search (MCTS)

• using MCTS to learn strategy for Blackjack
• simulate >10,000 random games to learn policy

2/19/2023 29

H=hit
ST=stand
D=double-down

dealer’s card showing

total of
cards in
hand

expected prob.
of winning
for Hit, based
on mean of
rollouts

dealer’s card
showing

total of
cards in
hand

AlphaGO

• GO is played with b/w stones on a 19x19 board
• search space much larger than chess (bran. fact. starts at 361)

• from Google DeepMind, 2017

• after decades of attempts by other AI programs, AlphaGO
finally beat the human GO world champion

• learns from self-play (bootstrapping), >100,000 games

• trains a deep neural network (14 conv. layers) to
represent a value function (reinforcement learning,
MCTS)

• reached grandmaster rating after 21 days (176 GPUs)

2/19/2023 30

image from
https://en.wikipedia.org/wiki/Go_(game)

