Game Search

CSCE 420 — Fall 2023
read: Ch. 5

Game Search

* games are useful to study for Al because they represent adversarial
environments

* the world state is not controlled solely by the agent

* the world state can change because of actions by other agents (players)
 different agents might have different objectives

* this can lead to competitive behavior, or cooperative behavior

e there are many different kinds of games
* simultaneous vs. sequential vs. iterated
* single-player, two-player, multi-player
e stochastic games with an element of chance
* complete vs. incomplete information (partially observable)
* also applies to economics: pricing of goods, auctions, contract negotiations...

* Of course, DeepBlue and AlphaGo are widely-recognized successes in Al,
representing achievement of intelligent behaviour

Sequential Games

* multiple steps — players take turns
* each player has a utility function

* u(s) (whereiis the player, and s is a game state)

e +1 for win; -1 for lose; O for draw (tic-tac-toe); O for non-terminal states
* money (poker)

* rewards for achieving goals - cost of actions or resources used

* simplest form: 2-player, 0-sum games
* X ul(s)=0 or us)=-u,ls)

* examples: tic-tac-toe, checkers, chess...

Minimax Search X |X

* in a 2-player, 0-sum game like tic-tac-toe, how can we decide what
move to make?

* method 1: write a bunch of rules that encode a strategy

* method 2: use systematic search
* use look-ahead for each possible action to imagine what opponent response
might be
* key idea: we can anticipate what move the opponent will make, because their
utility is assumed to be the opposite of ours
* thus the opponent will change the game in the way that is best for them,
which is worst for us

* recursion: of course, to simulate the opponent’s reasoning, they will have to
consider our response to their response, and so on...

MAX (%)
,,));‘_‘;rr"’ﬁffif:} Y ir?iit‘:f": ———
« . h MIN (0) [X alli: % %
Minimax Searc el :
MAX (%) @ 20 g
X0 Xl (X0 X0
MIN (0) X X
S B T
. o BN (O EOH -
* recall that u,(s)=0 for non-terminal states TERI‘T\TL o] [xxo] Moo
ity - |

label alternating levels in search tree as max hodes and min nodes

» define minimax value for each state s as follows:

B u,(s) if s is a terminal state

minimax(s) = — max { minimax(s’) for s’€ succ(s) } if sis a max node
~ min {minimax(s’) for s’€ succ(s) } if s is a min node

decision at root node: argmax { minimax(s’) for s’€ succ(s) }

* i.e. choose the action that leads to the successor with highest score, which has the
highest expected payoff

Minimax Search

function MINIMAX-SEARCH(game, state) returns an action

player +— game. TO-MOVE(state)
value, move +— MAX-VALUE(game, state)

return mouve

-
-
L

function MAX-VALUE(game, state) returns a (utility, move) pair
_if game.Is-TERMINAL(state) then return game UTILITY(state, player), null

T v —0
for each a in game ACTIONS(state) do

v2, a2 + MIN-VALUE(game, game RESULT(state, a))

if v2 > v then \
\
U, Move+— V2, a)

return v, move PPl

-’

_ -

4
~
~

2/19/2023

function MIN-VALUE(game, state) returns a (utility, mouve) pair
if game. IS-TERMINAL(state) then return game UTILITY(state, player), null

U4+ 400
\ftlrﬁach_a in game.ACTIONS(state) do
v2, a2 ;‘MAX—VALUE{game, game.RESULT(state, a))
if v2 < v then
U, move < V2, a
return v. move

~

double-recursion:
each function calls
the other

MAX LY/

MIN 0\¢

2/19/2023

MAX C Y/

MIN (3)\8/

2/19/2023

MAX (3 /A

representing player 1,
who wants to maximize u(s) aq aq

MIN (3)\8/

representing player 2,

who wants to

maximize u,(s), bL
which is the same as b-
minimizing u(s)

2/19/2023

Minimax Search

* note: this only determines next move (by player 1)

* then player 2 chooses an action

* then we have to recompute the game tree from that state to decide
the next move

* minimax does not determine the entire sequence of play; you cannot
force the choices of the other player

* we assume the opponent will make optimal choices (for them)
* what happens if they make a sub-optimal move (e.g. a mistake)?

Complexity of Game Search

* the problem with applying Minimax to most games is that the search

space is too large
» estimates for chess: avg game=70 moves, avg branching factor=35, state
space = ~3570 = ~10108
e so we can’t search all the way to leaves (end-games) where utility is defined
to propagate the minimax values back up

* solution 1: use intelligent pruning to reduce the search space
* sometimes we can infer parts of the space that do not need to be searched

o/ 3-pruning

* at each node, keep track of 2 additional values «, 3 (along with
minimax value)

* ais the best possible value for any max node above so far (initially -o)

* B is the best possible value for any min node above so far (initially +o0)

331 A\
/ \\

* as we process children, update these params
e at max nodes, update a: a=max{a, minimax(s’)} for each s Ech|ldren(s)}
* at min nodes, update 3: f=min{3,minimax(s’)} for each s’€children(s)}

e pruning condition:
e at min nodes: when v<a (i.e. best choice of parent max node)
* at max nodes: when v>[3 (i.e. best choice of parent min node)
e equivalently: when interval of v at node no longer overlaps interval of parent

(this example is for

a simplified version

of the alpha-beta pruning
algorithm where we \
initialize minimax value v(m
to the range [-o0,00]

at every node (instead of
passing o and B in as
parameters), and the
pruning condition is
evaluated by checking

the overlap between the
range of each node and (e)
it’s parent)

2/19/2023

function ALPHA-BETA-SEARCH(game, state) returns an action
player < game.TO-MOVE(state)
value, move +— MAX-VALUE(game, state, —o0, +00)
return move

function MAX-VALUE(game, state, ., 3) returns a (utzlity, move) pair
if game. lS-TERMINAL(state) then return game UTILITY(state, player), null
U — —00
for each a in game ACTIONS(state) do
v2, a2 < MIN-VALUE(game, game RESULT(state, a), a, [3)
if v2 > v then
U, move +—vZ2, a
max nodes update « —> o+ MaX(a, v)
if v = [then return v, movet——
return v, mouve

prune if score becomes greater than upper-bound
of parent’s interval, since parent would never
choose this branch

function MIN-VALUE(game. state, av, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game UTILITY(state, player), null
V4 +00
for each a in game. ACTIONS(state) do

v2, a2 +— MAX-VALUE(game, game RESULT(state, a), v, [3)

if v2 < v then

v, move +— v2, a
min nodes update f —| 5+ MIN(3, v)

2/19/2023 if v < o then return v, move .
return v. mouve

[-
update: °2,°°] ¥/
[_0013]
this version
traces the 3

o/ algorithm
more faithfully

(C)
[- o=3,v=2;
N :3] prune
finalize: [-°°,_] remaining
mm/—ef children
since v<a
3 12 8 312 8 2 (min node)
(e) (1) finalize%
[3,0°]
[3,] }7 [3,14]
13,2]x [3,5]
[3,2]x
2/19/2023 a 16

[l

4 5 2

Complexity of Game Search

* solution 2: use a depth-limit while searching a game tree

* need a board-evaluation function to assign scores to internal nodes
(or non-terminal states, or non-end-games)

e the value estimates the probability of winning or expected payoff
from each state (heuristically)

* the computer can then perform Minimax (possibly with o/[3-
pruning) down to a fixed level, apply the board evaluation function,
and propagate values upward

» choose depth limit based on time available (and CPU speed)
» expressed as number of “ply” (moves, or levels)

» 2-6 ply (a few sec): rudimentary chess performance (amateur skill level)
e 6-10 ply (a few min): much better moves due to deeper search/look-ahead

Board Evaluation Functions

* a board evaluation function must guess the value (probable outcome)
of each state

* they are typically based on features

* examples from chess:
 piece differential (#PlayerPieces - #OpponentPieces)
* material value (pawn=1, knight/bishop=3, rook=5, queen=9)
e center control
 # of pieces threatened or constrained
* patterns or special arrangements of pieces

Eval(s) = w f,(s) + W,f,(s) + ... + w, f,(s)

2/19/2023

In-class Exercise

How would you design a // \

board evaluation V oo 00 0 0
function for tic-tac-toe? nodesy X |X Xl X X0 | X Xl X
Suppose that you were O
limited to a look-ahead
of only 2 levels while
doing minimax. A
OO0 X OO0 0) O| X
(6*5=30 X X = X X X 0OX X X
nodes)
X X 0]

search truncated at depth limit

Scores: ? ? ?
19

Board Evaluation Functions

e problems with using board evaluation functions

* non-quiescence

* board evaluation function should only be applied to quiescent states, where the value
has stopped changing (i.e. “converged”)

* if there have been large changes in value, extend the search to allow it to quiesce
* rather than enforcing a strict depth limit, can be non-uniform
e use a dynamic IS-CUTOFF(s) test

* horizon effect

e sometimes, enough dodging moves can be made to forestall a bad outcome so it occurs
just beyond the depth limit (like moving a bishop back and forth to delay capture, or
repeatedly checking the opponent’s king)

* delaying the inevitable — it might change our decision if we knew this
* hard to detect and mitigate

DeepBlue

* developed by IBM
* achieved grandmaster rating in 1990’s
* defeated Gary Kasparov in 1997 -

* a supercomputer with custom ASICs for very fast a/f3-Minimax search
e 30-node IBM RS/6000 SP computer; 120 MHz and 1GB per proc.

* 16 “chess chips” on each node, for generating moves and computing a board
evaluation function

* explored ~100 million moves/s, down to 10-12 ply (though non-uniform)

* included an end-game database (for example, once there are only 5
pieces left, lookup optimal moves in a pre-computed table)

 What did we learn about Intelligence?

2/19/2023 21

tarss vonkiey © ppdoeg ol

LY L QT T LG EN Wy

Uiy o) iy g daogy

1) N ETRRTETT

..#..__..n] .___..:._.___....-. k|

WIS) M

1SN iy

n_u_..lp_.n- .__._.___._m__.z

D] Doy vy

..u_..____._“u TR N

D) Ay

UT L RET Rt T

WEIE LD T R

Iy o) ._._._........._: v

£-£” .J_._._z_.rl.r.._.:

Joy

___u_-_ﬂ_lﬂ_.l_u_a_:_____::_::

—

20041
LIMK

=

| il

1985

1980

1975

1970

1965

1760

Ratings of human and machine chess champions.

Figure 5.12

SO0 09L" L¥E'SEL
eoo‘oRR'0LL LN
ooo‘orr'SeN'cH
e00'aTL'TrR LY
00 0ac L LE'OT
soo'one'sEr'ol
eo0'orR'IHZ'S
o00°'0Z¥ L Z0'T
eo0'azL'oiE"L
(N]
L
't
HPTR 1Y

0o v

00" a0z Mm

DEEP THOUGHT [1994)

Odher Jﬂrfnpnﬂi

ot well

'

S00'DZL"S m

*0"e'T m
L,]

o00'oRE")
0o

BELLE ([1943)
3 CHESS 4.8 (19TT)

o DUCHESS [197T)
I:munrm
4 CHESS 4.0 [1973-T4)

KAISSA[19T4)

3

= | soo'oze
| um asa'on
u_ mm 00008
” o | s00"0¥
i . 000'02

2800
2400
2200
1999
1800

1800
1400

Kssparov 2000

am

Master
Expart
Class A
Clasa B
Glass C

Connect4

image obtained from
https://en.wikipedia.org/wiki/Connect_Four

 pieces are dropped in vertical columns; 4-in-a-row wins the game

* here is an online app you can play around with:
https://www.cbc.ca/kids/games/all/connect-4

* Challenge: Can you come up with a board evaluation function for playing
Connect4?

— -
E T
— —_—
- &
-
4 A

o0
oo
o
D
=
-

* it would not be hard to implement this on the command line (similar to tic-tac-toe} - - - - - - .
* the State Space is much larger, so you would have to use a depth cutoffinthe |..

Minimax search and apply a board evaluation function to incomplete states i oxx
 (try pausing the animation above and estimating the value of the state)

2/19/2023 24

a famous backgammon program called TDgammon ° e “ L S W
(by Gary Tesauro) used Reinforcement Learning A S .'g !!Q.

Expectiminimax
 stochastic games — games with an element of
chance (e.g. dice, cards...) “‘ ‘
* examples: backgammon, yahtze...
* can we apply minimax search? - OO0

MAX

* yes, if we interleave min and max nodes with a
level of chance nodes

. . CHANCE Q
 at chance nodes, the score is the weighted sum N
over the children, weighted by probability, i.e. R
“expected outcome” ,

Expectiminimax(s) = CHANCE
[u,(s) if is a terminal node)
max{Expectiminimax(s’)|s’E€succ(s)} if max node "
min{Expectiminimax(s’) |s’Esucc(s)} if min node M A
)X) P(s’)- Expectiminimax(s’) if chance node

s’Esucc(s

2/19/2023

TERMINAL

Monte Carlo Tree Search (MCTS) (Sec 5.0

* instead of exhaustively exploring search tree, sample random paths (“rollouts”) all
the way to terminal states (end-games with defined utility)

* the value of a state is taken as the statistical average outcome of trajectories passing
through it (“back-propagate” outcomes)

* also keep track of n (# trial trajectories passing through each node) and variance (o0?)
at each state to assess certainty

function MONTE-CARLO-TREE-SEARCH(stafe) returns an action
tree +— NODE(state)
while I3-TIME-REMAINING() do
leaf +— SELECT(tree)
child + EXPAND(leaf)
result +— SIMULATE(child)
BACK-PROPAGATE(result. child)

210005 Teturn the move in ACTIONS(state) whose node has highest number of playouts e

Monte Carlo Tree Search (MCTS)

* think of MCTS as an alternative to manually creating a board evaluation
function

e estimate quality of each state (prob of winning) by simulating random
game trajectories (playouts)

* at each node, keep track of how many times it led to a win; more
trajectories provide higher confidence

e can use these values to select children in minimax search

* select a node (game state) whose value is uncertain
* run simulation: play game to see outcome from that stat @

* back-propagation: update nodes along path with outcom @

Monte Carlo Tree Search (MCTS)

* selection policy — which states could use more sampling?

e expansion vs. exploration

* is it better to refine value estimate at good nodes, or increase
certainty of bad nodes?

* allow occasional sub-optimal choices for the sake of seeing how
they turn out

* playout policy
* there are many choices about how to make moves during simulation
* just making subsequent random moves is not realistic
* it helps to define an initial strategy to play against, even if weal

Monte Carlo Tree Search (MCTS)

* using MICTS to learn strategy for Blackjack
* simulate >10,000 random games to learn policy

dealer’s card showing

H H H H H
total of H | H|H | H H
cards in RN H |8
H H H H H
hand H| H H|H|H|H|H
1 D D D D D D D D D H
10 D D D D D D D D H H
9 H D D D H H H H H H
5-8 H H H H H H H H H H
H=hit
ST=stand

2/19/2023
D=double-down

expected prob.
of winning

- OB for Hit, based

* 0.4 on mean of

>
0.3 rollouts

roono

0.3

T

g 4
e
Tl :-: 4
20 4 . & Sss\lsirns card
total of 1 12 " 5 &
cards in 8 5 10 29

hand

AlphaGO

e GO is played with b/w stones on a 19x19 board

e search space much larger than chess (bran. fact. starts at 361)

 from Google DeepMind, 2017 image from

https://en.wikipedia.org/wiki/Go_(game)

* after decades of attempts by other Al programs, AlphaGO
finally beat the human GO world champion

* learns from self-play (bootstrapping), >100,000 games

* trains a deep neural network (14 conv. layers) to

represent a value function (reinforcement learning,
MCTS)

* reached grandmaster rating after 21 days (176 GPUs)

2/19/2023 30

