
Search Algorithms
CSCE 420 – Fall 2023

read: Ch. 3

9/12/2023 1



Search as a Model of Problem Solving in AI

• many AI problems can be formulated as Search

• planning, reasoning, learning...

• define discrete states of the world, connected by possible actions

• find a path from the current state to a desired goal state, producing a 
sequence of actions

• we start by describing generic (un-informed) search algorithms (like 
DFS)

• then we will extend this to heuristic search algorithms (like A*) which 
utilize domain knowledge to make the search more efficient

9/12/2023 2



S

Search Tree:

G?

Example: Navigation 
as Search

• finding a path from an initial location 
(start) to a desired destination (goal)

• emphasis on discrete moves (city to 
city, or corner to corner as way-points

start

goal

robot moving in
workspace with
obstacles



actions = slide a tile up/down/left/right into empty space
a solution path is sequence of actions that transforms start state into the goal

move 6 left

move 4 down

move 2 right

...

move 5 
right move 2 

down

Example: Puzzles as Search

other examples: Rubik's cube, River Crossing Problems, Monkey and Bananas Problem...



X  O  O
X

X

Framework for Formulating Search Problems

• states: a set of discrete representations/configurations of the world
• this defines the State Space, S = {s1,s2...}

• could be infinite

• operator: a function that generates successor states
• S |→ 2S ... mapping from S to powerset of S, i.e. subset of states

• oper(si) = {sj}  S

• this encodes the legal “moves” or “actions” in the space that transform from 
one state to another (or possibly multiple successors, or none)

• example: think about moves in tic-tac-toe

9/12/2023 6

X  O  O
O  X
X

oper( )={
X  O  O

X   O
X

X  O  O
X   

X  O

X  O  O
X

X       O

}, , ,



Search Framework

• the operator, applied recursively to the initial state, sinit, generates the 
State Space (or at least, the reachable part)

• visualize it as a tree (the search tree)

• define b as the ‘branching factor’: average number of successors for 
each state

• the size of the tree (nodes on each level) grow exponentially with b

9/12/2023 7

sinit

2 successors of sinit

4 successors of successors

8 nodes

16 nodes

b=2



Search Framework

• goals: often specified in a domain-specific way as a set of requirements
• example: “winning states in tic-tac-toe have 3 X’s in a row or column or diagonal”
• abstractly: we can think of goals as a subset of states in the State Space, i.e. G={sj} ⸧ S

• for many AI problems, we would be happy to find any goal node 
• (doesn’t matter which one)
• we are interested in the path, which is the sequence of actions that transforms the 

initial state sinit into the goal sgoal

• in some cases, we might prefer the shortest path (fewest actions required)

• in other cases, if each operator has a different cost, we might be interested 
in finding the solution with the least path cost

• example: deciding to take a bus instead of a cab as part of a trip in order to 
minimize cost

9/12/2023 8cost 𝑠1. . 𝑠𝑛 = 
𝑖=1..𝑛

𝑐(𝑜𝑝𝑖) where s1=init, sn=goal, and si+1op(si)



Uninformed Search (‘Weak’ Methods)

• Depth-first Search (DFS) –
expand children of 
children before siblings

9/12/2023 9

1

2

3                             10

4                7        11               14

5     6       8    9    12    13



Uninformed Search (‘Weak’ Methods)

• Depth-first Search (DFS) –
expand children of 
children before siblings

9/12/2023 10

• Breadth-first Search (BFS) –
expand children of children 
AFTER siblings

1

2

3                             10

4                7        11               14

5     6       8    9    12    13

1

2                                                       3

4                           5                         6                           7

8 9        10         11          12          13          14          15

16    17   18    19 ...



Uninformed Search (‘Weak’ Methods)

• the ‘frontier’ or ‘agenda’ is the set of nodes that have been expanded 
but not yet explored, where expanded means it is a child of a visited 
node and explored means goal-tested 

9/12/2023 11

1

2                                                         15

3                             10

4                7       11               14

5     6       8    9    12    13

1

2                                                       3

4                           5                         6                           7

8 9        10         11          12          13          14          15

16    17   18    19 ...



A Unified Search Algorithm

• although it is easy to write pseudo-code for DFS and BFS separately, 
they can be unified in an iterative procedure using a data structure to 
hold the nodes in the frontier

• BFS: frontier = queue (FIFO)

• DFS: frontier = stack (LIFO)

9/12/2023 12



9/12/2023 13

(ignore 'reached' for now;
It is for GraphSearch, 
see slides below)



Node

Search Framework

• nodes in the search tree represent states in the state space

• however, they are not quite the same

• a node represents a particular path (sequences of actions) to a state

• there might be multiple paths that generate the same state

9/12/2023 14

Node 17State Depth=4
Parent=ptr…
Score...

X  O  O
X   O

X

Node

State 81

X  O  O
X   O

X

Node 52

State 81

X  O  O
X   O

X

Node Node

Node

See examples
on Navigation 
slide pointer

to parent



9/12/2023 15

A

B                                                         C

D                             E                        F                             G

H                I          J                K        L               M       N                O

P     Q      R    S    T      U     V     W   X     Y   Z      1     2     3      4     5

• frontier (queue) for BFS:
• A // [front | A | end]

• B C // pop A, push children on end

• // pop B from front

• // push children D E on end

• C D E 

• D E F G

• E F G H I // start adding next level

• F G H I J K

• G H I J K L M

• ...



9/12/2023 16

to change it to do DFS,
all you have to do is
replace the frontier
with a stack (LIFO):

frontier ← stack, initialized 
with start node as first element



9/12/2023 17

to change it to do DFS,
all you have to do is
replace the frontier
with a stack (LIFO):
i.e.
frontier ← stack,
initialized with start node 
as first element

Depth-First Search

LIFO



9/12/2023 18

A

B                                                         C

D                             E                        F                             G

H                I          J                K        L               M       N                O

P     Q      R    S    T      U     V     W   X     Y   Z      1     2     3      4     5

• frontier (stack) for DFS:
• A

• // pop A, push children B and C

• B C 

• // pop B, push D and E on front

• D E C

• H I E C // pop D, push H and I

• P Q I E C // pop H, push P and Q

• Q I E C // pop P

• I E C // pop Q

• R S E C // go to I, push R and S

• ....
note: when you expand a node, the order in which you push the children makes a difference
In this example, I am pushing the children in reverse order, e.g. C before B (as children of A)
what would the search order look like if we pushed the children in alphabetical order?



Graph Search

• in some Search Trees, there are multiple paths to the same state

• example: reversible operators (move, then move back); or think of a 
map; or think of circular moves in the tile puzzle

• detecting repeated (visited) states can greatly reduce redundancy in 
the search space
• if you have already explored children beneath node n, there is no need to do 

it again

• exception: if you find a shorter/cheaper path to n, you might want to 
keep track of the best such path found

• ‘reached’: you need a data structure (like a hash table) to keep track 
of these states

9/12/2023 19



• Graph Search
• in BFS on a grid, how badly would the size of the search tree scale up if we 

didn’t keep track of reached states?

• Assume each node has 4 neighbors, so b=4 (worst case) (or bavg=~3)

• level 0=1 node (initial state, at the center)

• level 1=4 nodes

• level 2=16 nodes

• level 3=64 nodes

• level 4=256 nodes

• ... 

• level i: 4i nodes

• and yet, there are only 25 distinct states in this space!

9/12/2023 20



9/12/2023 21

reached is a data
structure (e.g. hash table)
for keeping track of
expanded states to avoid
repeating the search

note: that we check
reached before putting
nodes into the frontier,
not as we pull them out

If s *has* been reached before,
you might want to see if a shorter/cheaper
path has been discovered and 
keep track of that…

Graph Search (=BFS+checking for visited states)



• So when should you use DFS, and when should you use BFS?

• On what types of problems would DFS be better, or BFS?

• It depends on properties of the search space...

9/12/2023 22



Computational Complexity

• analysis of computational properties for comparison of DFS and BFS

• time-complexity: number of nodes goal-tested (# of loop iterations)

• space-complexity: maximum size to which the frontier grows

• completeness: if a goal exists, does ALGO guarantee to find it?

• optimality: does ALGO guarantee to find the goal node with the 
minimum path cost?

9/12/2023 23



Computational Complexity of BFS

• time-complexity: number of nodes goal-tested (# of loop iterations)
• if the shallowest node occurs at depth d, and branching factor is b,
• then nodes checked (worst case) will be all levels up to and including b
• 1+b+b2+....bd = O(bd+1)

• space-complexity: maximum size to which the frontier grows
• in worst case, have to store all children at level below goal, O(bd+1)

• completeness: if a goal exists, does ALGO guarantee to find it?
• yes (because every goal exists at a finite depth, and BFS explores each level)

• optimality: does ALGO guarantee to find the goal node with the minimum 
path cost?
• yes (assuming all operator have equal cost) (but no, if unequal oper costs)
• in this case, the goal with least path cost is shallowest, and BFS will find it first, 

because it explores level-by-level)
9/12/2023 24



𝑖=0

𝑛

𝑏𝑖 =
𝑏𝑛+1 − 1

𝑏 − 1



𝑖=0

𝑛

2𝑖 = 2𝑛+1 − 1

d

m

b



Computational Complexity of DFS

• time-complexity: number of nodes goal-tested (# of loop iterations)
• if the maximum depth of the tree is m,
• the worst case is when goal at depth d is on the right-most branch
• the nodes checked will be almost all in the tree (even deeper than d): O(bm)

• space-complexity: maximum size to which the frontier grows
• each time we expand a node, we pop 1 and push b children, (b-1)m = O(bm)

• completeness: if a goal exists, does ALGO guarantee to find it?
• no, in general (i.e. if any branch has infinite depth)
• yes, only in finite search spaces

• optimality: does ALGO guarantee to find the goal node with the 
minimum path cost?
• no (since it is not complete)

9/12/2023 25



Comparison of BFS and DFS

• so which is better? when would we prefer to use one over the other?

• although time-complexity could be exponentially worse for DFS 
(O(bm)>>O(bd)), DFS has linear space-complexity

• in practice, the size of the frontier is what limits AI search

• given modern CPU clock cycles, I can easily search a billion (109) 
nodes (10 ms per loop iteration=17 min), but storing a billion nodes 
takes too much memory (~100 bytes per node=100 Gb)

9/12/2023 26

BFS DFS

time-complexity O(bd+1) O(bm)

space-complexity O(bd+1) O(bm)



Iterative Deepening

• Is there a way to get the benefits of both BFS and DFS?

• how can we maintain a linear frontier size like DFS while still searching 
level-by-level like BFS?

• how can you maintain the linear space-complexity of DFS while 
avoiding descending infinitely deep down any single branch?

• answer: depth-limited search
• do DFS down to depth=1

• if goal not found, do DFS down to depth=2

• if goal not found, do DFS down to depth=3

• ...

9/12/2023 27



9/12/2023 28



Iterative Deepening

• Complexity analysis:

• since using DFS, the frontier should never get bigger than (b-1)d, 
hence O(bd)

• and it should be complete and optimal (for equal operator costs)

• what about time complexity?
• it seems wasteful because you have to re-generate the top part of the search 

tree each iteration

9/12/2023 29

d

m

DFS(l=1)

DFS(l=1)

DFS(l=2)
DFS(l=3) DFS(l=4)

DFS(l=5)



Iterative Deepening

• time complexity?
• 1+(1+b)+(1+b+b2)+(1+b+b2+b3)+...+(1+b+...+bd)
• ≤ (1+b+...+bd)+(1+b+...+bd)+... (1+b+...+bd) 
• ≤ d(1+b+...+bd) ≤ dSbi ≤ d(bd+1-1)/(b-1) = O(bd+1)

• it seems wasteful because you have to re-generate the top part of 
the search tree each iteration

• why not just “save” the part of the tree generated so far?

• because it will grow exponentially as depth limit increases, negating 
the benefit of the linear size of the frontier – you have to throw 
them away

• so it is a tradeoff:  you spend a little more time computing 
(expanding nodes), but you save memory (linear frontier size)

9/12/2023 30



Uniform Cost Algorithm

• suppose we want to find the goal node with the least path cost, when 
operators have different costs?

• the shortest path (number of actions) is not necessarily the cheapest path 
(sum of operator costs)

• in this case, BFS is not optimal

• however, we can use the same iterative search algorithm, but change the 
frontier to a priority queue

• keep the expanded-but-unexplored nodes sorted in order of increasing 
path cost

• nodes must keep track of cost; update when generating successors:
• cost(child) = cost(parent)+cost(opi)

9/12/2023 31



Uniform Cost Algorithm

9/12/2023 32

(Note the ‘late’ goal-test, 
which is less efficient than 
the ‘early’ goal test used in 
BFS), but is necessary 
because we are interested in 
searching nodes with the 
lowest path cost first.  If 
there are multiple paths to a 
node N, put them both in 
the queue at the same time, 
and pick whichever has the 
lowest distance from root.)



Uniform Cost Algorithm

• sure, every node you pull out of the priority queue has costs less than all 
other in the priority queue 
• but when you reach a goal, how do you know there is not another cheaper goal out 

there?

• assumption: all operators have positive costs: cost(opi)>0 ≥  > 0
• therefore, cost of nodes along a path increases monotonically

• Lemma: UC explores nodes in order of increasing total path cost
• Suppose pathcost(n1)>pathcost(n2), but n1 is visited first (for sake of contradiction)
• n2 might not be in the priority queue at same time n1 is popped
• but there is always some node n’ on the path to n2 that is in the priority queue (even it 

is the initial state/root node), and pathcost(n’)<pathcost(n2) since monotonic
• if n’ was in queue when n1 was, then n’ would have been popped before n1, because 

pathcost(n’)<pathcost(n2)<pathcost(n1)

• Corollary: when the first node that is a goal, g*, is visited, it has lower cost 
than any other goal node g’, pathcost(g*)pathcost(g’), hence g* is optimal

9/12/2023 33

n1

n2

n’

g*

g’

n’



Uniform Cost Algorithm

• comparison to Djikstra’s Algorithm
• UC and Djikstra both solve the single-

source shortest-path problem

• however, an important difference is 
that Djikstra is based on Dynamic 
Programming (DP)

• it uses a data structure (array) to 
maintain partial path distances from 
the source to all vertices V in the graph

• you can’t do this for most AI problems, 
especially if they have exponentially 
large or infinite State Spaces

9/12/2023 34

// from https://en.wikipedia.org/wiki/Dijkstra’s_algorithm

1  function Dijkstra(Graph, source):
3      create vertex set Q
4
5      for each vertex v in Graph:            
6          dist[v] ← INFINITY                 
7          prev[v] ← UNDEFINED                
8          add v to Q                     
9      dist[source] ← 0                       

10     
11      while Q is not empty:
12          u ← vertex in Q with min dist[u]                                            
14          remove u from Q
15         
16          for each neighbor v of u: 
17              alt ← dist[u] + length(u, v)
18              if alt < dist[v]:              
19                  dist[v] ← alt
20                  prev[v] ← u
21
22      return dist[], prev[]



Uniform Cost Algorithm

• Computational properties of UC
• time-complexity: O(b(1+C*/))

• where C* is the total path cost of the cheapest solution

• why? because each step costs at least , so goal occurs at depth C*/ in the 
worst case

• space-complexity: O(b(1+C*/))

• completeness: yes

• optimality: yes!

9/12/2023 35



9/12/2023 36

4

1

1
1 8

6 7
3 2

3 3
1 4

2 8
9 21 1 8 3

4 2 1 1
2 3 7 1

2                                                                                                1

6                                               3                                                   2                        9

12                      9                     10                         6                     5                          3  11                        13

14            16         10          11     18          12          7            9       14          6           11        10 13       12           16           14

A

B C

D                                    E                                      F                                      G

H                    I                 J                     K                L                  M               N           O

at queue
A0 C1 B2

C1 F2 B2 G9

F2 B2 M3 L5 G9

B2 E3 M3 L5 D6 G9

E3 M3 L5 K6 D6 G9 J10

M3 L5 K6 D6 G9 J10 a10 Z11

L5 Y6 K6 D6 G9 J10 a10 Z11 X14

Y6 opt. goal! (among leaf nodes)

P          Q         R       S      T        U         V      W     X        Y        Z        a        b       c          d e

Trace of UC - visits nodes in order 
of least path cost

✓

✓

✓

✓

✓

✓

✓

numbers are
path costs

2  (operator cost)

(path cost of nodes are in green)



Summary of Computational Properties of 
Search Algorithms

9/12/2023 37

or O(bd+1)
if cost(opi)=constant
for all operators

except for
finite search
spaces

or O(bd+1)

read for
yourself



Heuristic Search

• since AI search problems usually have exponential search spaces, the main 
focus is on how we can exploit domain knowledge to improve the efficiency 
of the search

• domain knowledge refers to anything we know about solving these types 
of problems
• rules of thumb, common solutions, way to decompose the problem into 

subgoals, useful sequences of actions, interactions/dependencies between 
operators... 

• in this context, domain knowledge will be encapsulated in a heuristic 
function, h(n)

• it is a ‘scoring’ function that maps every node (or state) to a real number
• the advantage is using any knowledge we have to guide the search toward 

the goal, and avoid searching ‘unproductive’ parts the search space

9/12/2023 38



Heuristic Search

• a heuristic function h(n) is an estimate of the distance (path cost) 
remaining from n to the closest goal

• hence it is a mapping from S Ͱ> R (State Space to real numbers) 

• generally, h(n)≥0, and h(n)=0 for goals

• abstractly, it is a quantification of how close a state is to being solved 
(higher is farther away)

9/12/2023 39



Heuristic Functions

• Example 1: hSLD for navigation

9/12/2023 40

• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)



Heuristic Functions

• Example 1: hSLD for navigation

9/12/2023 41

• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)

• BFS (FIFO): (expand in levels)
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V



Heuristic Functions

• Example 1: hSLD for navigation

9/12/2023 42

• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)

• BFS (FIFO): 
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V

• DFS (LIFO): (follows a single path)
• sequence of states visited:
• S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V



Heuristic Functions

• Example 1: hSLD for Navigation

9/12/2023 43

• suppose our goal was to find a route from 
Sibiu to Vasliu

• compare DFS vs BFS (assuming children are 
processed in counter-clockwise order)

• BFS (FIFO): 
• frontier at each pass:
• S | O,A,R,F | Z,T,C,P,B | L,D,U,G | M,H,V

• DFS (LIFO):
• sequence of states visited:
• S,O,Z,A,T,L,M,D,C,R,P,B,F,G,U,H,E,V

• hSLD: prioritize nodes in frontier based on 
straight-line distance to goal
• sequence of states visited: S, F, B, U, V



Heuristic Functions

• Example 2: heuristic functions for the Tile Puzzle
• how close is any given state to being solved?

• h1(n): # tiles out of place
• this is an under-estimate because it will take more than move to put each tile in its proper 

place

• still, it differentiates states that are almost solved for those that are very jumbled

• even if 1 block is out of place, it might be close or very far away

• h2(n): Manhattan distance
• for each tile out of place, count number of rows and columns it needs to move

• still an under-estimate of total moves because moving one tiles can put others out of place

• ironically, it can also be an over-estimate, because a sequence of moves could put multiple 
tiles in place

9/12/2023 44

ℎ2 𝑛 = 

𝑖=1

9

𝑐𝑢𝑟𝑟𝑅𝑜𝑤 𝑇𝑖 − 𝑔𝑜𝑎𝑙𝑅𝑜𝑤 𝑇𝑖 + |𝑐𝑢𝑟𝑟𝐶𝑜𝑙 𝑇𝑖 − 𝑔𝑜𝑎𝑙𝐶𝑜𝑙 𝑇𝑖 |



Heuristic Functions

9/12/2023 45

1  2

3  4  5

6  7  8

1  6

3  4  5

2 7  8

7  2  4

5     6

8  3  1

h1 = 8
the 1 needs to move 3 steps
the 2 needs to move 1 step
the 3 needs to move 2 steps
...
h2 = 3+1+2+2+2+3+3+2 = 18

h1 = 2
h2 = 2

h1 = 2
h2 = 8



Where Do Heuristics Come From?
• Heuristics encode knowledge you have about the problem

• rules of thumb
• common solutions that are often used
• way to decompose the problem into subgoals
• useful sequences of actions
• interactions/dependencies between operators... 

• This knowledge has to be formulated into a scoring function h(n) that 
estimates the distance of any state to the goal

• Common strategy: approximate how many steps it would take to solve if 
we could relax the constraints
• counting tiles out of place implies we can fix them in 1 move
• Manhattan distance implies we can “slide tiles over each other”
• for navigation, straight-line distance is shorter than any road, but still useful

9/12/2023 46



Greedy Search (best-first search with h(n))

• extending the iterative search algorithm to use a heuristic

• use a priority queue for frontier; sort nodes based on h(n)

• (go back and review the slide on finding a route from Sibiu to Vasliu
using Greedy with hSLD, focusing on the queue)9/12/2023 47

where f is h(n)



Greedy Search

9/12/2023 48

• The problem with Greedy Search is that it 
can be ‘misled’ by the heuristic to go in the 
wrong direction and waste time searching 
unproductive regions of the search space

• This is known as the “garden path” problem

• Greedy Search would search the gray-boxed 
region first, before discovering it has to go 
around the T to get the goal(red)



• How sub-optimal can it be?  (in terms of cities expanded that are 
not actually on the solution path)

• What’s the worst garden-path pair of cities for Romania?

• Can you think of a map and pair of cities that would force Greedy 
to visit every node before finding a route to the destination? 

9/12/2023 49



A* algorithm

• one of the most widely used and practical AI search algorithms

• essentially Best-first search (with priority queue), where nodes in 
frontier are sorted based on f(n)=g(n)+h(n)
• where g(n)=path cost so far (from root to n)

• and h(n)=heuristic estimate of remaining path cost (from n to closest goal)

• so f(n) is an estimate of total path cost going through n to goal

9/12/2023 50



A* algorithm

• use a priority queue for frontier; sort nodes based on f(n)=h(n)+g(n)

9/12/2023 51

where f=h(n)+g(n)

note the ‘late’ goal test (see slide on UC alg)



frontier:
V(0+235=235)
<V235>

1. pop V, push I and U
I(92+225=317)
U(142+220=362)
<I317 , U362>

2. pop I; push N
N(92+87+190=369)
<U362, N369>

3. pop U; push B, H
B(142+85+210=437)
H(142+98+250=490)
<N369,B437,H490>

4. pop N; <B437,H490>

5. popB; push F438=142+85+211

<F438,H490>

6. pop F

220

225

235

190

250

210

1

2

3

4

5

6

A* search of Vasiliu to Fagaras:

notice how f(n) for popped nodes keeps increasing: 
V(235), I(317), U(362), N(369), B(437), F(438)



220

225

235

190

250

210

1

2

3

4

5

6

A* search of Vasiliu to Fagaras:

notice how f(n) for popped nodes keeps increasing: 
V(235), I(317), U(362), N(369), B(437), F(438)

V(f=g+h=0+235=235)

I(92+225=317)       U(142+220=362)

N(92+87+190=369)

B(142+85+210=437)   
H(142+98+250=490)

P(142+85+101+100)=428
F(142+85+211+0)=438

G(142+85+90+220)=537

R(142+85+101+97+80)=505
C(142+85+101+138+80)=546

1

2 3

4

5

7

6
7

80

80

220



Computational Properties A* Search

• what guarantees about completeness and optimality can we make?

• remember that h(n) could be inaccurate!
• it could tell us that many nodes down path are getting closer and closer, when 

in fact there is no way to reach the goal, and back-tracking is required

• first, we need to make an assumption...

• h(n) is admissible
• h(n) never over-estimates the true distance to the goal for any node n

• 0 ≤ h(n) ≤ c*(n)=cost(n…g) for all states in the State Space

9/12/2023 54



Computational Properties A* Search

• Theorem: A* is optimal (finds a goal with minimum path cost)
• although this sounds obvious because the PQ is sorted on f(n), it is deceptive because 

it only applies to nodes in the frontier, but not all states in the space

• suppose the optimal goal is g* but greedy returns g first, where c(g)>c(g*)

• let n* be a node on the optimal path to g* that is in the frontier at same time

• f(n*)=g(n*)+h(n*) ≤ cost(n0..n*)+cost(n*..g*) = cost(n0..g*) = c(g*)

• because of admissibility

• therefore, n* should have been dequeued before g (and so on, down the path to g*)

• Important point: Even though admissibility is desirable, it is not necessary: A* 
search can be made more efficient with a heuristic even if it is not admissible 
(however, the solution path found might not be minimal)

55



Computational Properties A* Search

• Lemma: f(n) scores increase monotonically down any path from root
• if a path is <n0..ni..g>, then f(n0)≤f(ni)≤f(g)

• in any step ni→ni+1, h(ni) includes a guess of the cost of opi, whereas g(ni+1) has the 
actual cost of that step, which could only be higher (by admissibility)

• also requires consistency of heuristic, which is slightly stronger than admissibility (see 
book)

• remember that at a goal node, f(g)=c(g) for any goal because f(g)=g(g)+h(g)=c(g)+0

• so f(n) could be an underestimate of total path length early in a path, but converges 
to c*(g) as you get closer to the goal

• Theorem: A* explores states in order of increasing f(n) (total pathcost)

9/12/2023 56



• estimated pathcost(r..ni..g)=f(r...g)=g(r...ni)+h(ni...g)

• d(ni)=h(ni...g)- h(ni+1...g)
• “estimated” cost of one action
• assume d always less than true cost of operator,

d(ni)<c(ni)  “consistency” (related to admissibility)

• g(r...ni-1)+h(ni...g)=g(r...ni-1)+d(ni)+h(ni+1...g)

g(r...ni-1)+c(ni)+h(ni+1...g)

therefore, estimates of total past costs always 
increase going down path:

• pathcost(r..ni..g)<pathcost(r..ni+1..g)

9/12/2023 57

r

ni

ni+1

g

g(r..ni)

+

h(ni..g)

g(r..ni+1)

+

h(ni+1..g)

d(ni)  c(ni) 



Computational Properties A* Search
• analysis of time complexity

• efficiency of A* is complicated because it depends on accuracy of the 
heuristic

• generally speaking, the more accurate the heuristic is, the faster the search
• boundary case 1: h(n)=0 – no help, exponential time like Uniform Cost, 

O(b1+C*/)

• boundary case 2: h(n)=c*(n) – a heuristic that perfectly predicts the true 
distance to the goal for any node will lead A* right to it (in time linear in the 
path length)

9/12/2023 58



Computational Properties A* Search
• analysis of time complexity

• if the inaccuracy of the heuristic is bounded, search will be sub-exponential
• define “relative error” D =|h-h*|/h* (max over all nodes in the State Space)

• then time complexity of A* is O(bDL(g)) where L is the path length to the goal g

• if |h-h*|=O(log(h*)) for all n, then A* will search a sub-exponential number of 
nodes before finding the optimal goal

• however, this is rarely achievable in practice

• one can also think of heuristic as making A* search more efficient by 
reducing the effective branching factor (for example, by half, if D=1/2)

9/12/2023 59


