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function DPLL-SATISFIABLE?(s)} returns true or false
inputs: s, a sentence in propositional logic

clauses « the set of clauses in the CNF representation of s
symbols «— a list of the proposition symbols in &
return DPLL(clauses, symbols, { })

function DPLL{clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return frue
if some clause in clauses is false in model then return false
P, value — FIND-PURE-SYMBOL{symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols — P, model U { P=value})
P, value «— FIND-UNIT-CLAUSE( clauses, model)
if P is non-null then return DPLL(clouses, symbols — P, madel U { P=value})
P+ FIRST(symbols);, rest «— REST(symbols)
return DPLL(cleuses, rest, model U { P=true}) or
DPLL(clauses, rest, model U { P=false}))

Figure7.17  The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in
the text; each returns a symbol (or null)} and the truth value to assign to that symbol. Like
TT-ENTAILS?, DPLL operates over partial models.

any attempt to prove (by refutation) a hiteral that is already in the knowledge base will
succeed immediately (Exercise 7.23). Notice also that assigning one unit clause can
create another unit clause—for example, when C is set to false, (C' vV A) becomes a
unit clause, causing #rue to be assigned to A. This “cascade” of forced assignments
is called unit propagation. It resembles the process of forward chaining with definite
clauses, and indeed, if the CNF expression contains only definite clauses then DPLL
essentially replicates forward chaining. (See Exercise 7.24.)

The DPLL algorithm is shown in Figure 7.17, which gives the the essential skeleton of the
search process.

What Figure 7.17 does not show are the tricks that enable SAT solvers to scale up to
large problems. It is interesting that most of these tricks are in fact rather general, and we
have seen them before in other guises:

1. Component analysis (as seen with Tasmania in CSPs): As DPLL assigns truth values
to variables, the set of clauses may become separated into disjoint subsets, called com-
ponents, that share no vnassigned variables. Given an efficient way to detect when this
occurs, a solver can gain considerable speed by working on each component separately.

2. Variable and value ordering (as seen in Section 6.3.1 for CSPs): Our simple imple-
mentation of DPLL uses an arbitrary variable ordering and always tries the value true
before false. The degree heuristic (see page 216) suggests choosing the variable that

appears most frequently over all remaining clauses.
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UNDERCONSTRAINED

fanction WALKS AT(clauses, p, maz_flips) returns a satisfying model or failure
inpats: clauses, a set of clauses in propositional logic
7, the probability of choosing to do a “random walk” move, typically around 0.5
maz_flips, number of fips allowed before giving up

model «— a random assignment of trueffalse to the symbols in clauses
for : = 1 to maz_flips do
if model satisfies clauses then return model
clause «— a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clouse maximizes the number of satisfied clanses
return failure

Figure 7.18  The WALKSAT algorithm for checking satisfiability by randomly flipping
the values of variables. Many versions of the algorithm exist.

upon the solution. Alas, if max_flips is infinity and the sentence is unsatisfiable, then the
algorithm never terminates!

For this reason, WALKSAT is most useful when we expect a solution to exist—for ex-
ample, the problems discussed in Chapters 3 and 6 usually have solutions. On the other hand,
WALKSAT cannot always detect unsatisfiability, which is required for deciding entailment.
For example, an agent cannot reliably use WALKSAT to prove that a square is safe in the
wumpus world. Instead, it can say, “I thought about it for an hour and couldn’t come up with
a possible world in which the square isn’t safe.” This may be a good empirical indicator that
the square is safe, but it’s certainly not a proof.

7.6.3 The landscape of random SAT problems

Some SAT problems are harder than others. Easy problems can be solved by any old algo-
rithm, but because we know that SAT is NP-complete, at least some problem instances must
require exponential run time. In Chapter 6, we saw some surprising discoveries about certain
kinds of problems. For example, the n-queens problem—thought to be quite tricky for back-
tracking search algorithms—turned out to be trivially easy for local search methods, such as
min-conflicts, This is because solutions are very densely distributed in the space of assign-
ments, and any initial assignment is guaranteed to have a solution nearby. Thus, n-queens is
easy because it is underconstrained.

When we look at satisfiability problems in conjunctive normal form, an undercon-
strained problem is one with relatively few clauses constraining the variables. For example,
here is a randomly generated 3-CNF sentence with five symbols and five clauses:

(FDV-BVC)A(BV-AV-C)A(-CV =BV E)
AEV-DVB)A(BVEvV-(C).

Sixteen of the 32 possible assignments are models of this sentence, so, on average, it would
take just two random guesses to find a model. This is an easy satisfiability problem, as are
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most such underconstrained problems. Oun the other hand, an overconstrained problem has
many clauses relative to the number of variables and is likely to have no solutions.

To go beyond these basic intuitions, we must define exactly how random sentences
are generated. The notation C'N Fy,(m,n) denotes a k-CNF sentence with m clauses and n
symbols, where the clauses are chosen uniformly, independently, and without replacement
from among all clauses with % different literals, which are positive or negative at random. (A
symbol may not appear twice in a clause, nor may a clause appear twice in a sentence.)

Given a source of random sentences, we can measure the probability of satisfiability.
Figure 7.19(a) plots the probability for CN Fy(rmn, 50), that is, sentences with 50 variables
and 3 literals per clause, as a function of the clause/symbol ratio, m/n. As we expect, for
small m/n the probability of satisfiability is close to 1, and at large m/n the probability
is close to 0. The probability drops fairly sharply around m/n=4.3. Empirically, we find
that the “cliff” stays in roughly the same place (for & =3) and gets sharper and sharper as n
increases. Theoretically, the satisfiability threshold conjecture says that for every k& > 3,
there is a threshold ratio ry, such that, as n goes to infinity, the probability that C N Fy(n, rn)
is satisfiable becomes 1 for all values of r below the threshold, and 0 for all values above.
The conjecture remains unproven.
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Figure7.19  (a) Graph showing the probability that a random 3-CNF sentence with n = 50
symbols is satisfiable, as a function of the clause/symbol ratio m /. (b) Graph of the median
run time (measured in number of recursive calls to DPLL, a good proxy) on random 3-CNF
sentences. The most difficult problems have a clanse/symbol ratio of about 4.3,

Now that we have a good idea where the satisfiable and unsatisfiable problems are, the
next question is, where are the hard problems? It turns out that they are also often at the
threshold value. Figure 7.19(b) shows that 50-symbol problems at the threshold value of 4.3
are about 20 times more difficult to solve than those at a ratio of 3.3. The underconstrained
problems are easiest to solve (because it is so easy to guess a solution); the overconstrained
problems are not as easy as the underconstrained, but still are much easier than the ones right
at the threshold.




