Print Name: __________________
Signature: __________________ Date: ______

Algorithm Name: Vending Machine
Assumptions:

· only dispense change in coins (5, 10, 25 cents)

· different items could have different costs

· users can press a button for requested item type, or to return all input money

· there is a message window, can call "print(string)" and it will display.in LED
· there is a "dispense(item type)" function

· assume that machine will reject all coins except US nickel, dime, or quarter

· it is our responsibility to update Bal and coins[C], but the machine will keep track of available[X] for us
Representation:

· there is a counter called "Bal" that keeps track of total of coins input so far

· cans could have different costs: cost[X]

· available[X] is a boolean variable that indicates whether there is (1 of X left
· the internal reservoir of coins is represented by coins[C] where C is 5, 10, or 25 and returns an ordinal number for how many coins of that type there are inside

Strengths

· if machine is completely out of requested choice (or all cans), user can ask for their money back

· algorithm is guaranteed never to give back more than the balance

· if the user just asks for their money, back we can guarantee to always make change (at least by using the coins they input, but not necessarily)
Limitations:
· it is possible that this algorithm might by unable to make change, for example, in the case where a user puts in $1.00 (4 quarters), buys an item that costs $0.90, and we have no dimes or nickels to start with
Pseudocode:

if user inputs a legal coin C (e.g. 5, 10, or 25):
 coins[C] = coins[C]+1

 Bal = Bal+C
if user presses the 'return change' button:

 make_change(Bal)
 Bal = 0

if user presses button for can of type X:

 if available[X]=False:

 print("unavailable, make another choice")
 else if Bal<cost(X):

 print("insufficient funds, put in more money")

 else:
 dispense(X) // machine will update available[X]
 make_change(Bal-cost(X))
 Bal = 0
subroutine make_change(Bal):
 while Bal>0:

 if Bal>25 and coins[25]>0:

 dispense quarter

 coins[25] = coins[25]-1

 Bal = Bal-25

 else if Bal>10 and coins[10]>0:

 dispense dime

 coins[10] = coins[10]-1

 Bal = Bal-10

 else if Bal>5 and coins[5]>0:

 dispense nickel

 coins[5] = coins[5]-1

 Bal = Bal-5

