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Abstract

Recent advancements in NLP, largely driven
by Large Language Models (LLMs), have sig-
nificantly improved performance on an array
of tasks. However, Dialogue Act (DA) classifi-
cation remains challenging, particularly in the
fine-grained 50-class, multiparty setting. This
paper investigates the root causes of LLMs’
poor performance in DA classification through
a linguistically motivated analysis. We identify
three key pre-tasks essential for accurate DA
prediction: Turn Management, Communica-
tive Function Identification, and Dialogue
Structure Prediction. Our experiments re-
veal that LLMs struggle with these fundamental
tasks, often failing to outperform simple rule-
based baselines. Additionally, we establish a
strong empirical correlation between errors in
these pre-tasks and DA classification failures.
A human study further highlights the signifi-
cant gap between LLM and human-level dia-
logue understanding. These findings indicate
that LLMs’ shortcomings in dialogue compre-
hension hinder their ability to accurately pre-
dict DAs, highlighting the need for improved
dialogue-aware training approaches.

1 Introduction

A Dialogue Act (DA) represents an utterance’s
communicative function (Searle, 1969). Some com-
mon examples are question and request. Under-
standing DAs is a fundamental first step in analyz-
ing and comprehending dialogues (Stolcke et al.,
2000). Understanding the role an utterance plays in
the broader context of a dialogue requires not just
the understanding of the semantic content of the
utterance but also how it relates to the previous ut-
terances, the speaker interactions, and what effect it
was supposed to have on the addressee. Two utter-
ances with the same semantic content could convey
different meanings based on the context and the
speaker’s role. For example, floor mechanisms can
easily be confused with short response utterances.

Figure 1: To correctly predict that the current utterance
is asking a Yes/No Question, identifying the speaker
roles, relevant context selection, and understanding the
high-level communicative function is needed.

Large Language Models (LLMs) have revolu-
tionized the field of artificial intelligence. They
have shown remarkable performance on many un-
seen tasks in a zero-shot setting (Kojima et al.,
2022), primarily due to their vast number of pa-
rameters, which allow them to store substantial
amounts of information (Roberts et al., 2020), as
well as the extensive datasets on which they are
pre-trained. This capability has led to their adop-
tion in numerous applications, particularly within
the dialogue domain. Some applications include
conversational assistants, chatbots, dialogue sum-
marization, and dialogue-state tracking systems. A
common task shared by all these applications is
understanding the speaker’s intentions.

Even with LLMs shown to do well on many un-
seen tasks (Wang et al., 2023), it remains a question
if LLMs perform well on fine-grained DA classi-
fication. Through a comprehensive study across
two benchmark datasets, we show that there is a
huge performance gap between smaller fine-tuned
models on DA classification and large models in
zero and few-shot in-context learning setting. Ad-
ditionally, we explore the role of multimodal audio



features, revealing that while they offer improve-
ments, LLMs still fail to fully leverage prosodic
cues.

Looking at dialogue acts from a linguistic lens,
we introduce three fundamental pre-tasks neces-
sary for accurate DA classification. The first is
Turn Management, which helps identify speaker
turn-taking roles in dialogues. The Second is Com-
municative Function Identification, which gives the
high-level function an utterance plays. There are
two main types: backward-looking, when an utter-
ance refers to past context, and forward-looking,
when it shapes future discourse. Lastly, the Dia-
logue Structure aims to capture direct speaker inter-
actions such as question-answer pairs. We evaluate
models on these tasks by repurposing existing an-
notations to create three pre-task datasets. Our
findings reveal a strong empirical correlation sug-
gesting that errors in these pre-tasks are associated
with errors in DA classification.

Additionally, LLMs struggle with these funda-
mental tasks and perform comparatively or worse
than naive non-parametric baselines on these pre-
tasks–highlighting their lack of dialogue compre-
hension abilities. Particularly, our analysis showed
that LLMs (1) struggle to identify speaker turn-
taking roles, (2) mostly rely on nearer utterances
for context and consequently fail to capture long
dependency relations between utterances, and (3)
are biased to view utterances as serving a backward-
looking function even when they are not. We also
conducted a human study that showed humans do
not find these pre-tasks difficult but LLMs lag sig-
nificantly behind human-level performance. Our
findings highlight the need for better dialogue-
aware training strategies to bridge the gap between
human and machine dialogue understanding.

2 Related Work

DA Classification Prior work has used hierarchi-
cal architectures to encode the surrounding utter-
ancs (Liu et al., 2017; Kumar et al., 2018a). (Ra-
heja and Tetreault, 2019) use two utterance and
conversation-level RNNs with contextual attention
to generate utterance representations. Kumar et al.
(2018a) treat DA classification as a sequence la-
beling task and incorporate a CRF layer to aid in
learning class associations. Incorporating a wider
context is particularly beneficial for underrepre-
sented classes (Żelasko et al., 2021; Ahmadvand
et al., 2019). Injecting speaker information has

also been shown to improve DA performance. He
et al. (2021) enrich utterance representations by
learning speaker turn embeddings. Qamar et al.
(2023) propose a graph neural network with utter-
ance and speaker nodes to capture speaker interac-
tions. While Shang et al. (2020) modify the final
CRF layer to account for speaker changes. Audio
features also play an important role in disambiguat-
ing certain DA labels as demonstrated by perfor-
mance gains achieved using multimodal models
that incorporate audio features (Miah et al., 2023).

LLMs for Dialogue Understanding LLMs have
been applied for many broader dialogue-related
tasks. These include applications for task-oriented
dialogues such as dialogue state tracking (Luo
et al., 2024; Pan et al., 2023; Heck et al., 2023)
and intent detection (Arora et al., 2024). Another
application of LLMs is in dialogue summarization.
Laskar et al. (2023) study LLMs’ capabilities on
long meeting summarization by truncating the orig-
inal dialogue into chunks and using different tech-
niques to combine the results. Understanding emo-
tions is essential for dialogue systems to create a
positive user experience (Liu et al., 2021). Zhang
et al. (2024) use chain of thought reasoning with ex-
plicit emotion identification for emotion-sensitive
and empathetic response generation. Kang et al.
(2024) show that LLMs exhibit certain biases and
on their own are inadequate for emotional support
conversations. Moreover, LLMs struggle with nu-
ances of conversations such as understanding em-
phasized sentences (Lin and Lee, 2024). While
prior work has studied various aspects of dialogue
understanding for LLMs, there has been no exten-
sive study of their performance on DA recognition
in the challenging setting of multi-party dialogues.

3 Experimental Details

3.1 Datasets

Dataset |D| |U|
MRDA 11 15k
SwDA 19 4.5k

Table 1: |D|, |U| give
the number of dia-
logues and utterances
in the test set respec-
tively.

We experiment with two
commonly studied cor-
pora for DA classification
in natural dialogues–The
Switchboard Dialog Act
corpus (SwDA) and ICSI
Meeting Recorder Dialog
Act (MRDA). SwDA (Ju-
rafsky, 1997) is a two-
party dialogue dataset
where participants were asked to converse on a
pre-specified topic. MRDA (Shriberg et al., 2004)



is a multiparty dataset consisting of 75 naturally
occurring meetings, where each meeting is around
an hour long. Both SwDA and MRDA have been
annotated for fine-grained DA classes. SwDA fol-
lows a scheme of 43 classes while MRDA has 50 1.
Both datasets contain corrected transcripts along
with audio recordings.

Historically, the coarse-grained DA labels have
received much attention (Raheja and Tetreault,
2019; He et al., 2021) with performance on the 5-
class label set surpassing 90% accuracy. Recently,
analysis and experiments have been done on the
much more challenging task of fine-grained DA
classification (Żelasko et al., 2021; Qamar et al.,
2023; Miah et al., 2023). Since good performance
on the fine-grained DA classes is needed for a
deeper dialogue understanding, we perform our
analysis under this setting.

3.2 Models

We compare LLMs with several smaller SFT mod-
els. RoBERTabase (Liu et al., 2019) is a simple
roberta model with a linear layer on top, BiL-
STM+CRF is a BiLSTM model with CRF (Kumar
et al., 2018b) and BiLSTM SelfAtt+CRF also in-
cludes self attention (Raheja and Tetreault, 2019),
Turn Modeling learns two speaker embeddings on
top of RoBERTa model (He et al., 2021), and finally
the Speaker Graph model learns speaker interac-
tions through a graph neural network (Qamar et al.,
2023). All of these models use a RoBERTa back-
bone and have under 160 million parameters. For
LLMs, we experiment with various open-source
and proprietary models, covering a wide range of
model sizes.

3.3 Prompting LLMs

All the experiments in this paper are conducted by
framing the task as a classification problem. The
speaker names are prepended to the utterances to
make the input speaker aware. Specific prompts
used are provided in the appendix. The following
prompt template is used in all cases:

1We follow the fine-grained classes as presented in (Qamar
et al., 2023)

Instruction:
[Task Description]
[Definitions of the Class Labels]
[In-context Examples]

Input:
[Previous Context Utterances]
[Current Speaker: Current Utterance]
[Future Context Utterances]

3.4 Audio Features

Intonation plays an important part in spoken lan-
guage as it conveys meaning (Brazil, 1997). For in-
stance, Backchannel, Acknowledgment, and Accept
often look similar in their textual representation but
have distinct audio characteristics, making them
difficult to disambiguate using text alone (Shriberg
et al., 2004). Consequently, text-only models fre-
quently fail to make these distinctions. To address
this limitation, we conducted experiments where
audio was provided alongside the dialogue tran-
script, aiming to determine whether the LLM could
leverage differences in pitch to infer the underlying
speaker intention.

3.5 Implementation Details

MRDA and SwDA use anonymized speaker IDs to
distinguish speakers. Following Kim and Vossen
(2021), we also assign names to the speaker IDs.
We use the top US names used in the last century
for this purpose 2. The exact prompts and model
cards used for all the tasks are given in the Ap-
pendix F. We include in-context examples in all
the prompts: 4 examples for DA, 3 for Turn Man-
agement, 5 for Communicative Function, and 4 for
Dialogue Structure. The examples are the maxi-
mum number of examples we can add before we
see a performance drop on the validation set or we
run into GPU memory issues. All the experimental
results reported are an average of 3 random seeds
except the GPT models, since those are not open-
source and incur substantial financial costs to run
for multiple seeds. The experiments with all the
open-source models were run using the LLaMA-
Factory library 3 (Zheng et al., 2024) on 2 A100
GPUs.

4 LLM performance on DA classification

This section analyzes the results of various-sized
LLMs compared to fully supervised, fine-tuned

2https://www.ssa.gov/oact/babynames/decades/
century.html

3https://github.com/hiyouga/LLaMA-Factory

https://www.ssa.gov/oact/babynames/decades/century.html
https://www.ssa.gov/oact/babynames/decades/century.html
https://github.com/hiyouga/LLaMA-Factory


Model
MRDA SwDA

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Fi
ne

-t
un

ed

RoBERTabase 37.14 39.58 36.33 64.24 47.12 51.24 46.65 72.22
BiLSTM+CRF 36.09 32.87 32.69 65.38 59.11 53.69 54.91 79.10
BiLSTM SelfAtt+CRF 34.32 32.19 31.21 63.66 54.41 51.14 51.07 74.44
Turn Modeling 43.52 38.92 38.77 67.0 62.48 56.9 57.96 81.0
Turn Aware Speaker Graph 44.53 39.11 40.06 66.32 63.72 57.36 58.81 80.86

Fe
w

-s
ho

t Gemma-7B 13.68 8.0 8.27 28.34 11.13 15.90 7.77 21.18
Mistral-7B 6.30 6.05 4.65 13.44 13.64 13.64 10.29 20.2
LLaMA-3.1-8B 18.47 13.02 12.09 20.54 16.45 16.71 11.38 21.36
LLaMA-3.1-70B 26.49 22.36 19.17 31.26 21.39 26.53 19.59 39.96
GPT-3.5 22.75 20.86 18.29 31.46 15.83 22.17 14.61 31.63

Table 2: Fine-grained DA performance under fine-tuned and zero-shot settings on both the MRDA and SwDA
datasets using only text input. Fine-tuned results taken from Qamar et al. (2023). For the LLMs, we have used the
instruction-tuned version of the models.

Model Precision Recall F1 Accuracy

GPT-4 26.58 31.84 24.73 31.40
GPT-4 Audio 28.30 35.53 28.27 41.83

Table 3: GPT-4 performance on MRDA with and with-
out audio. For the audio model, we also provide the
transcript.

smaller models. Not only can LLMs not beat
smaller models, but they also perform significantly
worse across both datasets. As shown in Table 2,
LLaMA-70B, with 70 billion parameters, fails
to outperform a simple RoBERTa-base baseline
model, which has approximately 125 million pa-
rameters4—making it about 560 times smaller in
size.

Performance evaluation on MRDA more faith-
fully represents how well models can do in real-
world conversations because MRDA meetings are
unstaged meetings with multiple speakers taking
part in the conversation. Therefore, we analyze
LLM performance on MRDA in extensive detail.
Detailed numbers can be seen in the confusion ma-
trices in Appendix B.

4.1 Error Patterns

Understanding speaker intent heavily depends on
utilizing the context provided by prior utterances.
For instance, Floor Grabber and Hold share a sim-
ilar vocabulary but serve distinct functions: the
former refers to utterances where a speaker not cur-
rently holding the floor attempts to gain it, while
the latter marks instances where the speaker is ex-
plicitly granted the floor. Without considering pre-

4https://huggingface.co/transformers/v2.4.0/
pretrained_models.html

ceding utterances and the speaker roles, distinguish-
ing between these two classes is nearly impossible.
The frequent misclassification of these labels by
LLMs highlights their limited ability to compre-
hend complex dialogue dynamics.

Furthermore, LLMs often struggle to look be-
yond the surface or syntactical structure of utter-
ances, limiting their ability to grasp deeper mean-
ings. They frequently confuse Rhetorical Ques-
tion with Wh-Question5. While the former does
not elicit a response, the latter does. Similarly,
Accept and Acknowledgment—short positive re-
sponses—are often mistaken for Backchannels.
Since dialogues are a collaborative task requiring
alternating speakers, LLMs should accurately in-
terpret these interactions for effective DA classifi-
cation. Although incorporating the audio modality
led to improved performance as shown in Table 3,
the model still struggled to reliably distinguish be-
tween the aforementioned cases, illustrating its lim-
ited ability to fully leverage audio information.

5 Theoretical Perspective on Dialogue
Acts

Most DA frameworks identify dimensions of an ut-
terance that play a part in determining its DA label.
While these dimensions can vary depending on the
use case and the underlying dataset, several key
aspects remain consistent across many frameworks.
In this section, we outline the most common over-
lapping characteristics of a dialogue that are crucial
in determining the DA of a given utterance. We
call these pre-tasks.

5Questions that seek specific information and typically
include "wh" words such as what, why, which, or who.

https://huggingface.co/transformers/v2.4.0/pretrained_models.html
https://huggingface.co/transformers/v2.4.0/pretrained_models.html


Communicative Function The DAMSL frame-
work, adapted with modifications for annotating
the SwDA and later the MRDA corpus, classifies
DAs into three levels: Utterance Features, For-
ward and Backward Looking Communicative Func-
tions (Core and Allen, 1997). Utterance Features
pertain to the content and form of an utterance.
These are further divided into two subcategories:
Information Level, which focuses on whether the
utterance addresses task-related content or commu-
nication management, and Communicative Status,
which records whether the utterance is intelligible
and successfully completed (Allen and Core, 1997).
The Communicative Function describes how an ut-
terance connects to the prior discourse as a Back-
ward Looking Function (BLF) or how it impacts the
future beliefs and actions of participants, thereby
shaping the discourse, as a Forward Looking Func-
tion (FLF). To classify a response into finer labels
such as Accept, Partial Accept, or Affirmative An-
swer, it is first necessary to recognize that the ut-
terance performs a Backward Looking Function.
Similarly, when a speaker poses a question, they
influence the addressee’s future actions6. Thus,
recognizing that the utterance serves a Forward
Looking Function is important to correctly classify
it into a specific question label.

Turn Taking Turn management refers to the al-
location of speaker roles within a dialogue (Sacks
et al., 1974). It is a fundamental aspect of conversa-
tions, enabling participants to take turns speaking
and ensuring the progression of the conversation.
Bunt et al. (2012) recognize Turn Management as
one of the dimensions used to determine a DA,
while Bunt (1994) classify turn assignment as part
of the broader category of social context. Many
DA tags rely on an understanding of when partic-
ipants hold the floor, are attempting to gain it, or
wish to express understanding through Backchan-
nels without seeking to take the floor. In unscripted
conversations involving imperfect agents, overlap-
ping turns are common (Bel-Enguix and Jiménez-
López, 2006), further complicating the dynamics
of dialogue. The intonation and syntactical fea-
tures of an utterance determine when the current
turn is expected to end (Holtgraves, 2013). Fur-
thermore, adding turn awareness into models has
been shown to improve DA performance (He et al.,
2021). These complexities emphasize the impor-

6The addressee may choose to respond to the question or
not.

tance of designing systems for DA prediction that
can accurately interpret turn management within a
conversation.

Dialogue Structure Various DA annotation
frameworks include some form of tracking the dia-
logue structure. (Popescu-Belis, 2005) argue that
Adjacency Pair7 (AP) captures important aspects of
an utterance function that cannot be solely inferred
through speech acts. Bunt et al. (2012) refer to the
strong coupling of a DA with its preceding DAs
in the form of Dependence Relations. In particu-
lar, the functional dependence relation is defined
as ‘relation between a given dialogue act and a
preceding dialogue act on which the semantic con-
tent of the given dialogue act depends due to its
communicative function.’ Context is of paramount
importance for DA disambiguation and has been
shown to improve DA performance (Żelasko et al.,
2021). Boyer et al. (2009) showed that adjacency
pairs can be used to distill implicit dialogue struc-
ture. Moreover, incorporating explicit dialogue
structure has been shown to improve DA classifica-
tion performance (Xu et al., 2022; Shi and Huang,
2019).

In summary, for a system to perform accurate DA
classification, it must be capable of understanding
the communicative function of an utterance, recog-
nizing how turn-taking unfolds in natural dialogues,
and extracting the necessary structural information
from prior context.

6 Dialogue Understanding of LLMs

In this section, we systematically evaluate LLM
performance on the three pre-tasks to gain insight
into the sources of their poor performance. For dis-
cussion, we report the performance of the LLaMA-
70B model for all these tasks while additional
model performance can be found in Appendix C.

6.1 Communicative Function of an Utterance

The DAMSL framework assigns DAs into one
of the two communicative functions along with
other dimensions that are largely concerned with
the form of the utterance. We are interested in the
communicative function an utterance holds, there-
fore the other dimensions have been merged into
a single ‘Other’ dimension. To create a Commu-

7An Adjacency Pair is a set of utterances grouped into
first and second parts that are spoken by different speakers.
Common examples include greeting-greeting and offer-accept
pairs.



Communicative Function (CF) Turn Management (TM)
Backward-Looking Forward-Looking Other New Floor Floor Continuation No Floor

6232 6882 1950 5796 7047 2221

Table 4: The number of utterances belonging to each class in the MRDA test set for the Communicative Function
and Turn Management pre-tasks.

Label LLM Naive Baseline
Precision Recall F1 Precision Recall F1

Backward-Looking 53.61 74.45 62.34 93.85 0.5 65.24
Forward-Looking 76.86 44.97 56.74 63.10 99.85 77.33

Other 44.46 54.31 48.89 96.36 42.15 58.65
Macro Avg 58.31 57.91 55.99 84.44 64.0 71.76
Accuracy 58.38 67.08

Table 5: LLaMA-70B model performance on identifying the communicative function of an utterance. A rule-based
baseline can perform better than the LLM.

Algorithm 1 Communicative Function from DA
Input: DAgeneral, DAspecific

Parameter: fDimension(), a function that returns the dimen-
sion a given DA belongs to.
Output: Communicative Function
1: if DAgeneral == Question then
2: function = ‘Forward Communicative Function’.
3: else
4: function = fDimension(DAspecific)
5: end if
6: if function ∈ {‘Information Level’, ‘Communicative

Status’} then
7: function = ‘Other’ //merge them into one category
8: end if
9: return function

nicative Function (CF) task, we use the hierarchy
presented in SWBD-DAMSL with manually allo-
cating a function to any new tags present in MRDA.
Under MRDA an utterance gets one general and
zero or more specific tags. The general Question
tag always serves an FLF. Other utterances can
either serve an FLF or a BLF based on the spe-
cific tag assigned to them. We define a function
fDimension(DAspecific) that takes the specific tag8

as input and returns the communicative function
of the utterance as given by the mapping presented
in appendix A ( Table 12). Algorithm 1 is used to
assign the CF labels. Table 4 (the left section) gives
the class distribution of the resulting CF dataset.

Table 5 gives the LLM performance on detecting
the communicative function of an utterance. For
comparison, the performance of a rule-based base-
line is also presented. The rules consist of using
common short utterance texts to determine the CF.
The baseline details are presented in appendix A
(Algorithm 3). LLM performs significantly worse

8If an utterance does not have a specific tag, then the
general tag becomes the specific tag as well.

than a naive baseline. The LLM is biased towards
BLF with a higher recall of 75 compared to FLF
where recall drops to 45 even though more utter-
ances serve an FLF in the dataset.

6.2 Turn Management

Understanding what utterances were spoken by
whom is crucial for DA classification. For exam-
ple, the difference between ‘Mimic’ & ‘Repeat’ is
if a speaker is repeating their utterance or some-
one else’s. Similarly, to disambiguate the different
types of floor mechanisms, the model must grasp
the nuances of when a turn begins and ends.

A speaker’s turn can be classified into three
types: No Floor, where the speaker did not intend
to take the floor (Backchannels) or attempts to gain
the floor but is unsuccessful; New Floor, where a
speaker who previously did not have the floor suc-
cessfully takes it; and Floor Continuation, where
the speaker who already had the floor retains it in
the current utterance. We create a Turn Manage-
ment (TM) task where each utterance is assigned
one of three turn classes. This assignment is based
on the current utterance’s DA and the surround-
ing speaker IDs. Algorithm 2 gives the algorithm
to assign one of the three turn labels to an utter-
ance. Table 4 (the right section) gives the TM class
distribution of the resulting dataset.

To evaluate an LLM’s turn management capa-
bilities, we prompt LLMs to predict the speaker
turn label for each utterance. We also compare
the model’s performance with a very naive base-
line that looks at speaker names and two common
Backchannel utterances 9. The baseline is given in
appendix 4. Table 6 shows that the model performs

9These are ‘huh’ and ‘uhhuh’.



Label LLM Naive Baseline
Precision Recall F1 Precision Recall F1

No Floor 59.08 71.40 64.66 91.93 35.92 51.67
New Floor 78.80 52.28 62.86 72.95 94.17 82.21

Floor Continuation 74.18 90.29 81.44 94.44 89.99 92.17
Macro Avg 70.63 71.28 69.61 86.45 73.36 75.35
Accuracy 72.72 83.63

Table 6: LLaMA-70B model’s performance on identifying the speaker role.

# Speaker Utterance DA AP TM CF DS
1 fe046 um i can yeah i mean i i think can probably schedule

ten people uh whenever.
s 1a New Floor FLF Not Included

2 me010 well it’s it’s up to you. s 1b New Floor FLF Not Included
3 me010 i mean i i uh we don’t have any huge time pressure. e 1b+ Floor Cont BLF Not Included
4 me010 it’s just when you have d Floor Cont FLF Not Included
5 fe046 how long will it be? bs 2a New Floor FLF Not Included
6 fe046 um i i would say maybe two weeks. s 3a Floor Cont FLF Included
7 me010 yeah. aa 2b New Floor BLF Not Included

Current Utterance
8 me010 oh okay. bk 3b Floor Cont BLF [6]

Table 7: Dialogue excerpt with speaker information, dialogue act (DA), adjacency pair (AP), turn management
(TM), communicative function (CF), and dialogue structure (DS). The example shows how DA and AP labels get
mapped to the three pre-tasks labels. The final utterance shows when a ‘current utterance’ gets prompted for labels
from LLM, the input also contains prior utterances.

Algorithm 2 Floor Status Based on DA and Speaker Roles
Input: DA, curr_spk, last_spk, next_spk
Output: Speaker Floor Label

if last_spk == curr_spk then
return “floor continuation”

end if
if DA == Backchannel then

return “no floor”
end if
if DA == Floor Grabber then

if curr_spk == next_spk then
return “floor new”

else
return “no floor”

end if
end if
if DA ∈ {‘%’} then

return “no floor” //interrupted utterance
end if
return “floor new”

worse than a simple heuristic baseline. In particular,
the model struggles to accurately catch the cases
where a switch in the speaker takes place or when
the current speaker either fails to capture the floor
or never intended to. The majority of the errors
stem from the model’s inability to disambiguate be-
tween short response utterances and backchannels,
where the former implies the speaker has the floor
while the latter doesn’t. In addition, the model also
struggles with short interrupted utterances.

6.3 Dialogue Structure

Adjacency pairs (AP) are defined as sequences of
two utterances that are: 1) produced by different
speakers & 2) ordered with a first part and a second
part (Levinson, 1983). Such as a question-answer
pair. Therefore, APs capture local conversation
structure. To test the ability of LLMs to understand
direct interactions, we devise a Dialogue Structure
(DS) task. Since MRDA has been annotated for
APs, we leverage the AP annotations for this pur-
pose by merging overlapping APs to create a DS
dataset. As shown in Table 7, utterances 1, 2, & 3
will belong to the same AP while utterance 4 will
not belong to any 10.

Let a Dialogue D = {u0, u1, .., ui, ..} is a list
of ordered utterances. A function fAP (ui, uj) re-
turns True if ui and uj belong to the same AP and
False otherwise. For an utterance ui, if it is part
of an AP, then the DS is given as

DS(ui) = [j | j < i, fAP (ui, uj) == True]

Given an utterance ui, the DS task is to identify
the preceding utterances that are in the same AP as
ui. To prompt the models, we provide past utter-
ances falling within a fixed window size w 11 i.e.,
[ui−w, ui−w+1, .., ui−1] and ask the model to out-

1040% of utterances in MRDA test set belong to an AP.
11w is set to 10 to match the context window used for DA

classification.



Model ARI NMI Perfect Match

Naive Baseline 0.2668 0.340 0.17
LLaMA-3.1-70B 0.3763 0.4257 0.21

Table 8: LLM performance compared to a simple base-
line that always selects the most recent utterance as
relevant context.

Figure 2: Utterance position is in relation to the distance
of context from the current utterance. A position of 1 im-
plies the immediately preceding utterance. (a) Context
selection accuracy and precision. The model’s ability to
distill relevant context deteriorates as the utterances get
further away. (b) The model is biased towards nearer
utterances.

put the utterance numbers of those utterances that
should be in the same AP as ui. We only prompt
the model for utterances that belong to an AP, so a
direct interaction is guaranteed to exist.

This task can also be viewed as a clustering prob-
lem with the number of clusters fixed to two: ut-
terances within w distance to ui that belong to
the same AP as ui and those that do not. There-
fore, we use clustering metrics to evaluate model
performance. The Adjusted Rand Index (ARI) ac-
counts for chance assignment while measuring the
similarity between two clustering partitions. Nor-
malized Mutual Information (NMI) measures how
much information is shared between the predicted
and gold clusters while taking the cluster size into
account. The perfect match considers the cluster-
ing as correct for a data point if every utterance
has been assigned to its correct cluster. This is a
strict metric, as a single misplaced utterance makes
the prediction incorrect. All these metrics range
from 0 to 1, with 1 showing perfect agreement
and 0 showing none. Table 8 compares the LLM’s
performance with a very simple baseline that al-
ways predicts the immediate previous utterance i.e.,
DSbaseline(ui) = [i − 1]. The LLM struggles to
identify the local dialogue structure and performs
only slightly better than the naive baseline.

Figure 2(b) shows the model’s positional bias to
nearer utterances; here it struggles to identify AP

utterances as they move further from ui. Similarly,
Figure 2(a) shows a sharp decline in precision for
more distant utterances. In other words, the model
either excludes the further utterances from the AP
of ui, or when it does include them, it selects the
wrong ones.

6.4 Pre-tasks and Dialogue Acts

LLMs’ poor performance on the three pre-tasks
suggests the models lack general dialogue under-
standing capabilities. The same trend also holds for
smaller LLMs as well–with the performance drop
on the pre-tasks proportionally more in accordance
with their poor performance on DAs (Appendix C).
Although we have established the importance of
the pre-tasks for DA classification through a lin-
guistic lens, this section tries to answer the question
empirically.

To assess whether errors in pre-task predictions
are statistically associated with DA classification
errors, we employ the Chi-Square (χ2) test. This
test is well-suited for our analysis because it eval-
uates whether two categorical variables—pre-task
correctness and DA correctness—are independent
or related. We apply the test to all pre-tasks 12

separately to answer if errors on them affect DA.
For all pre-tasks, we find that DA errors are not
independent of pre-task predictions for p < 0.05,
showing that errors on these pre-tasks are linked to
errors for DA classification.

6.5 Fine-tuned Pre-task Baseline

To further analyze the impact of the pre-task per-
formance on DA classification, we present the re-
sults of fine-tuned models on two of the three pre-
tasks13 (Table 9). Turn Modeling (He et al., 2021)
uses RoBERTa to get utterance representations, fol-
lowed by an LSTM to get contextual representa-
tions. It also incorporates learning two embeddings,
indicating whether a speaker switch has taken place
or not. As seen in Table 9, the smaller fine-tuned
models can perform significantly better than the
few-shot LLaMA-70B model. In addition, when
turn awareness is removed (RoBERTa+BiLSTM),
there is a 14-point F1 drop on ‘Turn Management’
task, and it also degrades the performance on DA
classification. The performance on ‘Communica-
tive Function’ is comparable to the model without

12For DS, we use the perfect match metric to identify errors.
13Since DS prediction cannot be easily mapped to a classifi-

cation task and would require substantial architectural changes
to the models.



Model Pre-task:CF Pre-task:TM Dialogue Act
F1 Accuracy F1 Accuracy F1 Accuracy

Turn Modeling (He et al., 2021) 82.12 82.28 84.41 86.93 38.77 67.00
RoBERTa+BiLSTM 82.08 82.61 70.69 70.46 37.94 66.30

LLaMA-3.1-70B 55.99 58.38 69.61 72.72 19.17 31.26

Table 9: Performance of models on Communicative Function (CF) & Turn Management (TM) pre-tasks along with DA
classification. Adding explicit turn awareness improves performance on TM and consequently on DA classification.

Model Cohen’s κ
TM CF DS

Average Human 0.7047 0.6507 0.5162
LLaMA-3.1-70B 0.4826 0.3564 0.0302
GPT-4 0.5014 0.3781 0.0251
GPT-4 Audio 0.5247 0.4097 0.0255

Table 10: Inter-annotator agreement of LLMs and Hu-
mans with the gold-derived labels. Humans achieve
substantial agreement without any training, while the
LLMs struggle on all tasks. TM: Turn Management, CF:
Communicative Function, DS: Dialogue Structure.

any speaker turn awareness. This highlights that
the ‘Turn Modeling’ model can keep track of the
dialogue turn management and perform better DA
classification. Therefore, designing model archi-
tectures that explicitly capture the pre-tasks can be
helpful in improving DA performance.

7 Human Study

In this section, we focus on the questions of how
hard these pre-tasks are and how much gap there
is between human and LLM performance. We
conducted a human study where two annotators–
without going through any training–were asked to
annotate three dialogues 14 for the three pre-tasks.
Additional details about the annotations are present
in Appendix D. To answer the first question, the
annotators achieved an inter-annotator agreement
(IAA) of 0.6477 for TM, 0.6653 for CF, and 0.4679
for DS as measured by Cohen’s κ (Cohen, 1960).
Without any training, the annotators were able to
get a substantial level of agreement, which indi-
cates that for humans these tasks are not hard.

Model ARI NMI Perfect Match

Human 0.8079 0.8104 0.79
LLaMA-3.1-70B 0.1951 0.1989 0.16
GPT-4 0.1694 0.1785 0.14
GPT-4 Audio 0.1838 0.1887 0.15

Table 11: Human performance comparison with LLM
performance for the dialogue structure task.

14There are 3433 total utterances.

To compare LLMs with human performance, we
consider the gold labels as the labels for the tasks
presented in section 6. The human performance is
the average of both annotators. As seen in Table 10,
the LLMs get a very low IAA score. Cohen’s κ
accounts for chance agreement and penalizes im-
balanced class errors (Grandini et al., 2020). For
TM and CF, while the LLMs can get a relatively
higher accuracy on the task due to performing well
on the ‘easy’ labels, they struggle with the diffi-
cult cases. In particular, the LLMs are biased to
over-predicting BLF and Floor Continuation. For
DS, instead of only prompting for utterances that
belong to an AP, we evaluated all utterances in the
test set. The model was required to either iden-
tify related preceding utterances or return an empty
list when no link was present. For DS, Cohen’s κ
counts an utterance as correct if both the gold and
model output either include it in a cluster or leave
it unlinked, while Table 11 reports detailed clus-
tering performance. The low IAA scores highlight
the significant gap between LLM and human-level
performance.

8 Conclusion

We study the poor performance of LLMs in mul-
tiparty DA classification. Through linguistic anal-
ysis, we identify three key pre-tasks—Turn Man-
agement, Communicative Function, and Dialogue
Structure—that underpin accurate DA prediction.
Our experiments demonstrate that LLMs perform
poorly on these tasks, often failing to surpass naive
baselines. They fail to recognize speaker roles,
the broader function of an utterance, and exhibit a
bias toward the most recent utterances when pre-
dicting the dialogue structure. Statistical analysis
confirms a strong association between errors in
these pre-tasks and DA misclassifications. A hu-
man study highlights the significant gap between
LLMs and human-level dialogue understanding,
reinforcing the need to train models with better
discourse awareness and conversational reasoning.



Limitations

We analyze LLMs under the few-shot in-context
learning setting. Additional prompt engineering
(PE) techniques such as chain of thought reason-
ing could potentially improve LLM performance.
Since the performance gap between SFT smaller
models and LLMs is quite big, it would be hard to
match or surpass their performance using PE alone.
Therefore, we did not explore additional prompt
engineering techniques.

Running all the experiments on GPT-based mod-
els cost around 800 USD. While we provide the
exact prompts we used, replicating those exper-
iments can be costly. Additionally, analysis on
open-source models also requires access to a sub-
stantial amount of GPU compute resources.

Ethics Statement

LLMs are being used in real-world situations that
require interactions with users. In some critical
domains such as counseling chatbots, if the under-
lying LLM is brittle and fails to accurately com-
prehend dialogues, this could pose a potential risk
to user well-being, lead to miscommunication, or
even exacerbate existing issues.
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Appendix

A Pre-tasks

A.1 Communicative Function
The mapping of DA labels to their respective com-
municative functions is given in Table 12. A rule-
based baseline is given in Algorithm 3.

Algorithm 3 Baseline for communicative function
Input: Utterance
Output: Communicative Function La-
bel
1: if Utterance∈ {‘um’, ‘and um’, ‘but’, ‘so’, ‘well’, ‘uh’}

then
2: return “Other”
3: end if
4: if Utterance ∈ {‘yeah’, ‘okay’, ‘right’, ‘huh’, ‘yes’,

‘yep’, ‘oh yeah’, ‘oh okay’, ‘uhhuh’, ‘no’, ‘i see’, ‘oh’,
‘sure’} then

5: return “Backward”
6: end if
7: return “Forward”

A.2 Turn Management
A naive baseline for predicting the turn labels is
given in Algorithm 4.

Algorithm 4 Baseline for speaker turn labels
Input: Speakerlast, Speakercurr , Utterance
Output: Speaker Turn Label
1: if Speakercurr == Speakerlast then
2: return “floor continuation”
3: end if
4: if Utterance /∈ {‘huh’, ‘uhhuh’} then
5: return “floor new”
6: end if
7: return “no floor”

A.3 Dialogue Structure
Prompting LLM To test how well LLMs can do
on this task, we prompt for every utterance that is
part of an AP separately 15. This results in 3986
data points 16 with an average cluster size of 3.009
utterances.

B Error Analysis

Figure 3 shows that for most of the classes, the
DA performance is bounded by the model’s abil-
ity to first detect the correct communicative func-
tion. The exceptions are ‘Apology’, ‘Thanks’, ‘Ex-
clamation’, and ‘Tag Question’ where the model

15Except the first utterance in an AP cluster since it does
not have any preceding utterances to be linked with

16This can be thought of as an easier version of direct inter-
action prediction since we only prompt for AP utterances and
the model doesn’t need to first identify if a direct interaction
took place or not.
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Dimension Dialogue Acts

Forward Communicative Function Statement, Topic Change, Y/N Question, Wh-Question, Or Question, Or Clause
After Y/N Question, Open-ended Question, Rhetorical Question, Command,
Suggestion, Commitment, Follow Me, Exclamation, Apology, Thanks, Welcome,
Tag Question, Declarative Question

Backward Communicative Function Backchannel, Acknowledgement, Assessment/Appreciation, Rhetorical Question
Backchannel, Accept, Partial Accept, Affirmative Answer, Reject, Partial Reject,
Dispreferred Answer, Negative Answer, Maybe, No Knowledge, Repetition Re-
quest, Understanding Check, Repeat, Mimic, Summary, Correct Misspeaking,
Self-Correct Misspeaking, Defending/Explanation, Elaboration, Collaborative
Completion, Downplayer, Sympathy

Communicative Status Self Talk, Third Party Talk, Indecipherable, Interrupted, Abandoned, Nonspeech
Information Level About-Task
Other Hold, Floor Grabber, Floor Holder, Joke

Table 12: Mapping MRDA tags into the dimensions used in SWBD-DAMSL. Tags only present in MRDA are
highlighted.

can assign the correct DA class but fails to iden-
tify the communicative function. The communica-
tive function performance of the first three tags is
almost zero–this also shows the model’s bias to
over-assigning the BLF. In contrast, there are some
classes where the model understands the high-level
function but is not able to disambiguate the specific
DA. These include ‘Open-ended Question’ and ‘Or
Question’, Figure 4 shows that these classes are
often confused with ‘Statement’ or other types of
question classes that have FLF.

Figure 4 and Figure 5 show the confusion ma-
trix using LlaMA-70B and GPT4o-Audio models
respectively on the MRDA testset. Welcome class
has no instances in the testset.

C Smaller Model Performance on
Pretasks

Table 13 gives the performance metrics of the
smaller models on CF and TM.

D Human Study Guidelines

The annotations were done by two graduate stu-
dents with computer science and linguistics back-
ground. They did not go through any training in
order to properly capture the difficulty of this task.
Three dialogues were chosen from the development
set randomly, these are Bed010, Bmr014, Bmr013.
The annotators were given the corrected transcript
along with the audio of the dialogues. They lis-
tened to the audio and assigned labels for all tasks
simultaneously for each utterance. The instructions
provided for the tasks are given below. Addition-
ally, for the communivative function task, they were
also provided Table 12.

Communicative Function Assign each utter-
ance to one of the following categories:

• Backward Looking: a backward functioning
utterance relates to the previous discourse. For
example, an utterance might answer, accept,
reject, or try to correct some previous utter-
ance or utterances.

• Forward Looking: an utterance serves as for-
ward functioning when it constrains the future
beliefs and actions of the participants and af-
fects the discourse. For example, a question,
offer, or suggestion.

• Other: Utterances where a speaker speaks to
themselves or tells a joke. This category also
includes ’Floor Mechanisms’, short utterances
where the speaker tries to gain or keep the
floor.

Turn Taking The task is to assign one of three
labels indicating the speaker floor status for each
utterance. The definitions of the three labels are
given below:

• No Floor: The speaker does not have the floor.
Usually the case for backchannels or when a
speaker tries to gain the floor but fails.

• Floor Continuation: When the speaker of the
current utterance already had the floor and
continues to keep the floor.

• Floor New: The current speaker gains the
floor while they did not previously have the
floor.

Dialogue Structure For the DS task, we asked
the annotators to label adjacency pairs for the
whole dialogue. They were provided with AP



Figure 3: The green points give the F1 score on each DA class. The orange and blue points give the accuracy of turn-taking and
communicative function for each DA tag. All results are from LLaMA-70B model.

Figure 4: Confusion matrix showing the results of LLaMA-70B model on MRDA test set.



Figure 5: GPT4o-Audio model’s performance on the test set of MRDA.

Model
Turn Management Communicative Function

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Gemma-7B 38.93 35.91 29.87 48.81 44.72 36.34 35.11 46.61
Mistral-7B 51.42 52.27 51.55 52.95 41.96 38.55 38.41 45.65
LLaMA-3.1-8B 57.23 48.77 45.40 56.62 46.20 50.69 46.11 47.96

Table 13: Performance comparison of smaller models on Turn Management and Communicative Function.

annotation guidelines given in the MRDA man-
ual (Dhillon et al., 2004).

E Pre-tasks Correlation with DA Errors

To study the correlation of DA classification errors
and errors on all pre-tasks, we conducted χ2 tests.
Detailed numbers are given in Table 14 below.

F Experimental Setup

The hyperparameter w that decides the number of
past and future utterances to use as the context is set
to 10 after using a search space of w ∈ {5, 10, 15}
on the development set.

Pre-task χ2 p-value

Communicative Function 141.68 1.14× 10−32

Turn Management 78.29 8.88× 10−19

Dialogue Structure 26.75 2.32× 10−7

Table 14: Chi-square test results for DA errors and each pre-
task errors.

F.1 Models

Due to GPU memory restrictions, we use the 4-bit
quantized version of LLaMA-70B model.



Model Version Quant.

Gemma-7B gemma-1.1-7b-it No
Mistral-7B Mistral-7B-Instruct-v0.3 No
LLaMA-3.1-8B Meta-Llama-3.1-8B-Instruct No
LLaMA-3.1-70B Meta-Llama-3.1-70B-Instruct 4 Bit
GPT-3.5 gpt-3.5-turbo-0125 No
GPT-4 gpt-4-turbo-2024-04-09 No
GPT-4o Audio gpt-4o-audio-preview No

Table 15: Model versions used in the experiments. LLaMA-
3.1-70B model was quantized to 4 bit to fit on the GPUs.

F.2 Prompts
The prompts used for all the experiments are given
below. Due to space constraints and readability is-
sues, we do not include all the in-context examples
used for DA classification.



Instruction
You are an intelligent annotator capable of classifying the intention behind each speaker’s utterance.
You will be provided with a list of possible Dialogue Acts and their definitions.
You will be given an utterance surrounded by ‘#‘. Your task is to predict the correct label for that utterance.
You will also be given a snapshot of the conversation to provide context for your prediction.
Return the answer in the format: ‘label:predicted label‘.
The Dialogue Acts and their definitions are as follows:
Statement: General statements.
Accept: A short utterance indicating acceptance of a previous speaker’s statement.
Disruption: Indecipherable or disrupted speech.
Defending/Explanation: The speaker defends their opinion or provides an explanation.
Acknowledgement: Acknowledges the content of a previous speaker’s utterance.
Backchannel: Indicates the listener is paying attention.
About-Task: Discusses meeting agenda or meeting direction.
Assessment/Appreciation: Expresses an evaluation or appreciation (more emotional than Acknowledgement).
Floor Grabber: The speaker, who was previously silent, attempts to gain the floor.
Tag Question: A short question following a statement to seek confirmation.
Affirmative Answer: A longer affirmative response.
Suggestion: A proposal, advice, offer, or suggestion.
Floor Holder: An utterance used mid-speech by a speaker to maintain the floor.
Command: A directive in the form of a question or statement.
Understanding Check: The speaker checks if they understood a previous speaker correctly.
Topic Change: Starts or ends a topic.
Elaboration: Expands on the speaker’s own previous utterance by adding details.
Y/N Question: A yes-or-no question.
Dispreferred Answer: A direct negative response to a previous utterance.
Exclamation: Expresses excitement, surprise, or enthusiasm.
Summary: Summarizes a previous utterance or discussion.
No Knowledge: The speaker expresses a lack of knowledge.
Wh-Question: A question that requires a specific answer.
Negative Answer: An implicit negative response using hedging.
Self-Correct Misspeaking: The speaker corrects their own pronunciation or word choice.
Or Clause After Y/N Question: The speaker adds an "or" clause after a yes/no question.
Partial Accept: The speaker explicitly accepts part of a previous speaker’s utterance but not all.
Collaborative Completion: The speaker attempts to complete another speaker’s utterance.
Joke: A humorous or sarcastic utterance.
Or Question: A question containing two or more options.
Reject: A short negative response.
Hold: When a speaker is given the floor but delays making an utterance.
Rhetorical Question: A question to which no answer is expected.
Mimic: The speaker mimics another speaker’s utterance or part of it.
Follow Me: The speaker checks if their statement is being understood.
Repeat: The speaker repeats themselves.
Apology: The speaker apologizes.
Maybe: An utterance expressing probability or uncertainty (e.g., containing the word "maybe").
Commitment: The speaker explicitly commits to a future course of action.
Open-ended Question: A question that does not seek a specific answer.
Self Talk: The speaker talks to themselves.
Downplayer: The speaker downplays or deemphasizes another utterance.
Rhetorical Question Backchannel: A rhetorical question serving as a backchannel.
Partial Reject: The speaker explicitly rejects part of another speaker’s utterance.
Sympathy: An utterance expressing sympathy.
Correct Misspeaking: The speaker corrects another speaker’s utterance.
Third Party Talk: Marks utterances from side conversations.
Repetition Request: The speaker asks another speaker to repeat all or part of their previous utterance.
Thanks: The speaker thanks another speaker.
Welcome: A response to an utterance marked with the "Thanks" tag.
Some examples are given below:
Example 1: Input: "Context: <Patricia>: and um I just put down some ideas. <Patricia>: you’ve seen some of this in the
email. <Karen>: huh. <Patricia>: none of these are obligatory topics. # <Patricia>: but they’re just things that I thought
might be useful to discuss. # <Patricia>: just as a way of organizing the discussion. <Patricia>: but if there are other topics
you’d like to discuss, that’d be great too. Now classify Utterance: <Patricia>: but they’re just things that I thought might be
useful to discuss.", Output: "label:Defending/Explanation".
Example 2: Input: "Context: <Richard>: We will give you an opportunity to edit all the transcripts. <Richard>: So if
you say things and you don’t want them to be released to the general public, you’ll be given an opportunity by email to
bleep out any portions. <Richard>: On the speaker form, just fill out as much of the information as you can. <Richard>:
If you’re not exactly sure about the region # <Richard>: we’re not exactly sure either. # <Richard>: So don’t worry too
much about it. <Richard>: It’s just self-rating. Now classify Utterance: <Richard>: we’re not exactly sure either.", Output:
"label:Downplayer".

Table 16: Prompt used for MRDA 50 class fine-grained DA classification. Only 2 in-context example is shown for
readability.



You are a clever annotator who can understand speaker interactions in a dialogue. For a given utterance, your job is to assign
one of three labels indicating the speaker floor status.
The definitions of the three labels are given below:
No Floor: The speaker does not have the floor. Usually the case for backchannels or when a speaker tries to gain the floor but
fails.
Floor Continuation: When the speaker of the current utterance already had the floor and continues to keep the floor.
Floor New: The current speaker gains the floor while they did not previously have the floor.
You will be given a snapshot of a conversation context and must predict the speaker floor label of the highlighted utterance,
surrounded by #, and given in Utterance.
Some examples are given below:
Example 1: Input: "Context: <Michael>: yeah they’re still not decided. <James>: yeah. <Michael>: um i don’t know what #
<Michael>: yeah. # <Michael>: nothing much.
Now classify Utterance: <Michael>: yeah.", output: "label:floor continuation"
Example 2: Input: "Context: <Andrew>: we’ve got built-in downsampling. <Andrew>: and so it’s only recording sixteen
kilohertz data. <Andrew>: and we’ve got <Brian>: wait a second. # <Andrew>: we’re not we’re not recording the empty
channels. # <Richard>: the ones that aren’t filled out. Now classify Utterance: <Andrew>: we’re not we’re not recording the
empty channels.", output: "label:floor New"
Example 3: Input: "Context: <Richard>: because Morgan said he asked you. <Patricia>: oh uh he did. <Patricia>: and and I
approved. # <Richard>: uhhuh. # <Patricia>: but I think that I was uh proposed before I was asked. Now classify Utterance:
<Richard>: uhhuh.", output: "label:no floor"
[Input]

Table 17: Prompt for the task of Turn Management.

Instruction
You are a clever annotator who can understand speaker interactions in a dialogue. Your job is to classify a given utterance
into three categories defined below.
Backward: A backward-functioning utterance relates to the previous discourse. For example, an utterance might answer,
accept, reject, or try to correct some previous utterances.
Forward: An utterance serves as forward-functioning when it constrains the future beliefs and actions of the participants and
affects the discourse. For example, a question, offer, or suggestion.
Other: Utterances where a speaker speaks to themselves or tells a joke. This category also includes ‘Floor Mechanisms’,
short utterances where the speaker tries to gain or keep the floor.
You will be given a snapshot of a conversation labeled as "Context". Predict the role of the highlighted utterance, which is
surrounded by ‘#‘ and given in "Utterance".
Some examples are given below:
Example 1: Input: "Context: <Sandra>: yeah if there’s anything else which we what we could add on the web site. <Sandra>:
so for example if you have a small abstract or some pictures that would be fine. <Jeffrey>: okay. # <Sandra>: because now
we can add some more stuff there. # <Edward>: yeah.
Now classify Utterance: <Sandra>: because now we can add some more stuff there.", output: "label:backward"
Example 2: Input: "Context: <Richard>: and and he wants to use this corpus. <Joshua>: yeah. <Joshua>: yeah exactly. #
<Richard>: so # <Joshua>: i mean it’s one of the areas where kemal is going to work. <Richard>: yeah.
Now classify Utterance: <Richard>: so.", output: "label:other"
Example 3: Input: "Context: <Andrew>: i don’t think we do need any time aligned detail. <Andrew>: i think we just have
basically one text file which runs from beginning to end. <Richard>: well if in terms of transcripts sure. <Richard>: but it
might be nice to get the actual time. <Andrew>: sure. # <Andrew>: but not if it costs more. # <Richard>: right. Now classify
Utterance: <Andrew>: but not if it costs more.", output: "label:backward"
Example 4: Input: "Context: <Christopher>: it depends on who else is using machines. <Christopher>: but we have more
machines now. <Robert>: that’s true. # <Christopher>: it’s more like a day probably. # <James>: um how much worse
is the short training set in terms of the performance? Utterance: <Christopher>: it’s more like a day probably." output:
"label:forward"
Example 5: Input: "Context: Patricia>: then you cycle through there and then you go up to this next level. <George>: so they
hear all the channels at once? <Patricia>: and <Sarah>: oh okay. # <Patricia>: um # <Patricia>: let’s see. <Patricia>: they
hear them. Now classify Utterance: <Patricia>: um", output: "label:other"
[Input]

Table 18: Prompt for the task of Communicative Function.



Instruction
You are a clever annotator who can understand speaker interactions in a dialogue. Given a snapshot of a conversation, your
job is to label the dialogue structure (DS). Dialogue Structure (DS) here is a set of utterances where at least two speakers take
part in the conversation and the last utterance is functionally dependent on the previous utterance(s). Common instances
include question-answer, offer-accept, direct comment pairs etc.
Give the DS predictions for the last utterance surrounded by ‘#’ by returning the utterance number(s) of previous utterances
that are part of the DS or empty list if no direct interaction is present.
Return the predictions in the format: "output:[predicted utterance numbers seperated by comma]"
Some examples are given below:
Example 1: Input: "[1] <Linda>: i don’t know happy or something like that. [2] <Linda>: or it’ll be a specific word. [3]
<Linda>: or the type. [4] <Linda>: you’ll say i need a uh spatial relation phrase here. [5] <Linda>: or i a specifier here.
[6] <Linda>: uh a actual type here. [7] <Linda>: um or you could just say you know the meaning type. [8] <Linda>: so a
example is the first person to do something should be an agent. [9] <Linda>: often a human. [10] <Linda>: right? # <Linda>:
so if i um uh run down the street then i #", Output: "label:[]"
Example 2: Input: "[1] <James>: i mean i would suggest we discuss [2] <James>: if we’re going to have a policy on it [3]
<James>: that we discuss the length of time that we want to give people. [4] <Richard>: uhhuh. [5] <James>: so that we have
a uniform thing. [6] <James>: so that’s a month. [7] <James>: which is fine. [8] <Robert>: twelve hours. [9] <Richard>:
well the only thing i said in the email is that the data is going to be released on the fifteenth. [10] <James>: i mean it seems #
<Richard>: i didn’t give any other deadline. #", Output: "label:[1,2,3,9]"
Example 3: Input: "[1] <James>: and there was some kind of p. make like thing that sent things out. [2] <Robert>: uhhuh.
[3] <Robert>: uhhuh. [4] <Robert>: uhhuh. [5] <James>: so all twenty five people were sending things to all twenty five
machines. [6] <Robert>: yeah. [7] <Robert>: yeah. [8] <James>: and and things were a lot less efficient than if you’d just
use your own machine. [9] <Robert>: yep. [10] <Robert>: yeah exactly. # <Robert>: yeah you have to be a little bit careful.
#", Output: "label:[10]"
Example 4: Input: "[1] <Patricia>: i mean [2] <Brian>: right. [3] <Patricia>: foot pedals i’ve used. [4] <Patricia>: that’s fine.
[5] <Patricia>: um i didn’t find it any more use to me than my hand held taperecorder. [6] <Andrew>: oh. [7] <Andrew>: i
see. [8] <Patricia>: however if we have a transcribing machine i would accept it. [9] <Patricia>: and having getting hold of a
transcriber. [10] <Patricia>: i think that cogsci has one. # <Richard>: uhhuh. #", Output: "label:[] ”’
[Input]

Table 19: LLM prompt for the task of dialogue structure.
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