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ABSTRACT
Multiscale design is the widely practiced use of space and scale to vi-
sually explore and articulate relationships. Free-form web curation
(FFWC) is an approach to supporting multiscale design, involving
creative strategies of collecting content, assembling it to juxtapose
and organize, sketching, writing, shifting perspective to navigate,
and exhibiting to share and collaborate. Our long term goal is to
support design students with automatic, on demand feedback.

We introduce a spatial clustering technique for recognizing mul-
tiscale design characteristics—scales and clusters—in FFWC doc-
uments. We perform quantitative evaluation to establish baseline
performance. We contribute to human-centered AI by advancing
fundamental human aspirations, through automatic recognizers of
creative design, e.g., for representing and communicating abstract
ideas. We develop implications, (1) for supporting people using
content recognition in creative contexts, such as design education;
(2) for overcoming design fixation with human-centered AI; and (3)
for recognizing multiscale design characteristics.

CCS CONCEPTS
• Human-centered computing; • Applied computing → Edu-
cation; • Computing methodologies→ Cluster analysis;
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1 INTRODUCTION
To support design education, we introduce an approach to recog-
nizing multiscale visual design, a characteristic of what Tufte calls
escaping the flatland of envisioning information, i.e., using design
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strategies to increase the legible dimensionality and density of infor-
mation on the screen and page [52]. Lupfer et al. define multiscale
design as, “The use of space and scale to explore and articulate rela-
tionships, [which] involve the juxtaposition and synthesis of diverse
design elements” [35]. Systems supporting multiscale design—e.g.,
Photoshop, Illustrator, InDesign, and IdeaMâché [36]—enable ex-
tending basic two dimensional design by organizing content across
a range of scales. When doing this work with interactive computing
systems, users change focus to traverse zoom levels. An investiga-
tion of a landscape architecture classroom found that multiscale
design pervades student work on projects [35]. In these projects,
multiscale design supports students in schematically forming design
proposals to meet the situated needs of sites involving waterways
and land use. In a study involving computer science courses, mul-
tiscale design has been found to support students’ iterative and
reflective ideation [36].

We have been conducting an extended field study in design
education courses. In these contexts, students engage in multiscale
design through free-form web curation (FFWC)—a form of new
media—which involves collecting and assembling digital artifacts
to create new spatial and conceptual document structures (See
Figure 1) [25, 36]. From our observation, as well as prior work
[43], we find that students engaging in design work need frequent,
helpful feedback to make progress.

Consider a scenario. Sue, a novice student, works late on a con-
ceptual design assignment, the night before it is due. At this time,
the course instructor is unavailable to provide feedback. Sue’s de-
sign gets stuck in flatland: many content elements are presented, but
without spatial organization that discernibly depicts categories and
other relationships. Sue would benefit from computational recogni-
tion of characteristics of multiscale design in their FFWC document,
in order to support them in reflecting on and improving their design
work. The multiscale design recognition algorithm developed in the
present research would help Sue understand their current status.
With additional research, it can be coupled with hints for how to
better organize content elements, to escape flatland.

Prior techniques for analyzing spatial documents—e.g., snapshots
of articles and magazines, and other image files and PDFs—support
various uses, e.g., determining whether the role of visual content is
structural or illustrative [14], correcting errors based on content
placement [8], and creating document descriptors for authentica-
tion [9]. In education contexts, computational recognition of spatial
and visual content has supported student learning, such as by auto-
matically generating models from engineering diagrams [13] and
providing recommendations based on lifelog images [20]. However,
prior work did not focus on recognition of how designers use space
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Figure 1: A student’s multiscale design for instructor I4’s human-computer interaction project. They organize phases of the
project as design elements, nested across scales of magnification. At the outer scale, a crown, its caption, spikes connected
with each phase, and headings within each phase together form a holistic cluster. Bottom left, see the view as the user zooms
in. Elements deeply nested in one scale become legible in the next. We observe nine nested clusters at the inner scale.

and scale to represent concepts involving complex, extended sets
of content elements. It also did not address free-form web curation
as a document structure to support graphical, visual expression.

The present research addresses the gap, to support people in go-
ing beyond flatlands of design to represent complex collections and
ideas across levels of scale. We advance investigation of multiscale
design characteristics recognition, in order to provide instructors
and students with insights about design work.We next present prior
work for computational design recognition through spatial cluster-
ing. We follow with the FFWC document structure. Subsequently,
we present the multiscale design characteristics recognizer algo-
rithm, extending a prior spatial clustering technique, along with its
performance validation. We discuss implications for computational
recognition of creative visual design, focusing on multiscale char-
acteristics. We consider the potential for this approach to support
design education.

2 PRIORWORK
We present prior work on spatial clustering relevant to recognizing
multiscale design characteristics. Spatial clustering refers to the
partitioning of “spatial data into a series of meaningful subclasses
called spatial clusters, such that [elements] in the same cluster
are similar to each other, and are dissimilar to those in different
clusters” [34]. Multiscale design is characterized by the organization
of content across zoom levels, which typically results in nested

clusters (Figure 1). Taking inspiration from recent success on the use
of clustering for modeling design in 2D space [51], we investigate
the potential of algorithms that identify clusters within clusters,
for the purpose of recognizing multiscale design characteristics.

Liu et al. and Deng et al. classify spatial clustering algorithms into
seven groups: partitioning, hierarchical, density-based, graph-based,
grid-based, model-based, and combinatorial [7, 34]. They discuss
that most of these algorithms require the number of clusters as an
input. In design contexts—where differences in the representation
of ideas are a rule rather than an exception [16]—the number of
clusters is not fixed in advance.

Out of the four algorithms that do not need the number of clus-
ters as an input, only graph-based AMOEBA [11] and AUTOCLUST
[10] show promise for this research. AUTOCLUST is an exten-
sion of AMOEBA, with additional criteria addressing adjacency
of sparse and high-density clusters. Both algorithms take a Delau-
nay triangulation based approach to determine the nested clus-
ters. The algorithms were previously utilized in the application
domain of geographical information systems—with locations input
as points—allowing investigating phenomena such as earthquakes,
land use, and customer spread [7]. However, the algorithms do
not lend themselves to the application domain of design educa-
tion. FFWC documents in our design education contexts consist of
2D visual design elements—such as text, image, and video—which
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are characterized by a region, and not just a point of interest. The
present research addresses the challenge of adapting the Delaunay
triangulation based approach for design contexts, with 2D elements.

3 FREE-FORMWEB CURATION DOCUMENTS
Building on art practice, free-form web curation (FFWC) is defined
as, “a form of newmedia—designed to support users in creating new
conceptual and spatial contexts—in which they discover, interpret,
and represent relationships, by composing readymade and self-
made content elements, on the web and in the cloud” [25]. Ready-
made here refers to postmodernism’s ‘found objects’—from Dada
[33] to conceptual art [2] and beyond—of multimedia content, such
as text, images, audio, and video—that users collect from diverse
sources—e.g. news, social media, and e-commerce web pages—and
integrate them in the new context of a curation. By an element then,
formally, we mean content that is in this sense readymade, and so
now collected by an “author”, or self-made, i.e., created by them.

An FFWC document (Figure 2) formally consists of a collection
(2.a) of content elements (2.b), each with graphical transformations
(2.c). The document level (2.a) also stores properties, including title,
description, key (used in web URL), id (a unique internal identifier),
settings (visibility and background color), and creator. The FFWC
system of the present investigation supports the collection, assem-
blage, rendering, and storage of content elements—on the web and
in the cloud—through the use of HTML, Javascript, and CSS web
technologies. FFWC documents are stored in a database as JSON.

In developing and navigating an FFWC document, designers
invoke creative strategies of: collect, assemble, sketch, write, shift
perspective, and exhibit [25]. Using the FFWC system, they collect
content elements through drag ‘n’ drop from different web pages.
They position, scale, and rotate elements to organize them visually.
As part of how the system performs the collect strategy, in response
to the user, a Chrome Browser Extension extracts semantics of
the source web page, which comprises at least the page title and
URL [46]. The system associates the extracted semantics with a
reference to the collected element, which is together referred to
as the clipping within an element (Figure 2, label (d)). Depending
on the source of clipping—e.g., news article, social media post, or
scholarly article—the semantics may contain additional information.
For example, semantics for a scholarly article include additional
information, such as authors, references, and citations. Further,
each element clipping, depending on the content, is assigned a type,
such as text, image, sketch, and video.

In developing new conceptual and spatial contexts, designers
creatively assemble, readymade collected elements, as well as self-
made “annotations” [38] that they create by invoking the sketch and
write strategies. Invoking the assemble strategy, that is, organizing
content elements and designing the representation of the whole,
they perform operations such as move, resize, and rotate, which the
FFWC system stores as a set of transforms with each correspond-
ing element (Figure 2, label (c)). Self-made sketch annotations are
stored in the form of strokes within the respective element’s clip-
ping. Self-made writing annotations are stored as characters with
font specs. Designers invoke the shift perspective strategy, through
pan and zoom, in order to navigate across space and scale. The
unique URL assigned to each FFWC document is used to support
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(a) FFWC Document

(b) Elements

(c) Transforms

(d) Clippings

Figure 2: An FFWC document is comprised of properties
such as title, description, creator, and a collection of ele-
ments. Each element includes a transforms property—with
sub-properties position, scale, and rotation—which allows
determining the element’s spatial location with respect to
the origin. Each element also stores a clipping property,
which in turn stores semantics extracted at the time of col-
lecting the element.

the exhibit strategy. The unique part of the URL is stored as the
key property within the FFWC document. The visibility property
value (public or private)—a sub-property of an FFWC document’s
settings property—allows the creator to control with whom they
exhibit their work, i.e., sharing and collaboration permissions.

For graphical transforms, the FFWC system uses two coordinate
spaces: curation and screen. The curation space extends infinitely in
the X, Y, and Z dimensions. The screen coordinate space is only 2D.
Its extents depend on display resolution. Applying the transforms
stored within an element determine its curation space position
with respect to the origin, as well as size and orientation. When
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Table 1: Five design course professors and four teaching assistants, in the role of lab instructor, engaged students in creative
visual design through free-form web curation.

ID Gender Course Field Role Semester

I1 F Digital Media Design,
UI/UX for Games Interactive Art & Design Course Instructor Spring 20

I2 F Interaction Design Interactive Art & Design Course Instructor Spring 20
I3 F Engineering Design Mechanical Engineering Course Instructor Summer 20
I4 M Programming Studio Computer Science and Engineering Course Instructor Spring 20
I5 M Programming Studio Computer Science and Engineering Course Instructor Spring 20
I6 F Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20
I7 M Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20
I8 M Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20
I9 M Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20

rendering an FFWC document, a curation to screen coordinate
space mapping is performed—applying scale transforms based on
the ratio of screen space and curation space dimensions—to render
each element within its screen extents. The Z dimension similarly
specifies resizing elements through additional scale transforms, at
rendering time. Hence, if two identical elements are assembled at
two different zoom levels, the one at the inner level will appear
smaller. The semantic information associated with an element is
only rendered on demand, when the user requests it, via the context
menu presented on right-click.

4 RECOGNIZING MULTISCALE DESIGN
CHARACTERISTICS

The present research introduces investigation of computational
recognition of creative design work, i.e., how design is multiscale,
through analysis of FFWC documents. Based on what multiscale de-
sign comprises, the characteristics we recognize are the numbers of
scales and clusters. Scale refers to levels of magnification: elements
at the same scale are comparably legible at the same viewport zoom
[36]. The juxtaposition and synthesis of elements, across scales, can
produce nested spatial groups, or clusters (Figure 1).

4.1 Design Curation Contexts
We investigate learning contexts in which students are expected
to engage in multiscale design through creating FFWC documents.
We ran a preliminary field study1, in which nine teaching team
members in five courses (Table 1) had students engage in creative
visual design through free-formweb curation. The courses included:
Digital Media Design, UI/UX for Games, and Interaction Design in
the Department of Interactive Art & Design; Engineering Design
in Mechanical Engineering; and Programming Studio in Computer
Science and Engineering. A total number of 235 design curations
were created by students in these courses.

4.2 Recognizer Algorithm
Based on our survey of prior spatial clustering algorithms (Section
2), we chose the AMOEBA recognizer [11] because: (1) it models
spatially nested clusters, and (2) it does not require the number of
clusters as input. Designers freely vary the number of clusters. The
algorithm is computationally efficient, requiring O(nlogn) time.

AMOEBA has previously been used for point elements. It uses
Delaunay triangulation to recursively determine nested clusters,

1We obtained IRB approval prior to engaging human subjects in this research.

based on distances among elements. Delaunay triangulation [32]
refers to the formation of triangles by connecting a given set of
points such that no points lie inside the circumcircle of any triangle.
The Delaunay graph is formed by connecting all triangle vertices
through edges. AMOEBA compares the lengths of edges, which
are incident on each element vertex, with the average global edge
length among all connected vertices in the Delaunay graph. It
uses a single hyperparameter 𝛼 (alpha) to calculate a threshold
length. Any edges longer than the threshold are removed. This
forms the first set of clusters, i.e., groups of elements with edges
only amongst themselves. The hyperparameter 𝛼 thus controls the
homogeneity/heterogeneity of clusters: the bigger the value of this
hyperparameter, the more heterogeneous distances exist amongst
elements in a cluster. The process is recursively repeated for each
resulting cluster until no edges get removed in a recursion step.

We extended AMOEBA to support two dimensional design el-
ements. We iterate over the element collection—stored in the top
level of the FFWC document (Section 3, Figure 2)—applying the
transforms for each element. This yields the coordinates of each
element in the curation coordinate space (We do not need to con-
vert them to screen coordinate space, as the algorithm depends on
distances among elements, which are proportional in both coordi-
nate spaces). We create a mapping between each element and its
transformed coordinates. We input this mapping into the recogni-
tion algorithm. The mapping enables the new algorithm to process
elements as spatial regions both for Delaunay triangulation and for
calculating proximate element distances. Algorithm steps involved
in extending AMOEBA are (See visual explanation in Figure 3):
(a) When computing the Delaunay graph, incorporate the dimen-

sions of each FFWC element via its four vertices. If we only
consider the center, then elements having large width/height
will be incorrectly separated from those nearby.

(b) When iterating through the edges of the Delaunay graph for
computing distances (and comparing with the threshold value),
instead of directly using the edge length, find the shortest
distance between the two FFWC elements connected by each
edge (e.g., d2 in Figure 3). Delaunay triangulation forms edges
with nearby elements, but the edges in the Delaunay graph
may not always be the shortest distance.

(c) Relatedly, ignore any edges between the vertices of the same
FFWC element. The distance of an element to itself is zero.

(d) When calculating subgraphs, collapse vertices of each FFWC
element by adding edges among all its vertices. Without such
intra-element edges, two vertices of the same element having
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Figure 3: Visual explanation of extending AMOEBA for 2D elements (with width and height): (a) compute Delaunay graph
using all vertices of an element; (b) instead of using Delaunay edges directly, find the shortest distance between elements
represented by each edge; (c) ignore any edges between vertices of the same element; and (d) when calculating subgraphs, add
edges among all vertices of an element. See Section 4.2 for algorithm steps.

inter-element edges with two nearby elements will incorrectly
fall into two different subgraphs.

We present the multiscale design characteristics recognizer algo-
rithm, AMOEBA [11] extended for spatial regions. The extensions
are highlighted in color.

procedure MULTISCALE_DESIGN_RECOGNIZER(GraphElements)
begin
// (a): Add each vertex of each element
Graph = CreateDelaunayGraph(GraphElements.Vertices);
WriteCluster(Graph); // Write the Graph as a cluster

// (b): Find shortest distance between elements
represented by each edge in the graph

// In the process, add edges connecting vertices of the
same element to IntraElementEdges

DistanceMap = FindShortestDistance(Graph,
IntraElementEdges);

// (c): Delete edges among vertices of the same element
Graph.del_edges(IntraElementEdges);
// Use the shortest distance when computing global mean and

standard deviation
NumberOfEdges = CalculateMeanandStDev(Graph, GlobalMean,

GlobalStDev, DistanceMap)

if (NumberOfEdges <= 1) return;

for each node v in Graph do {
EdgeList = Graph.adjacent_edges(v); // Extract edges

incident to node v
// Use the shortest distance when computing local mean
LocalMean = CalculateLocalMean(EdgeList, DistanceMap);
for each edge e in EdgeList do {
ToleranceValue = ALPHA * GlobalStDev * GlobalMean /

LocalMean;
if (e.distance() >= (GlobalMean + ToleranceValue))
DeleteEdgeList.append(e);

}
}
Graph.del_edges(DeleteEdgeList); // Eliminate passive

edges
if (Graph.degree(v) == 0)
Graph.delete_node(v);

AddIntraElementEdges(Graph); // (d): Add edges among all
vertices of the same element

ConnectedComponents(Graph, ComponentNumber); // Calculate
connected components

for each connected component c do {
SubGraph = ConstructSubGraph(Graph, ComponentNumber, c);
if (NumberOfEdges != SubGraph.number_of_nodes());
MULTISCALE_DESIGN_RECOGNIZER(SubGraphElements);

}
end

4.3 Recognizer Validation Methodology
Our methodology to validate the multiscale design characteristics
recognizer algorithm includes: (1) creating a labeled dataset of scales
and clusters present within each of a set of FFWC documents; and
(2) deriving performance measures.

4.3.1 Labeled Dataset: Scales and Clusters. Prior work evaluates
clustering performance against a set of 30-60 labeled clusters. This
includes both quantitative [1, 17] and qualitative [11, 24, 34] eval-
uation. We aimed to label a comparable dataset, using scales and
clusters. We selected FFWC documents from a variety of courses,
in proportion to the number of design works produced in each
course. At an operational level, the selection criteria were: FFWC
documents with a non-trivial number of elements (∼30 or more),
which were organized at multiple scales (2 or more), i.e., zoom
levels. We also selected a few FFWC documents having a single
scale or a small number of elements, to validate that the algorithm
does not fail in such cases. According to these scales and clusters
criteria, from the entire dataset of 235 curations from the studied
courses (See Section 4.1), we selected 39 to label.

We developed guidelines for human raters to label clusters across
scales. Following the guidelines, two raters labeled scales and clus-
ters within the selected 39 FFWC documents. Through the labeling
process, we obtained an average total of 107 scales and 653 clusters.
The inter-rater reliability score (Cohen’s kappa) for scales was 0.88,
indicating a near-perfect [39] agreement. The inter-rater reliability
score for clusters was 0.71, indicating a substantial agreement.

A priori, there is no way to ensure that a sample set is represen-
tative of a population. Hence, we performed posterior analysis of
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Figure 4: The distribution of the numbers of clusters across
scales, in our labeled set, indicates a variety of visual designs,
used as the basis for evaluating the multiscale design recog-
nition approach.We used cluster bins of size 3 to smooth the
y-axis representation.

the scale and cluster distribution within the labeled set. The distri-
bution plot (Figure 4) indicates a variety of organizations within
the labeled set. A majority of the designs use 2 or 3 scales (average
= 2.79), which is consistent with prior work (average = 3.10) [36].

4.3.2 Algorithm Performance Measures. Precision, recall, and F-
score are commonly used machine learning measures [3]. They
have been applied to evaluate algorithm clustering performance in
various domains, e.g., interactive document exploration [56], com-
munity detection [23], and photo tagging [57]. In spatial domains,
these measures have been used for evaluating clusters at a single
scale [17]. To evaluate our extended AMOEBA multiscale spatial
clustering algorithm, we computed the measures by building on
prior multilevel document clustering techniques [56].

Let human labeled clusters be represented by classes (𝐿1, 𝐿2, 𝐿3,
..., 𝐿𝑐 ). Next, given a class 𝐿𝑟 of size 𝑛𝑟 and an algorithm-identified
cluster 𝐶𝑖 of size 𝑛𝑖 , if 𝑛𝑟𝑖 elements in the cluster 𝐶𝑖 belong to 𝐿𝑟 ,
then we compute precision (P), recall (R), and F-Score (F) as:

𝑃 (𝐿𝑟 ,𝐶𝑖 ) =
𝑛𝑟𝑖

𝑛𝑖
, 𝑅(𝐿𝑟 ,𝐶𝑖 ) =

𝑛𝑟𝑖

𝑛𝑟

𝐹 (𝐿𝑟 ,𝐶𝑖 ) =
2 ∗ 𝑃 (𝐿𝑟 ,𝐶𝑖 ) ∗ 𝑅(𝐿𝑟 ,𝐶𝑖 )
𝑃 (𝐿𝑟 ,𝐶𝑖 ) + 𝑅(𝐿𝑟 ,𝐶𝑖 )

Then, for each 𝐿𝑟 , its F-score is the maximum F-score value
attained at any node in the tree T of nested clusters, i.e.,

𝐹 (𝐿𝑟 ) = max
𝐶𝑖 ∈𝑇

𝐹 (𝐿𝑟 ,𝐶𝑖 )

The net F-score of the clustering algorithm is the aggregate
individual class F-Score, weighted by its class size:

𝐹 -𝑆𝑐𝑜𝑟𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =

𝑐∑
𝑟=1

𝑛𝑟

𝑛
𝐹 (𝐿𝑟 )

Extending this approach to evaluate scale recognition perfor-
mance, given 𝑠ℎ human-labeled scales and 𝑠𝑎 algorithm-identified

Table 2: Precision, Recall, and F-Score measures, for the two
values of 𝛼 at which we observed peak aggregate perfor-
mance for scale and cluster recognition in the hyperparam-
eter tuning phase.

𝛼 Precision Recall F-Score

Scale -0.040 0.531 0.686 0.599
0.475 0.720 0.628 0.671

Cluster -0.040 0.658 0.911 0.694
0.475 0.536 0.979 0.61

scales, for each human-labeled scale𝑀𝑟 , form its pair with the max-
imum matching scale 𝑆𝑖 , based on the sum of 𝐹 (𝐿𝑟𝑖 ) values, i.e., the
F-scores of matching clusters present on the scale i:

𝐹 (𝑀𝑟 , 𝑆𝑖 ) =
∑
𝑟𝑖

𝑛𝑟

𝑛
𝐹 (𝐿𝑟𝑖 ) 𝐹 (𝐿𝑟𝑖 ) : 𝐹 (𝐿𝑟 )𝑠𝑐𝑎𝑙𝑒_𝑖_𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝐹 (𝑀𝑟 ) = max
1≤𝑖≤𝑠ℎ

𝐹 (𝑀𝑟 , 𝑆𝑖 )

If more than one human-labeled scalesmatch the same algorithm-
identified scale, form the pair with the human-labeled scale for
which the sum of 𝐹 (𝑀𝑟 ) values is higher. Then, for 𝑠ℎ𝑎 matches
between 𝑠ℎ human-labeled scales and 𝑠𝑎 algorithm-identified scales:

𝑃𝑠𝑐𝑎𝑙𝑒 =
𝑠ℎ𝑎

𝑠𝑎
, 𝑅𝑠𝑐𝑎𝑙𝑒 =

𝑠ℎ𝑎

𝑠ℎ

𝐹 -𝑆𝑐𝑜𝑟𝑒𝑠𝑐𝑎𝑙𝑒 =
2 ∗ 𝑃𝑠𝑐𝑎𝑙𝑒 ∗ 𝑅𝑠𝑐𝑎𝑙𝑒
𝑃𝑠𝑐𝑎𝑙𝑒 + 𝑅𝑠𝑐𝑎𝑙𝑒

4.4 Recognizer Validation Results
Wemeasure algorithm performance.We followwith cross-validation.

4.4.1 Precision, Recall, F-Score Performance Measures. Using the
approach of Section 4.3.2, we computed precision, recall, and F-
Score. In Section 4.2, we described that AMOEBA uses a hyperpa-
rameter 𝛼 to control the heterogeneity of distances among elements
that are clustered together. As we adapted AMOEBA in a new do-
main (i.e., design), we used 10% of the labeled data to tune the
hyperparameter.

Analyzing the data, we used F-Score values for tuning, combin-
ing precision and recall. Both are important here. Low precision
means recognizing extra scales or clusters that human raters did
not label. Low recall means not recognizing the human-labeled
scales or clusters. We searched both sides of the default hyperpa-
rameter value (𝛼=1), following guidance from prior work [11]. We
discovered two peaks for aggregate F-Score of scale and cluster
recognition, at 𝛼 values -0.04 and 0.475. We report the validation
measures for scale and cluster recognition, for both hyperparameter
values (Table 2). We discuss the results in Section 5.

4.4.2 Qualitative Analysis through Visual Inspection. Like prior
work, we performed a visual inspection of output clusters, to quali-
tatively evaluate algorithmic performance. The algorithm correctly
recognized scales and clusters in many cases (see an example in
Figure 5). At the same time, the algorithm’s recognition failed for a
few edge cases (see examples in Figure 6). In Section 5.2, we discuss
failure cases and consider how to address them.
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Figure 5: Scale and Cluster Recognition Example. The figure shows the nested scales recognized by the algorithm, with all
clusters at a particular scale rendered in the same background color. The outermost scale comprises one cluster—including
all design elements—which is rendered in yellow color. The next inner scale has three clusters (one at top and two at bottom),
which are rendered in blue. The innermost scale has three clusters—within the top blue cluster—which are rendered in brown.

5 DISCUSSION + IMPLICATIONS
We identify automatic recognition of design characteristics, rooted
in practice, as an important area of human-centered AI. We build
on Shneiderman’s advocacy for AI that advances “fundamental
human aspirations”, such as expressing one’s creative potentials,
forming social connections, and promoting equity [50]. We see
creativity, writ large, and design, as a nexus of approaches and
methods, techniques and pedagogy, as fields ripe for developing
AI recognizers. The present research contributes to AI supporting

human aspirations by advancing the automatic recognition, and so
potentially, the practice and learning, of how people represent and
communicate abstract ideas.

More specifically, we discuss how this research advances compu-
tational recognition of creative visual design, an activity embodying
human aspirations, and its implications for supporting design ed-
ucation and people’s performance of design work. We follow by
focusing on multiscale design, with implications for better recogni-
tion of its specific characteristics.
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5.1 Recognizing Creative Visual Design
To contextualize with theory, we digress to nomenclature about
human cognition. Convergent thinking refers to cognitive processes
with objective right and wrong answers [12, 26]; divergent thinking,
in contrast, refers to how people thinkwhen performing open ended
tasks, with many possible good answers [5, 19]. Machine learning
has extensively been used to support convergent thinking tasks.
For example, in face recognition, there is one objective right answer
that a machine learning model needs to predict [21]. In language
modeling, likewise, there is one right answer for the recognition of
entities—e.g., person names, organizations, locations—in a given
text [41]. Technologies designed to serve ads to people occupy a
middle ground [37]. They involve a divergent thinking process of
the user. Yet, they can be evaluated with obvious objective charac-
teristics, such as click-through and product purchasing.

In comparison, creative design involves open-ended, divergent
thinking tasks. Using AI to support divergent thinking in education
contexts exemplifies “rich experiences aimed at advancing human
intelligence” [48]. Our research extends a growing chorus of re-
searchers who have used AI and crowds to recognize characteristics
of creative design, in contexts spanning idea generation, re-design,
and web design. Kerne et al. develops computational recognizers
for conceptual aspects of creativity in design, aka ideation metrics,
such as Fluency (the number of ideas), Flexibility (the variety of
ideas), and Novelty (the uniqueness of ideas) [26]. They address
visual design, as a holistic ideation metric, without componentizing
it, by identifying characterstics such as those of multiscale design,
as in the present research. Kumar et al. extract features—e.g., width,
height, aspect ratio, and font size—from creative web design and use
them to find examples for supporting designers in retargeting their
design [31]. Reinecke et al. predict website aesthetics by developing
a regression model based on attributes such as color, symmetry, and
the number of images and text groups [47]. Gu et al. determined
effective design ideas—from a large candidate set for a hierarchical
material structure context—by augmenting a convolutional neural
network with a self-supervised learning algorithm [18]. Kittur et al.
use AI to augment crowd work in searching and filtering candidate
ideas from the web to support designers’ analogical thinking [27].
Krause et al. crowdsource labeled examples of feedback on student
designs, and then use a natural language model to provide sugges-
tions for improving crowd feedback on new designs [29]. Oulasvirta
et al.’s Aalto Interface Metrics web service analyzes graphical user
interface design and provides metrics for characteristics, such as
visual clutter, colorfulness, and whitespace [45].

Our work is complementary to Koch and Oulasvirta’s recognizer
for hierarchical layout in web page flatlands, using gestalt principles
[28]. To our knowledge, our work is the first attempt to computa-
tionally identify hierarchical groupings, nested across scales, and
accessed via zoomable interfaces. These visual hierarchies, in multi-
scale design, are often conceptually motivated. Further research in
recognizing creative visual design can beneficially connect the con-
ceptual semantics of content elements, along with gestalt principles,
and multiscale, visual assemblage.

Our contribution ups the ante on the level of abstraction and
communicative sophistication of creative design recognized by
artificial intelligence. We developed a multiscale design recognizer,

to help students see their progress on executing this strategy for
increasing the legible dimensionality and density of information
and so escape the flatland of document representation. In doing
this, we contribute understanding of how computing systems can
recognize visual, spatial characteristics of design representations,
which facilitate “crossing through scales” [35], which, “is about
controlling simultaneously and in the same way, the general and
the specific, the close and the far” [6].

Prior contextualized findings further motivate the value of the
present AI algorithmic contribution. Multiscale design through
FFWC has been found to enable design students to refer to and
reuse ideas; it facilitates consistency in the presentation of ideas
across project deliverables [4]. Prior research in project-based learn-
ing contexts shows how students’ engagement in multiscale design
through FFWC documents supports them in creating and commu-
nicating relationships among a large number of ideas [36].

Implications. Prior research notes diverse potential applica-
tion areas for recognition of hierarchical groupings in visual de-
sign, including automated feedback on design work and computer-
generated interfaces [28]. The present research can be used to
extend opportunities identified by prior work, enabling people to
obtain on-demand feedback for improving how their design uti-
lizes space and scale. Likewise, similar to design mining [30], our
work has the potential to support people by suggesting alternative
multiscale design layouts exhibiting similar characteristics, i.e., the
number of scales and nested clusters across scales.

In design education, specifically, providing students with on de-
mand feedback and example layouts has the potential to scaffold
learning. Such scaffolding will be particularly useful for novice
designers—like Sue in our scenario, working on a project the night
before it is due—who get stuck [44] when working on projects
involving multiscale design. Design fixation [22] can thus be over-
come through on-demand feedback based on this recognizer. Mul-
tiscale designers use tools such as Photoshop and Illustrator in
diverse course contexts. They would benefit from incorporation of
multiscale design recognizers in these tools.

5.2 Recognizing Multiscale Design
Our contribution leverages identifying multiscale design as a key
component of visual design, understanding the roles of multiscale
design in graphical communication, and then operationalizing this
understanding with computational recognizers. We consider oppor-
tunities for improving the current multiscale design recognizers
recognizer and for building better ones.

In the current recognizer, we adapted the AMOEBA algorithm
for multiscale clustering of design work. We evaluated the perfor-
mance of the adapted algorithm using precision, recall, and F-score
measures (Table 2). As prior work has not quantitatively evaluated
multiscale clustering in the spatial domain, no direct comparisons
can be made. The performance level, however, is comparable to
state-of-the-art multiscale clustering in the non-spatial community
detection domain [23].We also compare the cluster F-Scoremeasure
(0.694) with that for single-scale spatial clustering (0.79-1.0) [17],
finding a drop of 0.1 to 0.3 points in the performance. This makes
sense because determining nested clusters is more complex. Draw-
ing analogy from natural language processing, the state-of-the-art
model for named entity recognition achieves 0.95 F-score, entity
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Figure 6: Patterns where current recognition falls short: (a)
Image similarity: A human rater labeled (left) a cluster of
all images vs algorithm (right) that does not account for the
similarity of blocks in bottom images; and (b) Enclosing re-
gion: Ahuman rater labeled (top)more clusters vs algorithm
(bottom) operating based on spatial distances and not ac-
counting for similarities in the enclosing sketched region.

linking 0.82, and relationship extraction 0.76 [49]. As abstraction
in the cognitive task increases, performance decreases.

Implications. Our investigation contributes a baseline algo-
rithm and evaluation to the research community. Through our
validation, we identify opportunities for improving recognition
performance. Figure 6 (a) shows that a human rater labeled all im-
age elements on one scale. The current algorithm, based on spatial
positioning and dimensions, did not account for the similarity of
blocks existing within bottom images. Such cases resulted in iden-
tifying extra scales and clusters, and thus, lower scale and cluster
precision. To address such failures, in the future, we can utilize
state-of-the-art, fine-grained image similarity approaches [54] and
include additional features in the algorithm. In Figure 6 (b), a human
rater labeled clusters due to similarities in the enclosing sketched
region. Such failures, where the algorithm does not identify some
clusters labeled by a human rater and/or identifies a few additional
ones, result in lower cluster precision and recall. To address these,
we advocate extending the present algorithm with the gestalt prin-
ciple of ‘common region’ [53], which Koch and Oulasvirta employ
in recognizing hierarchical layout in web pages [28].

Improving the algorithmic performance will open opportuni-
ties for recognizing further characteristics of spatial nesting in
multiscale design. Spatial nesting is a form of organizing ideas
in hierarchies. Drawing from Gentner’s structure-mapping frame-
work [15], hierarchies form the basis of mapping relations among
different ideas. The development of hierarchies supports two fun-
damental operations in creative cognition: abstraction and analogy
[55]. Using scale and cluster recognition as a basis, new design
recognizers can be built for abstraction and analogy characteristics.
First, ideas contained within all nested clusters of elements can
be extracted through multimedia processing of information—e.g.,
text, image, and video—stored within respective clippings (Figure 2).
Then, these extracted ideas can be compared across scales and clus-
ters by using WordNet [40]—a tree-like semantic representation of
words—to recognize, as well as recommend abstractions and analo-
gies. Future research can beneficially investigate the usefulness of
these characteristics in diverse creative education—e.g., mechanical
engineering, computer science, and architecture—contexts.

6 CONCLUSION
The present research demonstrates an AI technique for supporting
“fundamental human aspirations,” to creatively re-imagine represen-
tations of our world. We present a human-centered AI algorithm,
for supporting designers in understanding their progress in using
design strategies to increase the legible dimensionality of informa-
tion on the screen. Our approach extends a prior spatial clustering
algorithm to recognize multiscale design characteristics in students’
FFWC documents. We contribute baseline performance for mul-
tiscale design recognition. We identify opportunities for better
performance and widening frontiers for creative design recogni-
tion. We observe the potential of this research to contribute toward
supporting people with on-demand feedback on their design work.

Supporting creative learning has the potential to stimulate eco-
nomic growth and innovation [42]. The current results provide
evidence to motivate further investigations, e.g., whether and how
the recognized characteristics affect educational outcomes in cre-
ative learning contexts. Investigations involving diverse machine
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learning techniques, for diverse design characteristics, are expected
to advance creative design recognition and support valuable con-
texts of human learning and growth. Likewise, future work will
benefit from broadening the space of investigations into diverse doc-
ument structures and characteristic recognizers to support people’s
engagement in creative tasks and activities.
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