
PYInfer: Deep Learning Semantic Type Inference
for Python Variables

Siwei Cui
Texas A&M University
College Station, Texas

siweicui@tamu.edu

Luochao Wang
Texas A&M University
College Station, Texas
wangluochao@tamu.edu

Gang Zhao
Texas A&M University
College Station, Texas
zhaogang92@tamu.edu

Ruihong Huang
Texas A&M University
College Station, Texas
huangrh@cse.tamu.edu

Zeyu Dai
Texas A&M University
College Station, Texas

jzdaizeyu@tamu.edu

Jeff Huang
Texas A&M University
College Station, Texas

jeffhuang@tamu.edu

Abstract—Python type inference is challenging in practice.
Due to its dynamic properties and extensive dependencies on
third-party libraries without type annotations, the performance
of traditional static analysis techniques is limited. Although
semantics in source code can help manifest intended usage for
variables (thus help infer types), they are usually ignored by
existing tools. In this paper, we propose PYInfer, an end-to-end
learning-based type inference tool that automatically generates
type annotations for Python variables. The key insight is that
contextual code semantics is critical in inferring the type for a
variable. For each use of a variable, we collect a few tokens within
its contextual scope, and design a neural network to predict its
type. One challenge is that it is difficult to collect a high-quality
human-labeled training dataset for this purpose. To address this
issue, we apply an existing static analyzer to generate the ground
truth for variables in source code.

Our main contribution is a novel approach to statically infer
variable types effectively and efficiently. Formulating the type
inference as a classification problem, we can handle user-defined
types and predict type probabilities for each variable. Our model
achieves 91.2% accuracy on classifying 11 basic types in Python
and 81.2% accuracy on classifying 500 most common types.
Our results substantially outperform the state-of-the-art type
annotators. Moreover, PYInfer achieves 5.2X more code coverage
and is 187X faster than a state-of-the-art learning-based tool.
With similar time consumption, our model annotates 5X more
variables than a state-of-the-art static analysis tool (PySonar2).
Our model also outperforms a learning-based function-level
annotator (TypeWriter) on annotating types for variables and
function arguments. All our tools and datasets are publicly
available to facilitate future research in this direction.

Index Terms—Python Type Inference, Contextual Code Se-
mantics, Deep Learning.

I. INTRODUCTION

Python is widely used due to its flexibility and the abun-
dance of third-party libraries (e.g., web and machine learning
frameworks). However, flexibility brings challenges to code
optimization and also makes it error-prone. Variable type
inconsistency is a common error in dynamic languages. Due
to Python’s dynamic property, the interpreter cannot check
type inconsistency as a static programming language compiler
(e.g., Go or Rust). Python type checkers [1, 2, 3, 4] take

advantage of annotations to detect type inconsistencies. These
tools primarily rely on manually written type annotations by
developers, which are expensive to provide.

To facilitate user programming and checking type errors,
variable type inference is a necessary step. Deep learning
has been applied to infer types for JavaScript [5, 6, 7, 8]
by leveraging TypeScript [9] to generate large corpus with
precise annotations. However, there exist few good solutions
for Python because of its broad scope of dynamic features
and extensive dependencies on third-party libraries, which
left us many opportunities in this scope. The quality of the
dataset itself brings a large gap between annotating Python
and JavaScript.

Type inference tools that apply static analysis or dynamic
analysis [10, 11, 12] do not require labeled annotations for
type inference. However, they are imprecise and leave out the
abundant natural language semantics in source code. Xu et al.
[13] proposed to use a probabilistic model to infer variable
types by leveraging type hints from data flow, attributes,
subtypes, and variable names. However, it takes considerable
time to analyze the source code and solve the probabilistic
constraints. Without a sufficiently large dataset to provide
enough signals, the performance of the probabilistic model
is also limited.

Existing human-labeled type annotations in mypy [1] and
typeshed [14] only cover few annotations for function argu-
ments and return types. The dataset contains no variable anno-
tation, and is inadequate for inferring Python variable types.
TypeWriter [15] also targets type inference for Python, but
it addresses the problem of inferring function arguments and
return types. Experiments show that TypeWriter is insufficient
on variable type prediction. The function level annotations
(function arguments and return types) are useful to serve as
an API contract for IDEs, while variable level annotations can
be used to provide type check for each variable.

In this paper, we present PYInfer, a deep learning based
approach to generate type annotations for Python. A high-level
overview of PYInfer is depicted in Fig. 1. Since the human-

ar
X

iv
:2

10
6.

14
31

6v
1

 [
cs

.S
E

]
 2

7
Ju

n
20

21

labeled dataset for variables is not available, we first employ a
static analyzer, PySonar2 [16], to automatically generate initial
annotations from top-star Python GitHub projects. We then
apply a series of data cleaning techniques to refine the quality
of our dataset. We further feed the annotations and contextual
information to train a deep neural network, which ranks each
type with probabilities effectively.

We highlight that fusing deep learning with static analysis
to infer type annotations is promising. By combining deep
learning with static analysis from end to end, our approach
is capable of analyzing code semantics with well-developed
natural language processing (NLP) techniques. PYInfer’s ef-
fectiveness benefits from addressing the following challenges:

Static Analysis Deep Learning

PySonar2

GitHub

Data Cleaning Variable

Type

Context

Predicted
Type with

Probabilities

Neural Network

Python
Code

Fig. 1: A high-level overview of PYInfer. We collect Python
source code from 4,577 top-star GitHub repositories, apply
PySonar2 to generate initial variables annotations, and encode
a contextual neural network for variable type prediction.

• Annotation Dataset Collection. Analyzing contextual
source code semantics for variable types demands a
large annotated dataset. However, there exists no well-
acknowledged large dataset with annotations. We generate
our annotated dataset with enriched data based on inference
results from PySonar2 and perform data cleaning to enhance
quality, which itself is a significant contribution, because
high quality labeled data is critical for deep learning. Our
dataset is collected from 4,577 popular Python projects
on GitHub with 54,928,617 Lines Of Code (LoC) from
320,402 source files. It contains 77,089,946 annotations,
which is large enough for most Python types research.

• User-defined Types. Due to the flexibility of Python, types
can be user-defined and changed during runtime. We frame
Python type inference as a classification task to cover user-
defined types in our 500 most common types. We investigate
the performance of 11 basic types compared with 500 types.
Our model achieves 91.187% accuracy on classifying 11
basic types and 81.195% on predicting 500 types. This is a
significant advance over past work [13] on this problem. As
a classification task, our model provides confidence levels
for each type. It achieves 97.677% precise with the 0.9
threshold on the confidence level.

• Source Code Embeddings. Source code contains abundant
semantic information and type hints in variable names
and usages, which is helpful for type inference. Previous
work [6, 13, 15] has applied word embeddings for type
inference. However, we show that these embeddings do

not work well due to the Out-Of-Vocabulary (OOV) issue
caused by the large number of dynamic features and user-
defined types in Python. To tackle this problem, we employ
the Byte Pair Encoding (BPE) [17] algorithm. It provides
sufficient signals to analyze semantics in variable names and
contextual data. Compared with graph-based embeddings in
LambdaNet [8], BPE embeddings are lightweight and can be
easily extended to analyze other languages. We demonstrate
that BPE is effective in inferring variable types. Our model
improves 27.1% accuracy with BPE embeddings over GloVe
embeddings [18].

• Contextual Code Semantics. A key insight in our ap-
proach is leveraging contextual code semantics for variable
type inference. We hypothesize that the context within
a certain margin conveys relevant semantic information
to characterize the variable. Inspired by interprocedural
static analysis [10, 11, 12], our approach is capable of
analyzing the semantics of variables together with the
structural syntax and grammar information. The setting of
the margin hyperparameter is illustrated in Fig. 2. For each
variable, we collect source code tokens within its contextual
scope. We adopt the Gated Recurrent Unit (GRU) [19]
with the attention mechanism [20] to analyze contextual
semantics. Our ablation test on contextual information show
41.0% improvement on accuracy. Our evaluation on human-
labeled typeshed [14] dataset demonstrates the same result.
The contextual information provides local semantics for
variables, and it is useful for deriving variable annotations.
Putting all these contributions together, we develop an

end-to-end, highly effective and efficient framework to infer
variable types for Python statically. Our dataset is large enough
for most research under Python types, which itself is a novel
contribution. We achieve the accuracy of 91.187% on 11 basic
types, and 81.195% on 500 most common types. PYInfer
demonstrates superiority in both coverage and time efficiency
on large projects compared to existing work [13]. Instead
of assigning weights to multiple factors for probabilistic
inference [13], PYInfer achieves 5.2X more coverage and is
187.4X faster. Our model annotates a variable on an average
of 1 millisecond. Compared with PySonar2, our tool takes a
similar time on analysis but generates 5X more annotations.
A motivating example comparing PYInfer and PySonar2 is
provided in Section V. Although trained on the annotations
generated by PySonar2, PYInfer can handle sophisticated
cases using contextual code semantics, as shown in Fig. 5.
PYInfer can also be extended to perform function argument
inference. It shows superiority over TypeWriter on inferring
variable types and function arguments.

We have released our PYInfer model, source code, and
dataset to facilitate further research1. Existing type checkers
can benefit from the type annotations generated by PYInfer
to detect type inconsistencies. We provide a workflow on
integrating PYInfer with pyre to detect variable inconsistencies
in Python repositories. As an end-to-end static type annotator,

1The link will be provided after the double-blind review process.

range_header = request.headers.get("Range")
def media_endpoint(_id):

if range_header:
status = 206

size = file_.length
try:

m = re.search(r"(\d+)-(\d*)", range_header)
begin, end = m.groups()
begin = int(begin)
end = int(end)

except:
begin, end = 0, None

length = size - begin
if end is not None:

length = end - begin + 1

file_.seek(begin)

MarginProcessing
Variable

Fig. 2: An illustration of using margin to characterize
contextual semantics for variable type inference.

PYInfer provides annotations with probabilities in 1 ms for
a variable. It provides the type annotation for programmers
seamlessly while they are programming. Our framework can
also be used to infer argument types. Since our approach
relies on high-level semantics rather than graph structures, it
can be easily extended into annotating variables and detecting
semantic errors in other dynamically typed languages.

II. PYINFER FRAMEWORK

Fig. 3 presents a technical overview of the PYInfer model.
The basic idea is to formulate the type inference as a
classification problem. We examine the top 500 types based
on the frequency of occurrence, and analyze the contextual
semantics within a certain margin. The BPE algorithm is
adopted to derive the vector representation as embeddings.
We further feed these embeddings into a GRU network with
the attention mechanism to extract code semantics from the
context. We then employ a softmax layer to classify each
type with probabilities. PYInfer consists of the following
four components: data collection and generation, source code
embeddings, model formulation, and model training.

A. Data Collection and Generation

To classify variable types, we need a sufficiently large anno-
tated dataset. As the human-labeled variable annotation dataset
is unavailable, we adopt PySonar2 to generate the initial
annotations. Since PySonar2 does conservative analysis, we
ignore all variables for which it cannot make type inference,
and assume the results for the rest variables are ground truth
(though the types may be over-approximated). We also analyze
typeshed [14], probPY [13], and TypeWriter [15] dataset.

Our datasets are summarized in Table I. The Original and
Valid present the number of annotations before and after data
cleaning and deduplication. typePY is our source code dataset
collected from 4,577 top-star GitHub repositories. probPY
stands for the dataset published in Xu et al. [13], and typeshed
is a human-labeled dataset containing only the annotations for
function parameters and return values [14].

We collect the typePY dataset by annotating Python source
code in top-star GitHub repositories. For each variable, we

store the link to the repository, file name, variable name,
start and end token location, type annotation, and correspond-
ing source code. To obtain type annotations, we adopt the
PySonar2, an advanced semantic indexer for Python [16], to
infer types for each variable. We obtain 77,089,946 annota-
tions from 320,402 Python source code files. As PySonar2
has only 49.47% coverage on annotations [13], we also refine
our dataset with a series of data cleaning techniques. We
eliminate all meaningless types, such as “question marks”
and “None” types, and perform deduplication. Eventually,
we obtain 42,560,876 valid annotations. To the best of our
knowledge, this is the largest Python annotation dataset. We
release this dataset to facilitate research on this topic.

TABLE I: Metadata for typePY, probPY and typeshed dataset.

Dataset Python Files LoC Original Valid

typePY 320,402 54,928,617 77,089,946 42,560,876

probPY dataset 716 146,019 106,808 64,831

typeshed stdlib 545 34,854 38,536 14,685
third-party 564 23,877 17,632 8,957

For the probPY [13] dataset, we exploit the merged data
combining the result of PySonar2 and dynamic analysis. The
probPY dataset provides the variable name, annotation, and the
source code to generate contextual information for our model.
We are able to compare the time consumption and coverage
between PYInfer, PySonar2, and probPY model.

The typeshed dataset contains human-label type annotations
for Python standard libraries and third-party packages, making
it more reliable. However, the typeshed dataset only covers
the annotations for function parameters and return types,
and there is no contextual information due to frequent code
updates. We extract the argument annotations to evaluate our
model for the importance of contextual code semantics. After
merging the annotations in third-party libraries with standard
libraries, we deduplicate annotations on the [variable name,
type annotation] pairs. We finally obtain 3,379 different types
with 16,537 annotations in this dataset. Those more than
30.1% duplicates indicate that programmers are likely to apply
similar names on variables with similar functionalities.

B. Source Code Embeddings
The conventional embeddings approach builds up a dictio-

nary on frequently used tokens, and generates embeddings
for every token in the vocabulary. This approach guarantees
that every token keeps intact when feeding to the model.
Many existing approaches, such as Word2Vec [21] and Global
Vectors for word representation (GloVe) [18], retrieve the
vectorization representation of each token. However, word
embedding approaches are not suitable for source code. With
plenty of user-defined variable names and function names,
these approaches often suffer from OOV as rare words are not
observed in training data. The OOV makes the model unable
to absorb any information from tokens not in the vocabulary. A
trivial solution is to use <UNK> to represent unknown words,
which is inappropriate due to the loss of semantic meanings.

×

× ×

+

1 −

𝜎𝜎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑡−1

𝜎𝜎

𝑡𝑡𝑡

𝑥𝑥𝑡𝑡

𝑟𝑟𝑡𝑡 𝑧𝑧𝑡𝑡 �𝑡𝑡𝑡

Context

Type

typePY Dataset

Deduplication

BPE int 0.8

str 0.1
… …

BPE Embeddings

Before

Current

After

Var Name

ClassifierGRU with Attention

SoftmaxVector Representation for Source Code Gated Recurrent Unit

typePY

Fig. 3: PYInfer Model Framework.

To capture those semantics in variable and function names,
we adopt the BPE [17] algorithm to generate embeddings
for source code. The BPE algorithm is first known as a
compression algorithm [22, 23] and is effective in many
program analysis tasks with neural networks [17, 24, 25,
26, 27]. This algorithm alleviates the OOV by merging a
most frequent byte pair into a new byte. Start with a single
individual character, we characterize user-defined tokens by
splitting them into smaller pieces in our dictionary. We
adopt the bottom-up clustering approach, and initially generate
unigram for all characters. After that, we iteratively calculate
the frequencies of n-gram and utilize a greedy approximation
to maximizing the language model log-likelihood to generate
a new n-gram for most frequent n-gram pairs [28].

We train our BPE model on source code corpus and
obtain 19,995 different base words for embedding generation.
Compared with conventional embedding approaches, BPE
embeddings make full use of contextual code semantics by
resolve OOV. We demonstrate that BPE is effective in em-
bedding Python source code for variable annotations. Variable
names using snake case (e.g., network address) or camel case
can be effectively embedded using BPE.

C. Model Formulation
One of the key insights is that we bring the contextual

information to our model. The contexts in source code not
only carry meaningful semantic knowledge but also delivers
clues and insights of variable functionalities. We set up the
margin m to indicate how much contextual information will
be considered. The setting of the margin is illustrated in Fig. 2.
For each variable vi, i ∈ [1..n], we process the current line
possessing the current variable, which is annotated as dci , m
tokens before the current line, as annotated with dei , m tokens
after the current line, which is represented as dai , and the
name of the current variable dni . The contextual information
provides local semantics for variables, which is adequate to
derive variable annotations. Let the BPE algorithm be B(),
and we can finalize our embedding Xi for variable vi as:

Xi = B(dei) + B(dci) + B(dai) + B(dni),
where the “+” standards for the concatenation on two

embedding vectors. We deliberately assign the embeddings of

the variable name in the latter part in the embeddings. This
setting enables us to obtain the semantic representation by
extracting the pattern in the final layer in our GRU model.

To characterize embedding features comprehensively, we
adopt the Gated Recurrent Unit (GRU) [19], a recurrent
neural network (RNN) [29] which has similar performance
compared to bidirectional recurrent neural networks [29] but
with lower computational complexity. GRU is used to analyze
and characterize the embedding of our source code in a
superior manner. For each variable, GRU is adopted to analyze
the characterization of contextual information combined with
the variable names. It is capable of processing a sequence
of a vector by applying a recurrence formula at every time
step t. Initially, we have the output vector h0 = 0 when
t = 0. Suppose the number of the tokens after embedding
is si for variable vi. For each input source code token xt,
where t ∈ [1..si] in embeddings Xi, we have:

zt = σ(Wz · xt + Uz · ht−1 + bz),

rt = σ(Wr · xt + Ur · ht−1 + bz),

ht = zt � ht−1 + (1− zt)� φ(Wh · xt + Uh(rt � ht−1) + bh),

where xt is our input embeddings with contextual in-
formation, ht is our output vector for this variable vi, zt
this the update gate and rt is the reset gate, and W,U
and b are parameters in our model. The σ stands for the
sigmoid function, and φ represents the hyperbolic tangent.
The attention mechanism [20] is also added to our model for
more reliable performance. Since variable names are appended
in our embedding vector’s last position, we can extract the
final layer in our output vector hsi to characterize variable
Xi. A dropout layer is attached to the GRU model to address
the overfitting problem properly. Finally, We attach a fully
connected layer to the output of the GRU model to give our
model more flexibility on learning contextual code semantics.

We perceive the Python type inference as a type classifica-
tion to address user-defined types. To obtain the probability
of each type, we apply the softmax regression (also known as
multinomial logistic regression [30]) on the feature extracted
from the output of the GRU model. For the output of GRU

network hsi , we have:

yi = argmax(P (hsi)) = argmax(
ehsi∑n
i=0 e

hsi

),

where argmax is a function returns the position with the
maximum probability, and P (hsi) is a list of probabilities for
each possible type of variable vi. This function is used to
approximate a target integer yi ∈ [1, C], where C represents
the number of classes. The softmax function P () produces a
scalar output P (hsi) ∈ R, with the probability for each type
P (hsi)j ∈ [0, 1].

With the help of the softmax layer, we are able to generate
the type annotations for each variable with the distribution
on probabilities P (hsi). PYInfer annotates variable based on
the type with the maximum probability, which returns yi.
We are able to add a threshold on the confidence level, i.e.,
the probability. Our model accuracy increases with the rise
of the confidence level (Table IX), which demonstrates the
effectiveness of our model on types classification.

D. Model Training

In our model, we adopt the cross-entropy as our loss
function. Specifically, we apply a softmax followed by a
logarithm to derive the confidence for the type inference,
and append the negative log-likelihood loss (NLLLoss) on the
softmax results. For the loss function, we have,

L =

n∑
i=1

C∑
j=1

−gij ∗ log(P (hsi)j),

where L stands for the loss function for our model, which
is calculated by summing up the loss for each annotation. The
constant n is the total number of annotations we have, and
C represents the number of classes. The ground truth type
for variable vi is represented by gij . We set gij = 1 if the
annotation for variable vi is j, and gij = 0 otherwise. P (hsi)j
defines the log softmax result of class j on variable vi.

We further feed the computational results into an optimizer,
which aims at minimizing the value of the loss function L. Ex-
tensive experiments are conducted, and Adam Optimizer [31]
turns out to be the best fit for this phenomenon.

III. EVALUATION

In this section, we evaluate PYInfer by answering the
following research questions:

• RQ 1: How effective is PYInfer at deriving the correct
type annotations?

• RQ 2: Does the number of classes considered for classi-
fication have a significant impact on PYInfer?

• RQ 3: How does the threshold influence our PYInfer
model?

A. RQ 1: Model Effectiveness and Baseline Comparison

1) Dataset and Experiment Settings: In this RQ, we analyze
our context model’s performance with 500 most common types
in the typePY dataset. Besides all built-in types in Python,
we also consider a large amount of user-defined types. After
analyzing the source code corpus, we find that duplicates
exist in our dataset. The main reason is that some GitHub
repositories reuse the same code from the others. We perform
deduplication on our dataset, and derive 3,499,933 annotations
for evaluation. We also inspect some of the type distribution,
as shown in Table II. This uneven distribution reflects the
difference in real-world variable usage on different types. Our
whole data corpus is randomly split into training, validation,
and testing data with the proportion of 60%:20%:20%. We run
all experiments on a single machine with Intel i7-9700k CPU,
32GB RAM, and a single NVIDIA RTX 2070 Super GPU.

TABLE II: RQ 1: Type annotation distribution of 500 most
common types in typePY dataset.

Type Annotations Count Type Annotations Count

str 921,471 DataFrame 16,764
int 628,552 Series 13,429
dict 336,374 [float] 11,376
bool 241,804 tuple 11,110
float 126,005 (int, int) 9,738
[str] 121,669 {dict dict} 8,608
list 48,400 object 6,110

2) Implementing Details and Results: We train our PYInfer
model with parameters in Table III, and report testing results.
To analyze contextual code semantics, we generate the embed-
dings by analyzing contextual semantics in source code with a
separator between each part in our margin settings. We obtain
the vector representations by extracting the final layer in the
GRU neural network as the variable names are in the latter
part in embeddings.

We add a dropout layer to tackle the overfitting problem,
making our model more generalizable and elevate performance
for real-world cases. The parameters MODEL SIZE and
SEQ LEN characterize the size of the hidden layer in the
GRU network. We set up hyperparameter TENSOR LEN to
eliminate some extreme long embeddings, which is often the
case where a piece of source code contains immense unseen
tokens. We have collected the distribution on the embedding
length, and the embedding length within 1,000 covers 99.9%
annotations in our dataset. Therefore, we can safely adopt the
annotations within this length constrain to train our model.

With all the settings above, we fine-tune the parameters and
employ the accuracy as one of our model’s evaluation matrices.
The accuracy is calculated as:

AXi =
|D(Xi) ∧ C(Xi)|
|D(Xi)|

,

where Xi represents the current embeddings being pro-
cessed, D(Xi) represents the ground-truth type for variable
vi, and C(Xi) returns the Top-1 type annotation ranked based

TABLE III: Hyperparameters for PYInfer model, number of
annotations, and testing results.

Optimizer Margin Loss Dropout
Adam 128 CrossEntropy 0.1

Learning Rate MODEL SIZE SEQ LEN TENSOR LEN
512 1,000 0.0001 512

Training Samples Validation Samples Testing Samples
2,099,739 699,913 699,914

PYInfer Model Testing Results
Accuracy Precision Recall F-1 Score
81.195% 79.318% 81.195% 80.246%

on the probability. Our model eventually achieves 81.195%
accuracy on testing data.

Since the distribution for each type is uneven, we also
evaluate our model using weighted precision and recall, and
calculate the f-1 score based on them. As a multi-class
classification, we calculate the average of each evaluation
matrix weighted by support, i.e., the number of correct
annotations for each type. PYInfer achieves 79.318% on
precision, 81.195% on recall, and 80.246% on the f-1 score.

3) Baseline Analysis and Insights: For baseline analy-
sis, we compare our PYInfer framework with the probPY
model [13] and PySonar2. First, we perform baseline experi-
ments using the merged data in the probPY dataset.

Evaluation matrices in probPY take advantage of the recall
and precision. The precision in probPY is calculated based on
the feasible input. However, due to the lack of ground truth,
they provide estimations based on randomly selected samples.
Therefore, we adopt the recall for accurate evaluation. Similar
to probPY, we calculate the recall as:

RXi =
|D(Xi) ∧ C(Xi, TOPk)|

|D(Xi)|
The Xi is the embeddings of variable vi being processed.
D(Xi) represents the ground-truth type for variable vi, and
C(Xi, TOPk) returns the TOPk type annotations ranked based
on the probabilities for each possible type.

TABLE IV: Evaluation results on recall using probPY dataset.

Framework Top-1 Top-3 Top-5 Top-7

PYInfer 63.034% 77.931% 83.774% 88.865%
probPY 58.155% 75.930% 79.090% 80.310%

In table IV, we present the testing recalls of PYInfer
compared with the probPY model. We evaluate PYInfer on
Top-k testing recall, where k ∈ {1, 3, 5, 7}. PYInfer on Top-k
returns k annotations with the highest probability. Since we
have the ground truth for annotation, the |D(Xi)| is always
a single type annotation. The RXi increases if the ground
truth is included in the first k inference results TOPk ranked
by probabilities. As only the Top-1 variable annotations are
provided to the user side, it matters the most in real-world
scenarios. We also collect the Top-1 precision using probPY
with the setting HIGH probability threshold 0.95 and naming
convention probability threshold = 0.7, as illustrated in their

paper [13]. We use the PYInfer model trained with the typePY
dataset classifying 500 types, and evaluate on probPY dataset.
Since we did not retrain or fine-tune our model in the probPY
dataset, the performance is less competitive than our testing
results. Still, our model outperforms the probPY model on
all the Top-k recalls. This superiority is because we have a
sufficiently large dataset for PYInfer to analyze contextual
semantics. Our embedding approach is more advanced in
resolving OOV compared with word embeddings.

Instead of assigning weights to multiple factors, our PY-
Infer framework is more efficient compared with the probPY
model with the help of its parallelizable nature. PYInfer also
outperforms the probPY on annotation coverage. The tool in
probPY runs 68 minutes on an eight-core CPU and generates
22,354 annotations. Our PYInfer model can take advantage of
the GPU to run in parallel. It takes 113 seconds on deriving
115,535 annotations in the same dataset, and it achieves
187.4X faster than probPY with 5.2X coverage.

TABLE V: Time and coverage comparison between PYInfer,
PySonar2, and probPY Model.

PYInfer PySonar2 probPY

Valid Annotation 115,535 23,107 22,354
Time Consumption (s) 112.575 40 4,080
Time per Annotation (ms) 0.974 1.731 182.518

Our model also proficient with higher coverage compared
with PySonar2. Pysonar2 provides 102,361 initial annotations
for the probPY dataset. However, many of the type annotations
are question marks or invalid. Among 102,361 annotations,
there are 38,137 question mark annotations, 9,454 annotated
as “None”, and 40,400 without a letter (e.g., “[[?]]”). Among
all the question marks annotations, 35,882 annotations can
be predicted by PYInfer, PYInfer can also infer 9,352 valid
annotations for “None Type” and 38,019 annotations for “No
Letter”. We finally obtain 23,107 annotations after dedupli-
cating and eliminating None and invalid types. Overall, our
model accomplishes the best annotation coverage among all
these three tools. We reveal detailed comparisons in Table V.

4) Comparison with TypeWriter: TypeWriter [15] effec-
tively leverages neural networks to infer function-level types,
i.e., argument types and return types, from partially annotated
code bases. It utilizes LSTM on type hints from source
code tokens in argument names, usages, and function-level
comments. For the dataset, TypeWriter uses an internal code
base as well as mypy dependencies on GitHub. It processes
1,137 GitHub repositories and predicts 16,492 annotations for
return types and 21,215 annotations for arguments.

Compared with TypeWriter, we target slightly different
problems and apply different frameworks. TypeWriter infers
function arguments and return types, while PYInfer anno-
tates Python variables. At the approach level, TypeWriter
adopts traditional token-wise Word2Vec embedding, while
PYInfer applies the BPE embeddings to capture contextual
code semantics. For neural network design, TypeWriter utilizes
LSTM models on source code tokens and function comments,

while PYInfer exploits the GRU network with the attention
mechanism to address local semantics.

We compare our PYInfer model with TypeWriter in Type-
Writer’s testing set on generating annotations for three differ-
ent problems: variables, function arguments, and return types,
as shown in Table VI.

TABLE VI: Comparison between TypeWriter and PYInfer.

Top-1 PYInfer TypeWriter

Precision 79% 59%
Variable Annotations Recall 81% 47%

F-1 Score 80% 52%

Precision 72% 58%
Function Argument Recall 75% 50%

F-1 Score 73% 54%

Precision 59% 69%
Function Return Recall 60% 61%

F-1 Score 59% 65%

• Variable Annotations. We evaluate TypeWriter on our
variable annotation dataset, typePY. We put the variable an-
notations as function argument annotations in TypeWriter’s
model. We re-train the TypeWriter and obtain 59% on
precision, which is similar to the performance of inferring
argument types in TypeWriter paper.

• Function Argument Types. We evaluate PYInfer on the
open-source dataset in TypeWriter. We put the argument
name as variable names in our model. Without re-train or
fine-tuning, our model achieves 72% in precision.

• Function Return Types. We evaluate PYInfer on the open-
source dataset in TypeWriter. We treat the line of code where
the function return is defined as the variable name in our
model. We achieve 59% precision without re-train or fine-
tuning the PYInfer model.
From the evaluation above, our work is complementary

to TypeWriter. TypeWriter employs the global function-level
features, i.e., function source code, comments, and argument
usages to infer return and argument types. Those global
features provide a comprehensive view over a whole func-
tion, making it more advanced for inferring function-level
types. TypeWriter shows enhanced performance compared
with NL2Type [6] and DeepTyper [5] on argument prediction.
However, it is difficult for TypeWriter to annotate variables
within a function body, where variable-level information is
more effective. PYInfer annotates variables using source code
semantics within a certain margin, making it more competitive
in providing variable-level annotations. The main reason
is that the PYInfer model exploits the local variable-level
features, i.e., variable names and the contextual semantics
within a certain margin. For inferring types of variables
and arguments, local features are more critical since they
characterize how a variable is defined and used.

B. RQ 2: Basic Types or More Types

We investigate the model performance of classifying only
basic types in Python. Specifically, we inspect the following

built-in types: [str, int, dict, bool, float, list, tuple, object,
complex, set, type]. We analyze the distribution of different
types, as shown in Table VII.

TABLE VII: The annotation distribution on basic types with
contextual data in typePY dataset.

Type Count Deduplication Type Count Deduplication

str 6,553,418 921,471 tuple 78,947 11,110
int 4,028,405 628,552 object 27,251 6,110
dict 1,810,145 336,374 complex 11,177 2,295
bool 4,429,648 241,804 set 483 11
float 765,077 126,005 type 168 3
list 363,832 48,400

To analyze the performance of PYInfer on basic types,
we obtained 2,322,135 annotations after deduplication. The
comparison results between basic types and 500 most common
types can be found in Table VIII. The performance of the
basic type model exceeds the 500 types model by 9.9% on
testing accuracy. Classifying 11 types would be much more
manageable and is more precise than 500 types. However, a
large number of user-defined types cannot be predicted with
11 types. A model considering 500 types covers more user-
defined types, making it generalizable for real-world scenarios.

TABLE VIII: Comparison between basic types and the 500
most common types using PYInfer.

Types Training Validation Testing Precision Recall F-1 Score

Basic Types 91.440% 91.280% 91.187% 95.366% 91.638% 93.465%
500 Types 81.165% 81.153% 81.195% 79.318% 81.195% 80.246%

C. RQ 3: Threshold

As the model provides the type annotation with a probabil-
ity, we test different thresholds on the confidence level. From
0.1 to 0.9, we provide results on the number of annotations
with precision, recall, and f-1 score in Table IX evaluated on
our validation corpus in typePY. The annotations in Table IX
indicates the number of variables that are predicted with one
type. With the increases in the threshold, our model gives out
fewer annotations, while the precision increases. With a higher
threshold, fewer annotations are given out. The threshold on
0.9 provides 97.677% precision, which also neglects 42.151%
of our validation data.

The threshold is a true reflection on the model’s results
on probabilities, which indicates how confident our model is
to provide a type annotation. We can set a threshold to a
reasonable value to attain a trade-off between the number of
annotations we would like to obtain, and an absolute accuracy
standard we would like to have.

IV. ANALYSIS

In this section, we focus on answering the following two
research questions:
• RQ 4: How does contextual information affect PYInfer’s

performance?

TABLE IX: Evaluation results on PYInfer using typePY
validation dataset with different threshold settings.

Threshold Annotations Precision Recall F-1 Score

0.0 699,913 79.510% 81.275% 80.383%
0.1 689,916 80.339% 81.185% 80.760%
0.2 677,457 81.556% 80.880% 81.217%
0.3 653,684 83.596% 79.944% 81.729%
0.4 617,740 86.631% 78.029% 82.105%
0.5 578,565 89.663% 75.340% 81.880%
0.6 540,766 92.146% 72.208% 80.968%
0.7 502,896 94.118% 68.508% 79.296%
0.8 460,553 95.985% 63.809% 76.657%
0.9 404,896 97.677% 56.881% 71.895%

• RQ 5: Do BPE embeddings outperform the other
learning-based code embeddings?

A. RQ 4: Ablation Analysis of Contextual Semantics

We are also interested in the effectiveness of contextual se-
mantics. Therefore, we conduct ablation analysis on contextual
data, and analyze PYInfer without contextual semantics. We
collect the results in Table X. Without the contextual factors,
our model can only take advantage of variable names, leaving
out variable usages and the logical relations within a certain
margin in a context. The contextual information plays a pivotal
role in characterizing the source code semantic. The scarcity of
contextual semantics devastates the effectiveness of our model.
We observe a 41% increment in testing accuracy with the
support of contextual semantics.

TABLE X: The evaluation results for contextual data ablation
experiment of PYInfer.

Model Training Validation Testing Precision Recall F-1 Score

Context 81.165% 81.153% 81.195% 79.318% 81.195% 80.246%
No Context 40.823% 39.918% 40.195% 33.106% 40.775% 36.542%

The performance deterioration can also be partially inter-
preted due to the reduction of annotations. For the model with
contextual data, we have 3,499,933 annotations considering
500 types. Without contextual information, we have an over-
whelming number of duplicates as most of the variables have
a similar name with the same type. We only obtain 841,521
annotations after deduplication. As we omit the contextual data
and deduplicate annotations, we encounter a dramatic shortage
of type annotations. This insufficiency on annotations also
deteriorates the model’s performance.

To further investigate the significance of the contextual
semantics, we conduct experiments with the human-labeled
typeshed dataset. It contains type annotations in the format
of a pyi file following particular formats [32, 33], which is
widely used for type checking and type inference.

In Fig. 4, we present a sample pyi file in the typeshed
GitHub repository. A pyi file contains annotations on pa-
rameters and return values for functions. Note that for the
variable safe in Fig. 4, we are provided with both Str and
AnyStr annotations under different contexts. Since source code

Fig. 4: A pyi file sample in typeshed dataset.

is unavailable for this dataset, we are unable to separate these
two variables with corresponding annotations.

The number of annotations in the typeshed dataset is
extremely limited. There would be a tremendous data shortage
for each type when considering 500 types. As a mitigation, we
are devoted to investigating the top-50 types. We retrain our
PYInfer on typeshed and compare the model trained on the
typePY dataset. PYInfer trained on typeshed achieves 41.747%
testing accuracy, 53.126% precision, 43.748%, and 47.983%
f-1 score. Compared with the results in Table X, we find a
similar trend on the testing side, which points out that the
contextual information is critical for variable type prediction.

B. RQ 5: Advantages of Source Code Embeddings

Besides the contextual data and types, our model is also su-
perior in adopting the BPE embeddings. Source code is rich in
user-defined variables and function names. We often encounter
the OOV issue in characterizing source code semantics. We
apply the BPE method to address this problem, which enables
us to make full use of the contextual code semantics.

In this RQ, we mainly investigate the effectiveness of
the BPE embeddings compared with learning-based GloVe
embeddings, a prominent word embedding approach for text
files. We retrain our GloVe embeddings on our typePY dataset
and derive a 50-dimensional vector for each token. Each
contextual token within a certain margin is mapped to a 50-
dimensional GloVe vector. We then concatenate the embedding
vectors for tokens before and after the current variable within
a certain margin, and the name of the current variable. The
concatenated vector is fed through the GRU network for model
training. We collect and gather the results in Table XI. Our
experiment results reveal that the BPE embeddings outperform
the GloVe embeddings significantly. We demonstrate that BPE
is more effective than GloVe embeddings for variable typing.

TABLE XI: Comparison between BPE embeddings and GloVe
embeddings with PYInfer on typePY dataset.

Embeddings Training Validation Testing Precision Recall F-1 Score

BPE 81.165% 81.153% 81.195% 79.318% 81.195% 80.246%
GloVe 51.916% 54.168% 54.077% 50.470% 54.132% 52.237%

range_header = request.headers.get("Range")
range_header:str - 0.0232 | request:str - 0.1303
def media_endpoint(_id):

if range_header: # range_header:str - 0.3134
status = 206 # status:int - 0.9932
size = file_.length # file_:int - 0.7147 | size:int - 0.8966
try:

m = re.search(r"(\d+)-(\d*)", range_header)
m:str - 0.4095 | range_header:int - 0.5748 | re:str - 0.4905
begin, end = m.groups()
begin:int - 0.9219 | end:int - 0.9441 | m:int - 0.6654
begin = int(begin)
begin:int - 0.9962 | begin:int - 0.8097 | int:int - 0.9914
end = int(end)
end:int - 0.9962 | end:int - 0.7749 | int:int - 0.9893

except:
begin, end = 0, None # begin:int - 0.9299 | end:int - 0.9954

length = size - begin
begin:int - 0.6510 | length:int - 0.9854 | size:int - 0.9354
if end is not None: # end:int - 0.8745

length = end - begin + 1
begin:int - 0.8548 | end:int - 0.8731 | length:int - 0.9959

file_.seek(begin) # begin:int - 0.8135 | file_:str - 0.6348

range_header = request.headers.get("Range")
range_header:?
def media_endpoint(_id): # media_endpoint:? -> ? | _id:?

if range_header:
status = 206 # status:int
size = file_.length
try:

m = re.search(r"(\d+)-(\d*)", range_header)
m:?
begin, end = m.groups()
begin:? | end:? | m:?
begin = int(begin)
begin:int
end = int(end)
end:int

except:
begin, end = 0, None # begin:int | end:None

length = size - begin
length:int
if end is not None:

length = end - begin + 1
length:int

file_.seek(begin)

PySonar2 PYInfer

Fig. 5: We compare the type annotations provide by PySonar2 (left) and PYInfer (right). PYInfer not only generates more
annotations for complex scenarios but also provides the probabilities for each type.

V. DISCUSSION

A. Strengths and Weaknesses of PYInfer
The main reason why PYInfer outperforms the other type

inference tools is that we have a sufficient large annotated
dataset, and encode the contextual semantics of a variable into
the deep learning model. As illustrated in Fig. 2, we set up a
margin to define the range of contexts, adopt BPE embeddings
to resolve OOV, and employ GRU network with attention
mechanism on semantic extraction. The margin settings in-
fluence PYInfer’s performance. We conduct experiments to
examine the influence on margin setting based on the probPY
dataset, and the evaluation results can be found at Table XII.
The experiments are performed on merged probPY dataset
evaluating Top-k (k ∈ {1, 3, 5, 7}) without threshold. As
the margin increases, the accuracy increases first and then
decreases, which can be explained in the following ways:
The margin settings on 32 and 64 lack adequate contextual
local semantics for the current variable. The margin settings of
256 and 512 provide more irrelevant contextual semantics. We
derive the following insight that a proper setting of the margin
is undoubtedly influential to our model’s overall performance.

TABLE XII: Different margin settings with PYInfer on
probPY dataset.

Margin 32 64 128 256 512

Accuracy 54.751% 60.055% 61.635% 60.933% 59.265%
Precision 69.446% 69.016% 68.554% 67.862% 65.972%

Recall 54.751% 60.055% 61.635% 60.933% 59.265%
F-1 Score 61.229% 64.224% 64.911% 64.211% 62.439%

There are several limitations of PYInfer. Although PYInfer
is qualified to process user-defined types, several annotations
are incorrect due to the limited training data on user-defined
types compared with built-in types. We have shown the

distribution of different annotations in Table II, and the number
of samples on user-defined types are overwhelmed by the
number of built-in types. Also, as many static analyzers,
PYInfer demands access to source code, which might be
unrealistic due to confidential issues.

B. Superiority over PySonar2

We have to emphasize that although it is trained using
the annotations generated by PySonar2, our model shows
remarkably higher coverage than Pysonar2 on variable type
inference. Analyzing the same code snippet2, we compare the
annotation results of PySonar2 and PYInfer trained with the
500 most common types on the typePY dataset, as shown in
Fig. 5. PySonar2 and PYInfer have both reported several false
positives. PySonar2 utilizes control-flow aware interprocedural
analysis, which leaves out the semantic knowledge in source
code. It annotates half of the variables with question marks (7
out of 14 annotations). PYInfer captures the code semantics
by considering contextual semantics within a specific margin,
which gives out specific annotations when the contexts are dif-
ferent. It can deal with demanding scenarios where PySonar2
emits question marks, and correctly annotates 21 variables
within all 29 annotations. Although PYInfer is not sound, it
achieves reasonable testing accuracy (91.187% on 11 basic
types, and 81.195% on 500 most common types).

VI. RELATED WORK

A. Type Inference for Python

Standards, such as PEP 484 [32], PEP 3107 [33], are pro-
posed to facilitate type hints and annotations. Type checkers,
such as mypy [1], pyre-check [2], pytype [3], and pyright [4],
take advantage of annotations to detect type inconsistencies.

2Accessed from https://github.com/pyeve/eve/blob/master/eve/endpoints.py.

Without the type annotations, it would be futile for type
checkers to detect type inconsistencies for Python projects.
Existing type checkers primarily rely on manually written type
annotations from developers, which are expensive to provide.

Previous type inference work often leaves out the natural
language elements in source code. Several existing type anno-
tators adopt dynamic analysis. PyAnnotate [34], for example,
is a dynamic type inference tool developed by Dropbox. Using
dynamic analysis to acquire type annotation during runtime
makes the inference accurate for specific input. However,
it requires a particular runtime environment, which is not
realistic under some real-world circumstances. Also, it is input
sensitive, which leads to limited coverage. The frameworks
proposed by Cannon [10], Salib [11], Vitousek et al. [12]
generate type annotations based on static analysis. Salib [11]
presented a static type inference and compiler for Python
with a modified Cartesian Product Algorithm [35]. This tool
converts Python source codes into equivalent C++ codes,
making it proficient in analyzing codes in a foreign language.
Nevertheless, this tool is not complete, and the instructions that
can be processed are limited. Vitousek et al. [12] developed
gradual typing for Python using a type system based on first-
order object calculus [36] augmented with dynamic types. Luo
et al. [37] analyzed Python docstrings and built a decision tree
classifier. This approach considers only nine built-in types, and
will be futile if docstring is unavailable. PySonar2[16], a static
type inference tool for Python, can statically generate type
hints for variables. Although it only covers 48.91% annotations
based on our experiments, the accurate results accommodate
our research with ground-truth for the labeling.

Several related works exploit semantics in source code using
neural networks. Pradel et al. [15] predict the argument and
return types for functions with natural language factors in
source code and comments. It is more effective on function-
level inference compared with variable-level prediction. Xu
et al. [13] adopt the probabilistic inference to derive type an-
notations for Python. Considering various probabilistic factors
makes the tool time-consuming, and it is hard to be scalable.

B. Type Inference on Dynamically Typed Languages

Existing learning-based type inference tools mainly focus
on JavaScript, where the type annotations can be obtained
using TypeScript [9]. LambdaNet [8] utilizes graph neural
networks to predict types with contextual hints involving
naming and variable usage. It defines the type dependency
graph and propagates type information on a graph neural
network. LambdaNet explores the potential of using graph
embeddings on type inference. Compared with graph-based
embeddings, generating token-based source code embedding
is more efficient. It can exploit source code semantics and
more accessible to be applied to other languages. NL2Type [6]
proposes a learning-based approach to predict type signatures
for functions with natural language support. Hellendoorn et al.
[5] use a deep learning model with 300-dimensional word
embeddings to generate type annotations for JavaScript.

C. Learning-based Source Code Analysis

Machine learning has been widely adopted in program
analysis. Godefroid et al. [38] proposed a statistical ma-
chine learning technique to generate grammar-suitable input
for fuzzing automatically. DeepFix [39] uses a sequence-
to-sequence neural network with attention to detect and fix
errors in C programs. Raychev et al. [40] focused on code
completion with APIs using a language model. Deepsim [41]
measures code similarity using a deep learning model with
the control flow and data flow matrix. Raychev et al. [42]
built JSNice to predict the names of identifiers and type
annotations of variables for JavaScript. Pradel and Sen [7]
proposed a learning-based approach to detect three different
kinds of name-based bugs. They generate negative samples
using code transform based on specific bug patterns. Extracting
bug patterns and seeding bugs into source code following the
pattern demands great human efforts.

D. Learning-based Source Code Embeddings

Learning-based word embeddings have been widely adopted
in natural language processing, such as word2vec [43], and
doc2vec [21]. Nguyen et al. [44] took advantage of word2vec
to analyze semantic relations on API usages. Ye et al. [45]
trained word embeddings on API documents, tutorials, and
reference documents to estimate semantic similarities. These
approaches highly rely on the training data, and the tokens not
observed in training inputs are not well addressed. OOV is a
severe problem, especially in source code embeddings, as a
programmer can flexibly define function and variable names.
BPE algorithm [17] addresses the OOV problem by encoding
rare and unknown words as sequences of subword units. It is
effective in many program analysis tasks [24, 26, 27].

Besides token-based source code embeddings, there are also
graph-based embeddings. Code2Vec [46] decomposes source
code into a collection of paths in its abstract syntax tree (AST)
and learns the atomic representation of each path. Alon et al.
[47] proposed a path-based representation for learning from
programs using the AST. LambdaNet [8] proposes the type
dependency graph, which links type variables with logical
constraints as well as name and usage information. These
embeddings primarily consider structures in source code. We
investigate the source code semantics in variable names and
contextual information, which is different from graph-based
code structure with AST and graph neural networks.

VII. CONCLUSIONS

We have presented PYInfer, a learning-based approach to
generate type annotations for Python automatically. Our main
contribution is the end-to-end PYInfer framework to infer
variable types for Python statically. Our research combines
symbolic and probabilistic methods to generate type annota-
tions for variables, which turns out to be highly effective and
efficient. One of our key insights is to consider contextual
information for variables, which enhances the model by
encoding additional code semantics. PYInfer is capable of
handling user-defined types by formulating the type inference

as a classification problem. It achieves 5.2X more on code
coverage and 187X faster than a state-of-the-art technique for
Python type inference, and covers 5X more variables compared
to PySonar2. It outperforms TypeWriter on inferring types
for variables and function arguments. Finally, we propose
a method of data collection and contribute a large dataset
consisting of 77,089,946 type annotations from 4,577 popular
Python projects. We make our tool and datasets publicly
available to facilitate further research.

REFERENCES

[1] J. Lehtosalo, G. van Rossum, I. Levkivskyi, M. J.
Sullivan, D. Fisher, G. Price et al. (2014) mypy -
optional static typing for python. [Online]. Available:
http://www.mypy-lang.org/

[2] J. DiLorenzo, Z. Hu, R. van Tonder, Łukasz Langa,
J. Fried, C. Meyer et al. (2018) Pyre a performant
type-checker for python 3. [Online]. Available: https:
//pyre-check.org/

[3] M. Kramm, R. Chen, T. Sudol, M. Demello, A. Caceres,
D. Baum et al. (2015) pytype a static type analyzer for
python code. [Online]. Available: https://google.github.
io/pytype/

[4] Microsoft. (2019) Pyright - static type checker
for python. [Online]. Available: https://github.com/
microsoft/pyright

[5] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis,
“Deep learning type inference,” in Proceedings of the
2018 26th acm joint meeting on european software en-
gineering conference and symposium on the foundations
of software engineering, 2018, pp. 152–162.

[6] R. S. Malik, J. Patra, and M. Pradel, “Nl2type:
inferring javascript function types from natural language
information,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE,
2019, pp. 304–315.

[7] M. Pradel and K. Sen, “Deepbugs: A learning approach
to name-based bug detection,” Proceedings of the ACM
on Programming Languages, vol. 2, no. OOPSLA, pp.
1–25, 2018.

[8] J. Wei, M. Goyal, G. Durrett, and I. Dillig, “Lamb-
danet: Probabilistic type inference using graph neural
networks,” arXiv preprint arXiv:2005.02161, 2020.

[9] G. Bierman, M. Abadi, and M. Torgersen, “Under-
standing typescript,” in European Conference on Object-
Oriented Programming. Springer, 2014, pp. 257–281.

[10] B. Cannon, “Localized type inference of atomic types in
python,” Ph.D. dissertation, Citeseer, 2005.

[11] M. Salib, “Starkiller: A static type inferencer and
compiler for python,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2004.

[12] M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker,
“Design and evaluation of gradual typing for python,” in
ACM SIGPLAN Notices, vol. 50, no. 2. ACM, 2014,
pp. 45–56.

[13] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python
probabilistic type inference with natural language
support,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 607–618.

[14] D. Fisher, Łukasz Langa, J. Lehtosalo, I. Levkivskyi,
M. Kramm, G. Price et al. (2015) Collection of library
stubs for python, with static types. [Online]. Available:
https://github.com/python/typeshed/

[15] M. Pradel, G. Gousios, J. Liu, and S. Chandra,
“Typewriter: Neural type prediction with search-based
validation,” arXiv preprint arXiv:1912.03768, 2019.

[16] Y. Wang. (2013) Pysonar2: an advanced semantic
indexer for python. [Online]. Available: https://github.
com/yinwang0/pysonar2/

[17] R. Sennrich, B. Haddow, and A. Birch, “Neural machine
translation of rare words with subword units,” arXiv
preprint arXiv:1508.07909, 2015.

[18] J. Pennington, R. Socher, and C. Manning, “Glove:
Global vectors for word representation,” in Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014, pp. 1532–1543.

[19] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[21] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in International conference
on machine learning, 2014, pp. 1188–1196.

[22] P. Gage, “A new algorithm for data compression,” The C
Users Journal, vol. 12, no. 2, pp. 23–38, 1994.

[23] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shino-
hara, T. Shinohara, and S. Arikawa, “Byte pair encoding:
A text compression scheme that accelerates pattern
matching,” Technical Report DOI-TR-161, Department
of Informatics, Kyushu University, Tech. Rep., 1999.

[24] H. Babii, A. Janes, and R. Robbes, “Modeling vocab-
ulary for big code machine learning,” arXiv preprint
arXiv:1904.01873, 2019.

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[26] R.-M. Karampatsis and C. Sutton, “Maybe deep neural
networks are the best choice for modeling source code,”
arXiv preprint arXiv:1903.05734, 2019.

[27] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton,
and A. Janes, “Big code!= big vocabulary: Open-
vocabulary models for source code,” arXiv preprint
arXiv:2003.07914, 2020.

[28] T. Kudo and J. Richardson, “Sentencepiece: A simple

and language independent subword tokenizer and
detokenizer for neural text processing,” arXiv preprint
arXiv:1808.06226, 2018.

[29] M. Schuster and K. K. Paliwal, “Bidirectional recurrent
neural networks,” IEEE Transactions on Signal Process-
ing, vol. 45, no. 11, pp. 2673–2681, 1997.

[30] D. Böhning, “Multinomial logistic regression algorithm,”
Annals of the institute of Statistical Mathematics, vol. 44,
no. 1, pp. 197–200, 1992.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[32] G. van Rossum, J. Lehtosalo, and Łukasz Langa.
(2014) Pep 484 – type hints. [Online]. Available:
https://www.python.org/dev/peps/pep-0484/

[33] C. Winter and T. Lownds. (2006) Pep 3107 – function
annotations. [Online]. Available: https://www.python.
org/dev/peps/pep-3107/

[34] T. Grue, S. Vorobev, J. Lehtosalo, and G. van
Rossum. (2017) Pyannotate: Auto-generate pep-484
annotations. [Online]. Available: https://github.com/
dropbox/pyannotate/

[35] O. Agesen, “The cartesian product algorithm,” in
European Conference on Object-Oriented Programming.
Springer, 1995, pp. 2–26.

[36] M. Abadi and L. Cardelli, “A theory of objects,” 1996.
[37] Y. Luo, W. Ma, Y. Li, Z. Chen, and L. Chen,

“Recognizing potential runtime types from python
docstrings,” in International Conference on Software
Analysis, Testing, and Evolution. Springer, 2018, pp.
68–84.

[38] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz:
Machine learning for input fuzzing,” in 2017 32nd
IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 50–59.

[39] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix:
Fixing common c language errors by deep learning,” in
Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[40] V. Raychev, M. Vechev, and E. Yahav, “Code completion
with statistical language models,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014, pp. 419–
428.

[41] G. Zhao and J. Huang, “Deepsim: deep learning code
functional similarity,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, 2018, pp. 141–151.

[42] V. Raychev, M. Vechev, and A. Krause, “Predicting
program properties from” big code”,” ACM SIGPLAN
Notices, vol. 50, no. 1, pp. 111–124, 2015.

[43] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Advances in
neural information processing systems, 2013, pp. 3111–
3119.

[44] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N.
Nguyen, “Exploring api embedding for api usages and
applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE,
2017, pp. 438–449.

[45] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu,
“From word embeddings to document similarities for
improved information retrieval in software engineering,”
in Proceedings of the 38th international conference on
software engineering, 2016, pp. 404–415.

[46] U. Alon, M. Zilberstein, O. Levy, and E. Yahav,
“code2vec: Learning distributed representations of code,”
Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, pp. 1–29, 2019.

[47] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A
general path-based representation for predicting program
properties,” ACM SIGPLAN Notices, vol. 53, no. 4, pp.
404–419, 2018.

