Language
Modeling

Introduction to N-grams

Many Slides are adapted from slides by Dan Jurafsky

Probabilistic Language Models

e Today’s goal: assign a probability to a sentence
e Machine Translation:

e P(high winds tonite) > P(large winds tonite)
e Spell Correction

Why? - | |
e The office is about fifteen minuets from my house
e P(about fifteen minutes from) > P(about fifteen minuets from)
e Speech Recognition
e P(l saw a van) >> P(eyes awe of an)

* + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

Goal: compute the probability of a sentence or
sequence of words:
P(W) = P(wW,W,,W3,W,,We...W,)
Related task: probability of an upcoming word:
P(weg | wy,wW,,wWs,w,)
A model that computes either of these:

P(W) or P(w,|wy,wW,..w,) is called a language model.
Better: the grammar But language model or LM is standard

How to compute P(W)

e How to compute this joint probability:

e P(its, water, is, so, transparent, that)

e |ntuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

e With 4 variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
e The Chain Rule in General

P(X1,X5,X3,--,X,,) = P(X{)P(X5 | X1)P(X3| X1, %5) ... P(X, | X1, 00X, 1)

The Chain Rule applied to compute
joint probability of words in sentence

Pww,...w)= HP(wi lww,...w,_)

P(“its water is so transparent”) =
P(its) X P(water|its) X P(is|its water)

X P(so]its wateris) X P(transparent|its water is
SO)

How to estimate these probabilities

e Could we just count and divide?

P(the lits water 1s so transparent that) =

Count(1ts water 1s so transparent that the)

Count(1ts water 1s so transparent that)

* No! Too many possible sentences!
e WeEe’'ll never see enough data for estimating these

Markov Assumption

P(W1W2'”Wn) = HP(WZ lwi—k "'Wi—l)

* In other words, we approximate each
component in the product

Pw lww,...w._)=Pw. lw _ ...w,_)

Markov Assumption

e Simplifying assumption:

Andrei Markov

P(the lits water 1s so transparent that) = P(the | that)

e Or maybe

P(the l1ts water 1s so transparent that) = P(the | transparent that)

Simplest case: Unigram model

Pww,...w)= HP(wi)

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, 1is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

Condition on the previous word:
Pw, lww,...w,_)=Pw,lw,._,)

texaco, rose, one, in, this, issue, 1is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

e We can extend to trigrams, 4-grams, 5-grams

* |n general this is an insufficient model of language
e because language has long-distance dependencies:

“The computer which | had just put into the machine room on
the fifth floor crashed.”

e But we can often get away with N-gram models

Still, Most words depend on their previous few words

Language
Modeling

Introduction to N-grams

Language
Modeling

Estimating N-gram
Probabilities

Estimating bigram probabilities
e The Maximum Likelihood Estimate

count(w. . w.
Pw,lw,_)= (Wit W)

count(w__,)

c(w,_,,w;)

-1

c(w,_,)

Pw,lw,_)=

An example

<s>|am Sam </s>

c(w. . w.
Pw, lw,_)= Wi, w,) <s>Sam | am </s>
c(w.,) <s> | do not like green eggs and ham </s>
P(I|<s>)=3%=.67 P(Sam|<s>)=1=.33 P(am|I)=3=.67
P(</s>|Sam):% =0.5 P(Sam|am):%:.5 P(do|I):% =.33

More examples:
Berkeley Restaurant Project sentences

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’'m looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
i’'m looking for a good place to eat breakfast

when is caffe venezia open during the day

Raw bigram counts

e Qutof 9222 sentences

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 | 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Normalize by unigrams:

Result:

Raw bigram probabilities

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 033 |0 0.0036| 0 0 0 0.00079
want 0.0022 | 0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 0.00171 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 { 0.056 | O
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | O
food 0.014 0 0.014 |0 0.00092 | 0.0037 | 0 0
lunch || 0.0059 | 0O 0 0 0 0.0029 | 0O 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =
P(I]<s>)
X P(want]l)
X P(english|want)
X P(food|english)
X P(</s>|food)
= .000031

What kinds of knowledge?

P(english|want) =.0011
P(chinese|want) = .0065
P(to|want) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) =0

P(i | <s>)=.25

Practical Issues

e We do everything in log space
e Avoid underflow
e (also adding is faster than multiplying)

log(p, x p, x p3 x py) =log p, +log p, +log p; +log p,

Language Modeling Toolkits

* SRILM

Google N-Gram Release, August 2006
http://ngrams.googlelabs.com/

All Our N-gram are Belong to You
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to shére fhis enormous dataset —with everyone. We prbcess—ed 1,024,908,267.229 —words
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Language
Modeling

Estimating N-gram
Probabilities

Language
Modeling

Evaluation and
Perplexity

Evaluation: How good is our model?

e Does our language model prefer good sentences to bad ones?
e Assign higher probability to “real” or “frequently observed” sentences
e Than “ungrammatical” or “rarely observed” sentences?

e We train parameters of our model on a training set.
e We test the model’s performance on data we haven’t seen.

e Atestsetis an unseen dataset that is different from our training set,
totally unused.

e An evaluation metric tells us how well our model does on the test set.

Extrinsic evaluation of N-gram models

e Best evaluation for comparing models A and B
e Put each model in a task
e spelling corrector, speech recognizer, MT system
e Run the task, get an accuracy for A and for B
e How many misspelled words corrected properly
e How many words translated correctly
e Compare accuracy for Aand B

Difficulty of extrinsic (in-vivo) evaluation
of N-gram models

e Extrinsic evaluation
* Time-consuming; can take days or weeks
* So
e Sometimes use intrinsic evaluation: perplexity

Intuition of Perplexity

e The Shannon Game: mushrooms 0.1

e How well can we predict the next word? pepperoni 0.1

anchovies 0.01
| always order pizza with cheese and

rd H
The 33" President of the USwas fried rice 0.0001

| saw a

e Unigrams are terrible at this game. (Why?) _ and 1e-100

e A better model of a text
e isone which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set
e Gives the highest P(sentence) X

= N
Perplexity is the inverse probability of PP(W) = P(wwy..wy)

the test set, normalized by the number ;
. = N
of words: \/P(wlwz...wN)
. N 1
Chain rule: PP(W) = ¥
i P(wilwy...wi—1)
For bigrams: N !
PPW) = Y|l -——
() II;Il P(H’,"H’I'_l)

Minimizing perplexity is the same as maximizing probability

Lower perplexity = better model

 Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962

Language
Modeling

Evaluation and
Perplexity

Language
Modeling

Generalization and
Zeros

The Shannon Visualization Method

Choose a random bigram

<s> I
(<s>, w) according to its probability I want
Now choose a random bigram want to
(w, x) according to its probability to eat
And so on until we choose </s> eat Chinese
Then string the words together Chinese food

food
I want to eat Chinese food

</s>

Approximating Shakespeare

Unigram
To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like
Bigram
What means, sir. I confess she? then all sorts, he is trim, captain.
Why dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry. Live king. Follow.
What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?
Trigram
Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, ’tis done.
Quadrigram
King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv’d in;
Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, ’tis a noble Lepidus.

Shakespeare as corpus

e N=884,647 tokens, V=29,066
e Shakespeare produced 300,000 bigram types
out of V%= 844 million possible bigrams.

e S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

e Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

The wall street journal is not shakespeare
(no offense)

Unigram
Months the my and issue of year foreign new exchange’s september were recession ex-
change new endorsed a acquire to six executives

Bigram
Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor
would seem to complete the major central planners one point five percent of U. S. E. has
already old M. X. corporation of living on information such as more frequently fishing to

keep her
Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three
percent of the rates of interest stores as Mexico and Brazil on market conditions

The perils of overfitting

 N-grams only work well for word prediction if the test
corpus looks like the training corpus

e |[n real life, it often doesn’t
 We need to train robust models that generalize!
e One kind of generalization: Zeros!
* Things that don’t ever occur in the training set
e But occur in the test set

Zeros

* Training set:

.. deniec
... deniec
... deniec
... deniec

t

t
t
t

ne allegations
ne reports
ne claims

ne request

e Jest set
... denied the offer
... denied the loan

P(“offer” | denied the) =0

Zero probability bigrams

e Bigrams with zero probability
e mean that we will assign 0 probability to the test set!

e And hence we cannot compute perplexity (can’t divide by 0)!

Language
Modeling

Generalization and
Zeros

Language
Modeling

Smoothing: Add-one
(Laplace) smoothing

Add-one estimation

Also called Laplace smoothing
Pretend we saw each word one more time than we did

Just add one to all the counts!

c(w,_,w,)
PMLE(WiIWi—1)= =

MLE estimate: c(w,)

c(w,_,w)+1

: , P, (wlw_)=
Add-1 estimate: Add-1 1 c(w,_)+V +]1

Berkeley Restaurant Corpus: Laplace

smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
i 6 | 828 | 1 10 [1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese || 2 1 1 1 1 83 2 1
food 16 | 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Laplace-smoothed bigrams

P (Wn |Wn—l) —

C(wp—1wy) +1

C(wy—1)+V +

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079 | 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056| 0.00056
spend 0.0012 0.00058| 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

Reconstituted counts

A

c” (Wn—lwn) —

N

[Cwn1wn) + 1] X C(wp_1)

C(Wn—l) +V 41

1 want to eat chinese | food| lunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38]| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

Compare with raw bigram counts

1 want [to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese | 0 0 0 0 82 1 0

food 15 0 15 0 | 4 0 0

lunch 2 0 0 0 0 | 0 0

spend 1 0 | 0 0 0 0 0

1 want to eat chinese | food| Iunch| spend

1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 | 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38]| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

Add-1 estimation is a blunt instrument

e So add-1isn’t used for N-grams:
e We'll see better methods

e But add-1 is used to smooth other NLP models
e For text classification
e |n domains where the number of zeros isn’t so huge.

Language
Modeling

Smoothing: Add-one
(Laplace) smoothing

Language
Modeling

Interpolation, Backoff

Backoff and Interpolation

Sometimes it helps to use less context

e Condition on less context for contexts you haven’t learned much about

Backoff:

e use trigram if you have good evidence,

e otherwise bigram, otherwise unigram

Interpolation:

* mix unigram, bigram, trigram

Interpolation works better

Linear Interpolation

e Simple interpolation

P<M;71|M)H—1M)H—2) = 7\'1P(Wn|wn—lwn—2)

+7»2P(w,,]w,,_1) z}*i =1
+M3P(wy) j
e Lambdas conditional on context:

p(w)lllw)n—zw)n—l) 7\'1(:; %)P(Wn’wn—?_wn—l)
+A2 (W)~ fl,)P (Wp|Wn_1)
+ Az (w },)P(w,,)

N-gram Smoothing Summary

e Add-1 smoothing:
e OK for text categorization, not for language modeling

e Backoff and Interpolation work better
e The most commonly used method:

e Extended Interpolated Kneser-Ney

54

Language
Modeling

Interpolation, Backoff

Language
Modeling

Advanced:
Kneser-Ney Smoothing

Advanced smoothing algorithms

e |ntuition used by many smoothing algorithms
e Good-Turing
* Kneser-Ney
e Use the count of things we’ve seen
e to help estimate the count of things we’ve never seen

Kneser-Ney Smoothing | (smart backoff)

e Better estimate for probabilities of lower-order unigrams!
 Shannon game: | can’t see without my reading __ f9émssso 3

e “Francisco” is more common than “glasses”

e ... but “Francisco” always follows “San”
e Instead of P(w): “How likely is w”
e P (w): “How likely is w to appear as a novel continuation?

e For each word, count the number of unique bigram types it completes

continuation

e Every bigram type was a novel continuation the first time it was seen

Peontmuvarion (W) * ‘{Wi—l re(W,w)> O}‘

Kneser-Ney Smoothing li

e How many times does w appear as a novel continuation:

Peontmvuarion (W) & ‘{Wi—l e(w,w)> O}‘

e Normalized by the total number of word bigram types

{w,w))re(w,w,) >0}

‘{wl._1 c(w_,w)> O}‘

P (W)=
CONTINUATION ‘{(Wj—l’wj) : c(Wj_l,Wj) > O}‘

Kneser-Ney Smoothing Il

max(c(w,_,,w;)—d,0)

Poy(w;lw,_) =
c(w,_,)

+ AW_ D Peonrivuarion W)

A is a normalizing constant; the probability mass we’ve discounted

d

Aw,_)=

/ c(w,_,)
_ _ The number of word types that can follow w
the normalized discount = # of word types we discounted
60 = # of times we applied normalized discount

‘{w cc(w_,w)> O}‘

Language
Modeling

Advanced:
Kneser-Ney Smoothing

