
Introduction	to	N-grams

Language	
Modeling

Many Slides are adapted from slides by Dan Jurafsky

Probabilistic	Language	Models

• Today’s	goal:	assign	a	probability	to	a	sentence
• Machine	Translation:
• P(high	winds	tonite)	>	P(large winds	tonite)

• Spell	Correction
• The	office	is	about	fifteen	minuets from	my	house

• P(about	fifteen	minutes from)	>	P(about	fifteen	minuets from)

• Speech	Recognition
• P(I	saw	a	van)	>>	P(eyes	awe	of	an)

• +	Summarization,	question-answering,	etc.,	etc.!!

Why?

Probabilistic	Language	Modeling

• Goal:	compute	the	probability	of	a	sentence	or	
sequence	of	words:

P(W)	=	P(w1,w2,w3,w4,w5…wn)

• Related	task:	probability	of	an	upcoming	word:
P(w5|w1,w2,w3,w4)

• A	model	that	computes	either	of	these:
P(W)					or					P(wn|w1,w2…wn-1)									 is	called	a	language	model.

• Better:	the	grammar							But	language	model	or	LM	is	standard

How	to	compute	P(W)

• How	to	compute	this	joint	probability:

• P(its,	water,	is,	so,	transparent,	that)

• Intuition:	let’s	rely	on	the	Chain	Rule	of	Probability

Reminder:	The	Chain	Rule

• With 4 variables:
P(A,B,C,D)	=	P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The	Chain	Rule	in	General
P(x1,x2,x3,…,xn)	=	P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The	Chain	Rule	applied	to	compute	
joint	probability	of	words	in	sentence

P(“its	water	is	so	transparent”)	=
P(its)	× P(water|its)	× P(is|its water)	
× P(so|its water	is)	× P(transparent|its water	is	

so)

€

P(w1w2…wn) = P(wi |w1w2…wi−1)
i
∏

How	to	estimate	these	probabilities

• Could	we	just	count	and	divide?

• No!		Too	many	possible	sentences!
• We’ll	never	see	enough	data	for	estimating	these

€

P(the | its water is so transparent that) =

Count(its water is so transparent that the)
Count(its water is so transparent that)

Markov	Assumption

• In	other	words,	we	approximate	each	
component	in	the	product

€

P(w1w2…wn) ≈ P(wi |wi−k…wi−1)
i
∏

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)

Markov	Assumption

• Simplifying	assumption:

• Or	maybe

€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei	Markov

Simplest	case:	Unigram	model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some	automatically	generated	sentences	from	a	unigram	model

€

P(w1w2…wn) ≈ P(wi)
i
∏

Condition	on	the	previous	word:

Bigram	model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

€

P(wi |w1w2…wi−1) ≈ P(wi |wi−1)

N-gram	models

• We	can	extend	to	trigrams,	4-grams,	5-grams
• In	general	this	is	an	insufficient	model	of	language

• because	language	has	long-distance	dependencies:

“The	computer	which	I	had	just	put	into	the	machine	room	on	
the	fifth	floor	crashed.”

• But	we	can	often	get	away	with	N-gram	models
Still, Most words depend on their previous few words

Introduction	to	N-grams

Language	
Modeling

Estimating	N-gram	
Probabilities

Language	
Modeling

Estimating	bigram	probabilities

• The	Maximum	Likelihood	Estimate

€

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

An	example

<s>	I	am	Sam	</s>
<s>	Sam	I	am	</s>
<s>	I	do	not	like	green	eggs	and	ham	</s>

€

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)

More	examples:	
Berkeley	Restaurant	Project	sentences

• can	you	tell	me	about	any	good	cantonese restaurants	close	by
• mid	priced	thai food	is	what	i’m looking	for
• tell	me	about	chez	panisse
• can	you	give	me	a	listing	of	the	kinds	of	food	that	are	available
• i’m looking	for	a	good	place	to	eat	breakfast
• when	is	caffe venezia open	during	the	day

Raw	bigram	counts

• Out	of	9222	sentences

Raw	bigram	probabilities

• Normalize	by	unigrams:

• Result:

Bigram	estimates	of	sentence	probabilities

P(<s>	I	want	english food	</s>)	=
P(I|<s>)			
× P(want|I)		
× P(english|want)			
× P(food|english)			
× P(</s>|food)
=		.000031

What	kinds	of	knowledge?

• P(english|want)		=	.0011
• P(chinese|want)	=		.0065
• P(to|want)	=	.66
• P(eat	|	to)	=	.28
• P(food	|	to)	=	0
• P(want	|	spend)	=	0
• P	(i |	<s>)	=	.25

Practical	Issues

• We	do	everything	in	log	space
• Avoid	underflow
• (also	adding	is	faster	than	multiplying)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Language	Modeling	Toolkits

• SRILM
• http://www.speech.sri.com/projects/srilm/

Google	N-Gram	Release,	August	2006

…

http://ngrams.googlelabs.com/

Estimating	N-gram	
Probabilities

Language	
Modeling

Evaluation	and	
Perplexity

Language	
Modeling

Evaluation:	How	good	is	our	model?

• Does	our	language	model	prefer	good	sentences	to	bad	ones?
• Assign	higher	probability	to	“real”	or	“frequently	observed”	sentences	
• Than	“ungrammatical”	or	“rarely	observed”	sentences?

• We	train	parameters	of	our	model	on	a	training	set.
• We	test	the	model’s	performance	on	data	we	haven’t	seen.

• A	test	set	is	an	unseen	dataset	that	is	different	from	our	training	set,	
totally	unused.

• An	evaluation	metric	tells	us	how	well	our	model	does	on	the	test	set.

Extrinsic	evaluation	of	N-gram	models

• Best	evaluation	for	comparing	models	A	and	B
• Put	each	model	in	a	task
• spelling	corrector,	speech	recognizer,	MT	system

• Run	the	task,	get	an	accuracy	for	A	and	for	B
• How	many	misspelled	words	corrected	properly
• How	many	words	translated	correctly

• Compare	accuracy	for	A	and	B

Difficulty	of	extrinsic	(in-vivo)	evaluation	
of		N-gram	models

• Extrinsic	evaluation
• Time-consuming;	can	take	days	or	weeks

• So
• Sometimes	use	intrinsic evaluation:	perplexity

Intuition	of	Perplexity

• The	Shannon	Game:
• How	well	can	we	predict	the	next	word?

• Unigrams	are	terrible	at	this	game.		(Why?)
• A	better	model	of	a	text

• is	one	which	assigns	a	higher	probability	to	the	word	that	actually	occurs

I	always	order	pizza	with	cheese	and	____

The	33rd President	of	the	US	was	____

I	saw	a	____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity	is	the	inverse	probability	of	
the	test	set,	normalized	by	the	number	
of	words:

Chain	rule:

For	bigrams:

Minimizing	perplexity	is	the	same	as	maximizing	probability

The	best	language	model	is	one	that	best	predicts	an	unseen	test	set
• Gives	the	highest	P(sentence)

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

Lower	perplexity	=	better	model

• Training	38	million	words,	test	1.5	million	words,	WSJ

N-gram	
Order

Unigram Bigram Trigram

Perplexity 962 170 109

Evaluation	and	
Perplexity

Language	
Modeling

Generalization	and	
zeros

Language	
Modeling

The	Shannon	Visualization	Method
• Choose	a	random	bigram	

(<s>,	w)	according	to	its	probability
• Now	choose	a	random	bigram								

(w,	x)	according	to	its	probability
• And	so	on	until	we	choose	</s>
• Then	string	the	words	together

<s> I
I want
want to

to eat
eat Chinese

Chinese food
food </s>

I want to eat Chinese food

Approximating	Shakespeare

Shakespeare	as	corpus

• N=884,647	tokens,	V=29,066
• Shakespeare	produced	300,000	bigram	types	
out	of	V2=	844	million	possible	bigrams.
• So	99.96%	of	the	possible	bigrams	were	never	seen	
(have	zero	entries	in	the	table)

• Quadrigrams worse:			What's	coming	out	looks	
like	Shakespeare	because	it	is Shakespeare

The	wall	street	journal	is	not	shakespeare	
(no	offense)

The	perils	of	overfitting

• N-grams	only	work	well	for	word	prediction	if	the	test	
corpus	looks	like	the	training	corpus
• In	real	life,	it	often	doesn’t
• We	need	to	train	robust	models that	generalize!
• One	kind	of	generalization:	Zeros!
• Things	that	don’t	ever	occur	in	the	training	set
• But	occur	in	the	test	set

Zeros
• Training	set:

…	denied	the	allegations
…	denied	the	reports
…	denied	the	claims
…	denied	the	request

P(“offer”	|	denied	the)	=	0

• Test	set
…	denied	the	offer
…	denied	the	loan

Zero	probability	bigrams

• Bigrams	with	zero	probability
• mean	that	we	will	assign	0	probability	to	the	test	set!

• And	hence	we	cannot	compute	perplexity	(can’t	divide	by	0)!

Generalization	and	
zeros

Language	
Modeling

Smoothing:	Add-one	
(Laplace)	smoothing

Language	
Modeling

Add-one	estimation

• Also	called	Laplace	smoothing
• Pretend	we	saw	each	word	one	more	time	than	we	did
• Just	add	one	to	all	the	counts!

• MLE	estimate:

• Add-1	estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V +1

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

Laplace-smoothed bigrams

+1

Reconstituted counts

+1

Compare with raw bigram counts

Add-1	estimation	is	a	blunt	instrument

• So	add-1	isn’t	used	for	N-grams:	
• We’ll	see	better	methods

• But	add-1	is	used	to	smooth	other	NLP	models
• For	text	classification	
• In	domains	where	the	number	of	zeros	isn’t	so	huge.

Smoothing:	Add-one	
(Laplace)	smoothing

Language	
Modeling

Interpolation,	Backoff

Language	
Modeling

Backoff and Interpolation
• Sometimes	it	helps	to	use	less context

• Condition	on	less	context	for	contexts	you	haven’t	learned	much	about	

• Backoff:	
• use	trigram	if	you	have	good	evidence,
• otherwise	bigram,	otherwise	unigram

• Interpolation:	
• mix	unigram,	bigram,	trigram

• Interpolation	works	better

Linear	Interpolation

• Simple	interpolation

• Lambdas	conditional	on	context:

N-gram	Smoothing	Summary

• Add-1	smoothing:
• OK	for	text	categorization,	not	for	language	modeling

• Backoff and	Interpolation	work	better
• The	most	commonly	used	method:

• Extended	Interpolated	Kneser-Ney

54

Interpolation,	Backoff

Language	
Modeling

Language
Modeling

Advanced:

Kneser-Ney Smoothing

Advanced	smoothing	algorithms

• Intuition	used	by	many	smoothing	algorithms
• Good-Turing
• Kneser-Ney

• Use	the	count	of	things	we’ve	seen
• to	help	estimate	the	count	of	things	we’ve	never	seen

• Better	estimate	for	probabilities	of	lower-order	unigrams!
• Shannon	game:		I	can’t	see	without	my	reading___________?
• “Francisco”	is	more	common	than	“glasses”
• …	but	“Francisco”	always	follows	“San”

• Instead	of		P(w):	“How	likely	is	w”
• Pcontinuation(w):		“How	likely	is	w	to	appear	as	a	novel	continuation?

• For	each	word,	count	the	number	of	unique	bigram	types	it	completes
• Every	bigram	type	was	a	novel	continuation	the	first	time	it	was	seen

Francisco

Kneser-Ney Smoothing I (smart backoff)

glasses

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

Kneser-Ney Smoothing II
• How	many	times	does	w	appear	as	a	novel	continuation:

• Normalized	by	the	total	number	of	word	bigram	types

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

Kneser-Ney Smoothing III

60

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is	a	normalizing	constant;	the	probability	mass	we’ve	discounted

the normalized discount
The number of word types that can follow wi-1

= # of word types we discounted
= # of times we applied normalized discount

Language
Modeling

Advanced:

Kneser-Ney Smoothing

