
Sentiment movie analysis
DiWu
 BowenLi

Introduction

● the Naive Bayes method shows the good accuracy and
easy principle in classification method.

● However, it is acceptable that the Naive Bayes has some
disadvantages to some extent.
○ Independence
○ Ignore relationship
○ Large computation

Introduction

● Aspired by “Thumbs Up or Thumbs Down? Semantic
Orientation Applied to Unsupervised Classification of
Reviews”

● Select words by phrase pattern of POS

Introduction

● Select some specific words/phrases
○ Not long
○ Show perspective
○ Own sentiment degree
○ Follow some pattern

Introduction

● extract some specific patterns from context

Introduction

● extract some specific words
○ Adjective
○ Adverb
○ verb

Method

● The first step of algorithm is to extract some specific
patterns from context.

● The second method is use Naive Bayes method to all
words that satisfy the pattern.

● The final step is to calculate accuracy.
● Compare with other methods.

Evaluation

● Extract pattern and Naive Bayes

Evaluation

● Extract words

Evaluation

● POS Naive Bayes vs other methods

Function 2： analize input review

● We let people input a review of a movie and we will justify
the degree of good and bad for this review.

● We set different thresholds and classify review into 5
different star degree.

● 1 star, 2 star, 3 star, 4 star, 5 star. 4~5 star means
positive, 1~2 star means negative.

● The more star means more agreed degree, the fewer star
means more dislike degree.

Function 2： analize input review

● Please input your review or input 'esc' to quit:
● I will say that the movie's idea that two best friends can't agree on a better

solution than to have competing weddings on the same day because of their
childhood dreams is silly. However with that said, I still found the movie
entertaining. Some of the things Hathaway and Hudson do to sabatoge the
each others weddings are really funny. It would be nice though if movie
studios would quit showing so many of the funny scenes in movie trailers.
Overall, a cute movie!

● output:
● ****

Function 2： analize input review

● Please input your review or input 'esc' to quit:
● Only bought this because my best friend & I got married on the same day. We

both fell asleep but we did get a laugh as we could sympathize with the
ridiculousness of planning a wedding. (And because while goofing around I
accidentally busted her lip just one week before the wedding.)

● output:
● **

Conclusion

● We combine the POS and Naive Bayes method with
better accuracy.

● The final accuracy is about 84.1%, better than the
PA4(51%), Naive bayes(81%) and this paper(74%).

● We can analyze the sentiment of the real time input
review into 5 different level.

Thank you!

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Ruicong	 Cai	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Zhe	 Zan	

�  From	 the	 comments	 of	 top	 restaurants.	
�  The	 data	 consists	 of	 the	 following	 	 items:	
	 	 	 	 	 	 	 	 	 	 	 1.	 	 Vote	 of	 the	 comment	 (funny,	 useful,	 cool)	

	 2.	 User	 ID	
	 3.	 Comment	 ID	
	 4.	 Date	
	 5.	 Comments	 	 	

�  Shuffle	 the	 data.	
	

We	 used	 4	 categories	 of	 feature:	
	
�  1.	 Bag	 of	 Word	 Model	 (Baseline)	

�  2.	 Stemmed	 Words	

�  3.	 Lemmatized	 Words	

�  4.	 Bigram	

	

�  Single	 –	 category	 feature:	 (Baseline)	

�  Single	 –	 category	 feature:	 (Without	 Stopwords)	

�  2	 -‐	 category	 features:	 (+	 stemmed	 words)	 	

�  3	 -‐	 category	 features:	 (+	 lemmatized	 words)	

�  4	 -‐	 category	 features:	 (+	 bigrams)	 	

�  4	 -‐	 category	 features:	 (Sentence-‐based)	

�  Quite	 a	 few	 comments	 are	 combination	 of	 both	
positive	 and	 negative	 sentences.	

Aspect Based Sentiment
Analysis

Divyesh Tekale(923004428)
Mragank Kumar Yadav(625005280)

Sentiment Analysis
• Extract opinions, views, emotions from

unstructured text.
• Examples:

– “My goodness, everything from the fish to the
rice to the seaweed was absolutely amazing”

Polarity
– “The food was terrible and overly priced”

Polarity

Aspect Level Sentiment Analysis

• Two phased procedure:
– Aspect Extraction
– Polarity computation of that Aspect.

• Example: “Anyway, the food is good, the
price is right and they have a decent wine
list”
Aspect=food Polarity
Aspect=price Polarity

Task Overview

• SemEval-2014 Restaurant data.
• CRF model(CRF++) to extract aspects.
• POS tagger using TagChunk by Hal.
• Porters Stemmer to stem the words.
• Subjectivity Lexicon dictionary to

determine the stemmed word polarity.

Aspect Extraction Training Phase

Parse train
xml file

Run POS
tagger

Generate
train.data(Conll)

file

Run CRF++ on
train.data(Conll)

file
Model file is

generated

Sample Train.data(Conll) file

Word POS Chunk Is-Aspect
But CC B-O False
the DT B-NP False
staff NN I-NP True
was VBD B-VP False
so RB B-ADJP False
horrible JJ I-ADJP False

Aspect Extraction Testing Phase

Parse test
xml file

Run POS
tagger

Generate
test.data(Conll)

file

Run CRF++ on
test.data (Conll)

& model file

Parse the
generated
output file

Predicted
results files is

generated

Polarity Computation of the
Predicted Aspects

Parse
predicted

Results file

Run Porter’s
Stemmer

around aspect

Use
Subjectivity
Lexicon Dict

Compute
Contextual

Polarity

Generate
Results with

polarity

Sample Results
• Text: In addition, the food is very good and

the prices are reasonable.
Aspect Terms
Aspect=food Polarity=positive
Aspect=prices Polarity=positive

• Text: Their calzones are horrific, bad, vomit-
inducing, YUCK.
Aspect Terms
Aspect=calzones Polarity=negative

Challenges faced

• Handling punctuations while generating
training data(Conll file) for CRF model.

• Handling different forms of words while
searching in subjectivity lexicon dictionary.
Eg: "fishing", "fished", and "fisher”.

• Getting a balance between recall and
precision values.

Results

• Aspect Extraction Metrics:
Precision = 98 %
Recall = 65 %
F-Score = 78 %

• Polarity Metrics(5 word search around the
extracted aspect term):
Precision = 76 %

Questions

●
●

○
○
○

●
○
○

●
●
●

○
○

●

●

●

http://times.cs.uiuc.edu/~wang296/Data/index.html
http://times.cs.uiuc.edu/~wang296/Data/index.html

●
●
●
●
●

●

●
●

●
○
○

●
●
●
●

○

●
●

●
●
●
●

Word
Vector

of
Words

Embedding
Layer

LSTM Output

●
○ ≅

○ ≅

●
●
●
●

2-class 3-class 5-class

Accuracy F-score Accuracy F-score Accuracy F-score

Naive
Bayes

- - 81.28% 80% 65.32% 65%

NBSVM - - 77% 77% 64% 64%

RNN - - 74% 67% 48% 44%

CNN 86.8% 86% - - - -

●
●

●
●
●
●

●

Insult	Detection	in	Social	
Media	Text	Content

- Aditya	Nanjangud,	625007600
- Navneet	Gupta,	226000691

Table	of	Contents

• The	need	for	abuse	detection
• Methodology
• Results
• Observations
• Challenges	(f)aced
• References

Intro

• Anonymity	allows	people	to	post	insulting	comments.
• Example:	kill	yrslef a$$hole

• Common	in	Facebook,	Twitter,	Blogs
• Huge	content	makes	manual	classification	infeasible.
• Rule	based	engine	cannot	scale	with	growing	forms	of	abuse	and	
vocabulary.
• ML	and	NLP	algorithms	can	help	to	automate	the	classification	task.

Data
• Provided	by	Kaggle	as	a	part	of	a	competition
• Training	Data:
• 6594	sentences
• Ex:	(Insult,	Date,	Comment)
• 1,20120502173553Z,"""Either	you	are	fake	or	extremely	stupid...maybe	
both...""”
• 0,20120612052926Z,"""But	how	would	you	actually	get	the	key	out?"""

• Test	Data:
• 2235	sentences
• Ex:	(id,Insult,Date,Comment,Usage)
• 12,1,20120602124231Z,"""\xa0HAHAHAHAH,	you	are	a	delusional	
moron.""",PrivateTest

Preprocessing

• Removal	of	HTML	tags
• Removal	of	URLs
• Correction	of	words	like	em,	yo,	u,	d	etc.	
• Basic	custom	stemming
• Replace	custom	abuses	like	"f***"	with	"xexp”
• Normalizing	unicode data	like	replacing	\xc2,	\xa0	with	non-breaking	
space
• Replace	some	punctuations	to	clean	up	the	text

Feature	Extraction
• Word	CountVectorizer
• Char	CountVectorizer
• Word	TfIdf (n-grams)
• Char	TfIdf (n-grams)
• Number	of	uppercase	words
• Ratio	of	uppercase	words
• Day	and	Time
• Misspellings
• Number	of	bad	words
• Ratio	of	bad	words
• Number	of	times	Addressing	(@)	used.	
• Number	of	"xexp”	~	f***	
• Mean	and	maximum	word	length

Feature	Selection

• To	Select	the	best	features	out	of	100s	of	thousands	of	features.

• Chi-Squared	Test	:	Selecting	features	with	the	highest	dependence	on	
the	occurrence	of	the	classes	it	has	to	be	classified	into.

• Earlier	combined	all	the	features	and	then	ran	feature	selection.

• But	running	chi-squared	test	after	each	feature	extraction	led	to	
better	results.

Classification

• Support	Vector	Machines
• Naïve	Bayes
• Stochastic	Gradient	Descent
• Logistic	Regression
• Used	a	VotingClassifier to	combine	different	combinations.
• Weighted	averaging	of	SVM	and	LR	gave	the	best	results.

Parameter	Tuning

• Used	GridSearchCV to	tune	parameters	and	features.

• Cross	validation	scores	to	decide	the	weights	for	the	classifiers	in	the	
voting	classifier.

Results	
Accuracy	:	0.74

AUC	(ROC):	0.826	

AUC	(Recall	vs	Precision)	:	0.83

Macro	

Precision		0.768

Recall	0.737

F-score	0.734

Micro

Precision		0.743

Recall	0.743

F-score	0.743

Class	wise

Precision	[0.6956,	0.8405]

Recall	[0.8981,	0.5775]

F-score	[0.7840,	0.6846]

Results Graphs

Observations	

• Data	Preprocessing	didn’t	help	much.	

• In	terms	of	features,	TfIdf scores	of	n-gram	characters	mattered	most.
(perhaps	the	reason	was	weird	spellings	and	grammar)

• Initially	we	selected	the	best	features	from	a	combined	feature	set.	But	
later	did	the	feature	selection	for	each	type	of	features	individually	– better	
results.	

• Simpler	models	such	as	SVM	and	LR	gave	best	results.	We	employed	a	
weighted	ensemble	of	them.

Challenges

• Feature	Extraction
• Preprocessing

• Feature	Selection
• Choice	in	Classifiers
• Parameter	Tuning

References	

• Abusive	Language	Detection	in	Online	User	Content,	Chikashi Nobata et	al.,	
WWW’16	Proceedings	of	the	25th	International	Conference.
• Data	- https://www.kaggle.com/c/detecting-insults-in-social-commentary
• Article	- https://www.overleaf.com/articles/detecting-insults-in-social-
commentary/gkvrrwryjxhr/viewer.pdf
• Code	- https://github.com/navgupta14/abuse-detector

Analysis in Twitter Gender
Classification

Chuong Trinh

Motivation

• Growing interest in automatically predicting the gender of authors from
texts:
• Opinions, political stances, styles, and preferences may be unique to each gender

• Useful to individuals, companies, and governments for personal
recommendation, customization, targeted advertising, political analysis, and
policy formulation.

Why Gender Classification from Tweets is Hard!

• Limited characters (140) per tweet

• Lots of spamming, advertising accounts, media sources, bots, etc.

• User’s profile privacy

• Users construct their identity through interacting with other users!
(Marwick and boyd, 2011) – all depend on the context

• For example
• Tweet 1: I’m walking on sunshine <3 #and don’t you feel good

• Tweet 2: lalaloveya <3

• Tweet 3: @USER loveyou ;D

Pipeline

Dataset & Baseline

• CrowdFlower (kaggle – data challenge site)
• 20,000 tweets – collected in 2015

• Human Amazon Turker labeling + CrowdFlower’s labeling system

• ~ 14,000 tweets can be used (non-English, low confidence, or unreadable is ignored)

• Labels: male + female + brand

• Men are more likely to talk at another
account

• Women are more likely to use emoji
• Current accuracy: ~60%

GloVe: Global Vectors for Word
Representation
• Unsupervised learning algorithm for obtaining vector representations

for words

• Ratios of word-word co-occurrence probabilities have the potential
for encoding some form of meaning

• Pre-trained matrix model: Twitter – 2 billions tweets, 27 billions
tokens , 25 to 200 dimensional features

Doc2Vec - Distributed Memory Model of
Paragraph Vectors (PV-DM)
• Word2vec : Converts a word into a vector losing ordering of the words

• Doc2vec: Learn word features + aggregate all the words in a sentence into a
vector

• Unsupervised algorithm that converts variable-length text to fixed-length
feature representation.

Q. Le, T. Mikolov. 2014. Distributed Representations of Sentences and Documents. In Proceedings of ICML 2014

D: N x p matrix paragraph vector (each paragraph is mapped to p-
dimensional features vector)

W: M x q matrix word vector (each word is mapped to q-
dimensional features vector)

Analysis & Evaluation

Word-freq Word-freq +

PCA

Doc2vec GloVe

Accuracy Male & Female

& Brand

0.5629 0.5716 0.5708 0.5872

Male & Female 0.6054 0.6023 0.6172 0.6500

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Male & Female & Brand Male & Female

Accuracy

Accuracy

Word-freq Word-freq + PCA Doc2vec GloVe

Analysis & Evaluation

Word-freq Word-freq

+ PCA

Doc2vec GloVe

Precision

Male 0.4888 0.5131 0.4898 0.5342

Female 0.5678 0.5838 0.6043 0.5930

Brand 0.6341 0.5961 0.6027 0.6294

Recall

Male 0.4359 0.3564 0.4183 0.4312

Female 0.6060 0.6132 0.6050 0.6798

Brand 0.6580 0.7770 0.7096 0.6477

F1 score

Male 0.4608 0.4203 0.4512 0.4771

Female 0.5862 0.5981 0.6046 0.6334

Brand 0.6457 0.6745 0.6516 0.6383

First 3 principal components

Black: brand; Red: female; Blue: Male

Conclusion

• After all, we’re not all that much different. We use a lot of the same
words

• GloVe performs best because its underlying concept that
distinguishes man from woman, i.e. sex or gender, or king and queen.

• Doc2vec performs weaker than GloVe because it could be the lack of
its pre-trained model from very large corpus (only unsupervised
learning on training data)

Thank you

Information Extraction
from Wikipedia

Bhavik Ameta(225008988), Shobhit Jain(625007846)

Introduction

Relation Extraction can improve the question answering and information
retrieval.

Eg. <Person, BornIn>, <Org., HQ>

Snowball is a bootstrapped relation extraction method.

Seeds + Data = Relations!

Snowball Algorithm: Terminology

• Snowball Pattern: <left_vector, ORG, mid_vector, LOC, right_vector>

• Tags: ORG (organization) and LOC (headquarter location)

• Vectors have TF of words as weights

• Snowball Relation: <ORG_name, LOC_name>

• Seed Tuples: (<Microsoft, Redmond>, <Facebook, Menlo Park>……)

Snowball Algorithm

Snowball Matches

Middle
vector Location Right

vector

Organization
Left

Vector

Approach and Challenges

• Wikipedia data: Can use infobox for evaluation.

• Original Snowball paper uses Newspaper data.

• XML clean-up to obtain plain text.

• First used Stanford NER Tagger (days for tagging…)

• Switched to Spacy Tagger: less accurate but quicker

• Co-reference tools are lot less accurate and slower still..!

Approach and Challenges

• Dataset changes everything. ! typical Wikipedia line:

• Challenge: Characters other than English, meta tags, HTML symbols

• Solution: Use Unicode

• Challenge: Lot of unrelated words between Company and Location.

• Solution: Use log TF over contexts instead of raw count and remove low frequency words

Approach and Challenges:

• Raw counts can work on Newspaper dataset taken by original Snowball
paper.

• Middle window words are more useful than left and right windows. Use
higher window size to capture ORG, LOC in Wikipedia sentences.

Results

• Captured 230 <company, HQ> pairs from around 1082 articles.

• 118 correct relations

• Precision: 51.34 %

• Some relations missed due to Tagger and shorter articles.

• Negative matches due to <company, branch location> and <company,
Founding location> pairs. Occur in same pattern as <company, HQ>

Conclusion

• Co-Reference resolution almost necessary for good relation extraction.

• Just NER not enough.

• Base form required for location and company

• More data for better results

References

• E. Agichtein and L. Gravano. Snowball: extracting relations from large
plain-text collections. In ICDL, 2000

• YAGO: A Core of Semantic Knowledge Unifying WordNet and Wikipedia,
Fabian M. Suchanek, Gjergji

• Wikipedia data from: https://dumps.wikimedia.org/enwiki

• For cleaning wikipedia : https://github.com/attardi/wikiextractor

• spaCy Tagger: https://spacy.io/

https://github.com/attardi/wikiextractor
https://spacy.io/

Thank You……!

	presentation_report
	Sentiment Analysis of Yelp User Review Data
	ABSA_FinalPresentation
	CSCE 689 601 - Project Presentation
	Presentaton_Insult Detection_in Social_Media_Text Content
	Analysis in Twitter Gender Classification
	nlp_presentation

