Sequence Models

- Hidden Markov Models (HMM)
- MaxEnt Markov Models (MEMM)

Many slides from Michael Collins and Alan Ritter

Overview and HMMs

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
- Basic definitions
- Parameter estimation
- The Viterbi algorithm

Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/ N on/P Wall/ N Street/ N ,/, as/ P their/POSS CEO/ N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.
$\mathrm{N}=$ Noun
$\mathrm{V} \quad=$ Verb
P $\quad=$ Preposition
Adv = Adverb
Adj = Adjective

Named Entity Recognition

INPUT: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT: Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

Named Entity Extraction as Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA
$\mathrm{NA}=$ No entity
SC $=$ Start Company
CC $=$ Continue Company
SL $\quad=$ Start Location
CL $\quad=$ Continue Location

Our Goal

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./.
2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.

3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

38,219 lt/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

- From the training set, induce a function/algorithm that maps new sentences to their tag sequences.

Two Types of Constraints

Influential/JJ members/NNS of/IN the/DT House/NNP Ways/NNP and/CC Means/NNP Committee/NNP introduced/VBD legislation/NN that/WDT would/MD restrict/VB how/WRB the/DT new/JJ savings-and-loan/NN bailout/NN agency/NN can/MD raise/VB capital/NN ./.

- "Local": e.g., can is more likely to be a modal verb MD rather than a noun NN
- "Contextual": e.g., a noun is much more likely than a verb to follow a determiner
- Sometimes these preferences are in conflict:

The trash can is in the garage

Overview

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
- Basic definitions
- Parameter estimation
- The Viterbi algorithm

Supervised Learning Problems

- We have training examples $x^{(i)}, y^{(i)}$ for $i=1 \ldots m$. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.
- Task is to learn a function f mapping inputs x to labels $f(x)$

Supervised Learning Problems

- We have training examples $x^{(i)}, y^{(i)}$ for $i=1 \ldots m$. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.
- Task is to learn a function f mapping inputs x to labels $f(x)$
- Conditional models:
- Learn a distribution $p(y \mid x)$ from training examples
- For any test input x, define $f(x)=\arg \max _{y} p(y \mid x)$

Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i=1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.

Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i=1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.
- Generative models:
- Learn a distribution $p(x, y)$ from training examples
- Often we have $p(x, y)=p(y) p(x \mid y)$

Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i=1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.
- Generative models:
- Learn a distribution $p(x, y)$ from training examples
- Often we have $p(x, y)=p(y) p(x \mid y)$
- Note: we then have

$$
p(y \mid x)=\frac{p(y) p(x \mid y)}{p(x)}
$$

where $p(x)=\sum_{y} p(y) p(x \mid y)$

Decoding with Generative Models

- We have training examples $x^{(i)}, y^{(i)}$ for $i=1 \ldots m$. Task is to learn a function f mapping inputs x to labels $f(x)$.
- Generative models:
- Learn a distribution $p(x, y)$ from training examples
- Often we have $p(x, y)=p(y) p(x \mid y)$
- Output from the model:

$$
\begin{aligned}
f(x) & =\arg \max _{y} p(y \mid x) \\
& =\arg \max _{y} \frac{p(y) p(x \mid y)}{p(x)} \\
& =\arg \max _{y} p(y) p(x \mid y)
\end{aligned}
$$

Overview

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
- Basic definitions
- Parameter estimation
- The Viterbi algorithm

Hidden Markov Models

- We have an input sentence $x=x_{1}, x_{2}, \ldots, x_{n}$ (x_{i} is the i 'th word in the sentence)
- We have a tag sequence $y=y_{1}, y_{2}, \ldots, y_{n}$ (y_{i} is the i 'th tag in the sentence)
- We'll use an HMM to define

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

for any sentence $x_{1} \ldots x_{n}$ and tag sequence $y_{1} \ldots y_{n}$ of the same length.

- Then the most likely tag sequence for x is

$$
\arg \max _{y_{1} \ldots y_{n}} p\left(x_{1} \ldots x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Trigram Hidden Markov Models (Trigram HMMs)

For any sentence $x_{1} \ldots x_{n}$ where $x_{i} \in \mathcal{V}$ for $i=1 \ldots n$, and any tag sequence $y_{1} \ldots y_{n+1}$ where $y_{i} \in \mathcal{S}$ for $i=1 \ldots n$, and $y_{n+1}=$ STOP, the joint probability of the sentence and tag sequence is

$$
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)=\prod_{i=1}^{n+1} q\left(y_{i} \mid y_{i-2}, y_{i-1}\right) \prod_{i=1}^{n} e\left(x_{i} \mid y_{i}\right)
$$

where we have assumed that $y_{-} 0=y_{-} 1=$ *
Parameters of the model:

- $q(s \mid u, v)$ for any $s \in \mathcal{S} \cup\{\mathrm{STOP}\}, u, v \in \mathcal{S} \cup\left\{{ }^{*}\right\}$
- $e(x \mid s)$ for any $s \in \mathcal{S}, x \in \mathcal{V}$

An Example

If we have $n=3, x_{1} \ldots x_{3}$ equal to the sentence the dog laughs, and $y_{1} \ldots y_{4}$ equal to the tag sequence D N V STOP, then

$$
\begin{aligned}
& p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right) \\
= & q(\mathrm{D} \mid *, *) \times q(\mathrm{~N} \mid *, \mathrm{D}) \times q(\mathrm{~V} \mid \mathrm{D}, \mathrm{~N}) \times q(\mathrm{STOP} \mid \mathrm{N}, \mathrm{~V}) \\
& \times e(\text { the } \mid \mathrm{D}) \times e(\operatorname{dog} \mid \mathrm{N}) \times e(\text { laughs } \mid \mathrm{V})
\end{aligned}
$$

- STOP is a special tag that terminates the sequence
- We take $y_{0}=y_{-1}=^{*}$, where ${ }^{*}$ is a special "padding" symbol

Why the Name?

$$
\begin{aligned}
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)= & \underbrace{q\left(\operatorname{STOP} \mid y_{n-1}, y_{n}\right) \prod_{j=1}^{n} q\left(y_{j} \mid y_{j-2}, y_{j-1}\right)}_{\text {Markov Chain }} \\
& \times \underbrace{\prod_{j=1}^{n} e\left(x_{j} \mid y_{j}\right)}_{x_{j} \text { 's are observed }}
\end{aligned}
$$

Overview

- The Tagging Problem
- Generative models, and the noisy-channel model, for supervised learning
- Hidden Markov Model (HMM) taggers
- Basic definitions
- Parameter estimation
- The Viterbi algorithm

Smoothed Estimation

$$
\begin{aligned}
q(\mathrm{Vt} \mid \mathrm{DT}, \mathrm{JJ})= & \lambda_{1} \times \frac{\operatorname{Count}(\mathrm{Dt}, \mathrm{JJ}, \mathrm{Vt})}{\operatorname{Count}(\mathrm{Dt}, \mathrm{JJ})} \\
& +\lambda_{2} \times \frac{\operatorname{Count}(\mathrm{JJ}, \mathrm{Vt})}{\operatorname{Count}(\mathrm{JJ})} \\
& +\lambda_{3} \times \frac{\operatorname{Count}(\mathrm{Vt})}{\operatorname{Count}()}
\end{aligned}
$$

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}=1, \quad \text { and for all } i, \lambda_{i} \geq 0
$$

$$
e(\text { base } \mid \mathrm{Vt})=\frac{\operatorname{Count}(\mathrm{Vt}, \text { base })}{\operatorname{Count}(\mathrm{Vt})}
$$

Dealing with Low-Frequency Words: An Example

Profits soared at Boeing Co. , easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results .

Dealing with Low-Frequency Words

A common method is as follows:

- Step 1: Split vocabulary into two sets

Frequent words $\quad=$ words occurring ≥ 5 times in training
Low frequency words $=$ all other words

- Step 2: Map low frequency words into a small, finite set, depending on prefixes, suffixes etc.

Dealing with Low-Frequency Words: An Example

[Bikel et. al 1999] (named-entity recognition)

Word class	Example	Intuition
twoDigitNum	90	Two digit year
fourDigitNum	1990	Four digit year
containsDigitAndAlpha	A8956-67	Product code
containsDigitAndDash	$09-96$	Date
containsDigitAndSlash	$11 / 9 / 89$	Date
containsDigitAndComma	$23,000.00$	Monetary amount
containsDigitAndPeriod	1.00	Monetary amount, percentage
othernum	456789	Other number
allCaps	BBN	Organization
capPeriod	M.	Person name initial
firstWord	first word of sentence	no useful capitalization information
initCap	Sally	Capitalized word
lowercase	can	Uncapitalized word
other	,	Punctuation marks, all other words

Dealing with Low-Frequency Words: An Example

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA

\Downarrow

firstword/NA soared/NA at/NA initCap/SC Co./CC ,/NA easily/NA lowercase/NA forecasts/NA on/NA initCap/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP initCap/CP announced/NA first/NA quarter/NA results/NA ./NA
$\mathrm{NA}=$ No entity
SC $=$ Start Company
CC $=$ Continue Company
SL $\quad=$ Start Location
CL $\quad=$ Continue Location

The Viterbi Algorithm

Problem: for an input $x_{1} \ldots x_{n}$, find

$$
\arg \max _{y_{1} \ldots y_{n+1}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

where the $\arg \max$ is taken over all sequences $y_{1} \ldots y_{n+1}$ such that $y_{i} \in \mathcal{S}$ for $i=1 \ldots n$, and $y_{n+1}=$ STOP.

We assume that p again takes the form

$$
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)=\prod_{i=1}^{n+1} q\left(y_{i} \mid y_{i-2}, y_{i-1}\right) \prod_{i=1}^{n} e\left(x_{i} \mid y_{i}\right)
$$

Recall that we have assumed in this definition that $y_{0}=y_{-1}=*$, and $y_{n+1}=$ STOP.

Brute Force Search is Hopelessly Inefficient

Problem: for an input $x_{1} \ldots x_{n}$, find

$$
\arg \max _{y_{1} \ldots y_{n+1}} p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n+1}\right)
$$

where the $\arg \max$ is taken over all sequences $y_{1} \ldots y_{n+1}$ such that $y_{i} \in \mathcal{S}$ for $i=1 \ldots n$, and $y_{n+1}=\mathrm{STOP}$.

The Viterbi Algorithm

- Define n to be the length of the sentence
- Define S_{k} for $k=-1 \ldots n$ to be the set of possible tags at position k :

$$
\begin{aligned}
S_{-1}=S_{0} & =\{*\} \\
S_{k}=S \text { for } k & \in\{1 \ldots n\}
\end{aligned}
$$

- Define

$$
r\left(y_{-1}, y_{0}, y_{1}, \ldots, y_{k}\right)=\prod_{i=1}^{k} q\left(y_{i} \mid y_{i-2}, y_{i-1}\right) \prod_{i=1}^{k} e\left(x_{i} \mid y_{i}\right)
$$

- Define a dynamic programming table

$$
\begin{aligned}
\pi(k, u, v)= & \text { maximum probability of a tag sequence } \\
& \text { ending in tags } u, v \text { at position } k
\end{aligned}
$$

that is,

$$
\pi(k, u, v)=\max _{\left\langle y_{-1}, y_{0}, y_{1}, \ldots, y_{k}\right\rangle: y_{k-1}=u, y_{k}=v} r\left(y_{-1}, y_{0}, y_{1} \ldots y_{k}\right)
$$

A Recursive Definition

Base case:

$$
\pi(0, *, *)=1
$$

Recursive definition:

For any $k \in\{1 \ldots n\}$, for any $u \in \mathcal{S}_{k-1}$ and $v \in \mathcal{S}_{k}$:

$$
\pi(k, u, v)=\max _{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
$$

Justification for the Recursive Definition

For any $k \in\{1 \ldots n\}$, for any $u \in \mathcal{S}_{k-1}$ and $v \in \mathcal{S}_{k}$:

$$
\pi(k, u, v)=\max _{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
$$

The man saw the dog with the telescope

The Viterbi Algorithm

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid u, v)$ and $e(x \mid s)$.
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$
Definition: $\mathcal{S}_{-1}=\mathcal{S}_{0}=\{*\}, \mathcal{S}_{k}=\mathcal{S}$ for $k \in\{1 \ldots n\}$

Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{S}_{k-1}, v \in \mathcal{S}_{k}$,

$$
\pi(k, u, v)=\max _{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
$$

- Return $\max _{u \in \mathcal{S}_{n-1}, v \in \mathcal{S}_{n}}(\pi(n, u, v) \times q(\mathrm{STOP} \mid u, v))$

The Viterbi Algorithm with Backpointers

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid u, v)$ and $e(x \mid s)$.
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$
Definition: $\mathcal{S}_{-1}=\mathcal{S}_{0}=\{*\}, \mathcal{S}_{k}=\mathcal{S}$ for $k \in\{1 \ldots n\}$
Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{S}_{k-1}, v \in \mathcal{S}_{k}$,

$$
\begin{aligned}
\pi(k, u, v) & =\max _{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right) \\
b p(k, u, v) & =\arg \max _{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
\end{aligned}
$$

- Set $\left(y_{n-1}, y_{n}\right)=\arg \max _{(u, v)}(\pi(n, u, v) \times q(\mathrm{STOP} \mid u, v))$
- For $k=(n-2) \ldots 1, y_{k}=b p\left(k+2, y_{k+1}, y_{k+2}\right)$
- Return the tag sequence $y_{1} \ldots y_{n}$

The Viterbi Algorithm: Running Time

- $O\left(n|\mathcal{S}|^{3}\right)$ time to calculate $q(s \mid u, v) \times e\left(x_{k} \mid s\right)$ for all k, s, u, v.
- $n|\mathcal{S}|^{2}$ entries in π to be filled in.
- $O(|\mathcal{S}|)$ time to fill in one entry
- $\Rightarrow O\left(n|\mathcal{S}|^{3}\right)$ time in total

A Simple Bi-gram Example:
 (X, Y): $\mathrm{P}(\mathrm{X} / \mathrm{Y})$, POS tags for "bears fish" ?

- noun $* .80 \quad$ bears noun .02
- Verb * . 10 bears verb .02
- STOP noun . 50 fish verb . 07
- STOP verb . 50
- noun verb .77
- verb noun . 65
- noun noun . 0001
- nerb verb . 0001

Answer

- bears: noun
- fish: verb

The Forward Algorithm

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid u, v)$ and $e(x \mid s)$.
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$
Definition: $\mathcal{S}_{-1}=\mathcal{S}_{0}=\{*\}, \mathcal{S}_{k}=\mathcal{S}$ for $k \in\{1 \ldots n\}$

Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{S}_{k-1}, v \in \mathcal{S}_{k}$,

$$
\pi(k, u, v)=\operatorname{Sum}_{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
$$

- Returr Sum ${ }_{u \in \mathcal{S}_{n-1}, v \in \mathcal{S}_{n}}(\pi(n, u, v) \times q(\mathrm{STOP} \mid u, v))$

Pros and Cons

- Hidden markov model taggers are very simple to train (just need to compile counts from the training corpus) If you already have a labeled training set.
Use forward-backward algorithms in the unsupervised setting.
- Perform relatively well (over 90\% performance on named entity recognition)
- Main difficulty is modeling

$$
e(\text { word } \mid \operatorname{tag})
$$

can be very difficult if "words" are complex

- MaxEnt Markov Models (MEMMs)

Log-Linear Models for Tagging

- We have an input sentence $w_{[1: n]}=w_{1}, w_{2}, \ldots, w_{n}$ (w_{i} is the i 'th word in the sentence)
- We have a tag sequence $t_{[1: n]}=t_{1}, t_{2}, \ldots, t_{n}$ (t_{i} is the i 'th tag in the sentence)
- We'll use an log-linear model to define

$$
p\left(t_{1}, t_{2}, \ldots, t_{n} \mid w_{1}, w_{2}, \ldots, w_{n}\right)
$$

for any sentence $w_{[1: n]}$ and tag sequence $t_{[1: n]}$ of the same length. (Note: contrast with HMM that defines $p\left(t_{1} \ldots t_{n}, w_{1} \ldots w_{n}\right)$)

- Then the most likely tag sequence for $w_{[1: n]}$ is

$$
t_{[1: n]}^{*}=\operatorname{argmax}_{t_{[1: n]}} p\left(t_{[1: n]} \mid w_{[1: n]}\right)
$$

How to model $p\left(t_{[1: n]} \mid w_{[1: n]}\right)$?

A Trigram Log-Linear Tagger:

$$
p\left(t_{[1: n]} \mid w_{[1: n]}\right)=\prod_{j=1}^{n} p\left(t_{j} \mid w_{1} \ldots w_{n}, t_{1} \ldots t_{j-1}\right) \quad \text { Chain rule }
$$

$$
=\prod_{j=1}^{n} p\left(t_{j} \mid w_{1}, \ldots, w_{n}, t_{j-2}, t_{j-1}\right)
$$

Independence assumptions

- We take $t_{0}=t_{-1}=*$
- Independence assumption: each tag only depends on previous two tags

$$
p\left(t_{j} \mid w_{1}, \ldots, w_{n}, t_{1}, \ldots, t_{j-1}\right)=p\left(t_{j} \mid w_{1}, \ldots, w_{n}, t_{j-2}, t_{j-1}\right)
$$

An Example

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere .

- There are many possible tags in the position ??
$\mathcal{Y}=\{\mathrm{NN}, \mathrm{NNS}, \mathrm{Vt}, \mathrm{Vi}, \mathrm{IN}, \mathrm{DT}, \ldots\}$

Representation: Histories

- A history is a 4-tuple $\left\langle t_{-2}, t_{-1}, w_{[1: n]}, i\right\rangle$
- t_{-2}, t_{-1} are the previous two tags.
- $w_{[1: n]}$ are the n words in the input sentence.
- i is the index of the word being tagged
- \mathcal{X} is the set of all possible histories

Hispaniola/NNP quickly/RB became/VB an/DT important/JJ base/?? from which Spain expanded its empire into the rest of the Western Hemisphere.

- $t_{-2}, t_{-1}=\mathrm{DT}, \mathrm{JJ}$
- $w_{[1: n]}=\langle$ Hispaniola,quickly, became, ..., Hemisphere, ..
- $i=6$

Recap: Feature Vector Representations in Log-Linear Models

- We have some input domain \mathcal{X}, and a finite label set \mathcal{Y}. Aim is to provide a conditional probability $p(y \mid x)$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.
- A feature is a function $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ (Often binary features or indicator functions $f: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\})$.
- Say we have m features f_{k} for $k=1 \ldots m$ \Rightarrow A feature vector $f(x, y) \in \mathbb{R}^{m}$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$.

An Example (continued)

- \mathcal{X} is the set of all possible histories of form $\left\langle t_{-2}, t_{-1}, w_{[1: n]}, i\right\rangle$
- $\mathcal{Y}=\{$ NN, NNS, $\mathrm{Vt}, \mathrm{Vi}, \mathrm{IN}, \mathrm{DT}, \ldots\}$
- We have m features $f_{k}: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ for $k=1 \ldots m$

For example:

$$
\begin{aligned}
& f_{1}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { is base and } t=\mathrm{Vt} \\
0 & \text { otherwise }\end{cases} \\
& f_{2}(h, t)= \begin{cases}1 & \text { if current word } w_{i} \text { ends in ing and } t=\mathrm{VBG} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Training the Log-Linear Model

- To train a log-linear model, we need a training set $\left(x_{i}, y_{i}\right)$ for $i=1 \ldots n$. Then search for

$$
v^{*}=\operatorname{argmax}_{v}(\underbrace{\sum_{i} \log p\left(y_{i} \mid x_{i} ; v\right)}_{\text {Log-Likelihood }}-\underbrace{\frac{\lambda}{2} \sum_{k} v_{k}^{2}}_{\text {Regularizer }})
$$

(see last lecture on log-linear models)

- Training set is simply all history/tag pairs seen in the training data

The Viterbi Algorithm

Problem: for an input $w_{1} \ldots w_{n}$, find

$$
\arg \max _{t_{1} \ldots t_{n}} p\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)
$$

We assume that p takes the form

$$
p\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} q\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{[1: n]}, i\right)
$$

(In our case $q\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{[1: n]}, i\right)$ is the estimate from a log-linear model.)

The Viterbi Algorithm

- Define n to be the length of the sentence
- Define

$$
r\left(t_{1} \ldots t_{k}\right)=\prod_{i=1}^{k} q\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{[1: n]}, i\right)
$$

- Define a dynamic programming table
$\pi(k, u, v)=$ maximum probability of a tag sequence ending in tags u, v at position k
that is,

$$
\pi(k, u, v)=\max _{\left\langle t_{1}, \ldots, t_{k-2}\right\rangle} r\left(t_{1} \ldots t_{k-2}, u, v\right)
$$

A Recursive Definition

Base case:

$$
\pi\left(0,{ }^{*}, *\right)=1
$$

Recursive definition:

For any $k \in\{1 \ldots n\}$, for any $u \in \mathcal{S}_{k-1}$ and $v \in \mathcal{S}_{k}$:

$$
\pi(k, u, v)=\max _{t \in \mathcal{S}_{k-2}}\left(\pi(k-1, t, u) \times q\left(v \mid t, u, w_{[1: n]}, k\right)\right)
$$

where \mathcal{S}_{k} is the set of possible tags at position k

The Viterbi Algorithm with Backpointers

Input: a sentence $w_{1} \ldots w_{n}$, log-linear model that provides $q\left(v \mid t, u, w_{[1: n]}, i\right)$ for any tag-trigram t, u, v, for any $i \in\{1 \ldots n\}$
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$.

Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{S}_{k-1}, v \in \mathcal{S}_{k}$,

$$
\begin{aligned}
\pi(k, u, v) & =\max _{t \in \mathcal{S}_{k-2}}\left(\pi(k-1, t, u) \times q\left(v \mid t, u, w_{[1: n]}, k\right)\right) \\
b p(k, u, v) & =\arg \max _{t \in \mathcal{S}_{k-2}}\left(\pi(k-1, t, u) \times q\left(v \mid t, u, w_{[1: n]}, k\right)\right)
\end{aligned}
$$

- Set $\left(t_{n-1}, t_{n}\right)=\arg \max _{(u, v)} \pi(n, u, v)$
- For $k=(n-2) \ldots 1, t_{k}=b p\left(k+2, t_{k+1}, t_{k+2}\right)$
- Return the tag sequence $t_{1} \ldots t_{n}$

Summary

- Key ideas in log-linear taggers:
- Decompose

$$
p\left(t_{1} \ldots t_{n} \mid w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} p\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

- Estimate

$$
p\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{1} \ldots w_{n}\right)
$$

using a log-linear model

- For a test sentence $w_{1} \ldots w_{n}$, use the Viterbi algorithm to find

$$
\arg \max _{t_{1} \ldots t_{n}}\left(\prod_{i=1}^{n} p\left(t_{i} \mid t_{i-2}, t_{i-1}, w_{1} \ldots w_{n}\right)\right)
$$

- Key advantage over HMM taggers: flexibility in the features they can use

