
Vector Semantics
Dense	
 Vectors	
 	

Sparse	
 versus	
 dense	
 vectors	

•  PPMI	
 vectors	
 are	

•  long	
 (length	
 |V|=	
 20,000	
 to	
 50,000)	

•  sparse	
 (most	
 elements	
 are	
 zero)	

•  Alterna>ve:	
 learn	
 vectors	
 which	
 are	

•  short	
 (length	
 200-­‐1000)	

•  dense	
 (most	
 elements	
 are	
 non-­‐zero)	

2	

Sparse	
 versus	
 dense	
 vectors	

•  Why	
 dense	
 vectors?	

•  Short	
 vectors	
 may	
 be	
 easier	
 to	
 use	
 as	
 features	
 in	
 machine	

learning	
 (less	
 weights	
 to	
 tune)	

•  Dense	
 vectors	
 may	
 generalize	
 beLer	
 than	
 storing	
 explicit	
 counts	

•  They	
 may	
 do	
 beLer	
 at	
 capturing	
 synonymy:	

•  car	
 and	
 automobile	
 are	
 synonyms;	
 but	
 are	
 represented	
 as	

dis>nct	
 dimensions;	
 this	
 fails	
 to	
 capture	
 similarity	
 between	
 a	

word	
 with	
 car	
 as	
 a	
 neighbor	
 and	
 a	
 word	
 with	
 automobile	
 as	
 a	

neighbor	

3	

Three	
 methods	
 for	
 ge5ng	
 short	
 dense	

vectors	

•  Singular	
 Value	
 Decomposi>on	
 (SVD)	

•  A	
 special	
 case	
 of	
 this	
 is	
 called	
 LSA	
 –	
 Latent	
 Seman>c	
 Analysis	

•  “Neural	
 Language	
 Model”-­‐inspired	
 predic>ve	
 models	

•  skip-­‐grams	
 and	
 CBOW	

•  Brown	
 clustering	

4	

Vector Semantics
Dense	
 Vectors	
 via	
 SVD	

Intui8on	

•  Approximate	
 an	
 N-­‐dimensional	
 dataset	
 using	
 fewer	
 dimensions	

•  By	
 first	
 rota>ng	
 the	
 axes	
 into	
 a	
 new	
 space	

•  In	
 which	
 the	
 highest	
 order	
 dimension	
 captures	
 the	
 most	

variance	
 in	
 the	
 original	
 dataset	

•  And	
 the	
 next	
 dimension	
 captures	
 the	
 next	
 most	
 variance,	
 etc.	

•  Many	
 such	
 (related)	
 methods:	

•  PCA	
 –	
 principle	
 components	
 analysis	

•  Factor	
 Analysis	

•  SVD	

6	

1 2 3 4 5 6

1

2

3

4

5

6

7	

1 2 3 4 5 6

1

2

3

4

5

6

PCA dimension 1

PCA dimension 2

Dimensionality	
 reduc8on	

Singular	
 Value	
 Decomposi8on	

8	

Any	
 rectangular	
 matrix	
 X	
 equals	
 the	
 product	
 of	
 3	
 matrices:	

W:	
 rows	
 corresponding	
 to	
 original	
 but	
 m	
 columns	
 represents	
 a	

dimension	
 in	
 a	
 new	
 latent	
 space,	
 such	
 that	
 	

•  M	
 column	
 vectors	
 are	
 orthogonal	
 to	
 each	
 other	

•  Columns	
 are	
 ordered	
 by	
 the	
 amount	
 of	
 variance	
 in	
 the	
 dataset	
 each	
 new	

dimension	
 accounts	
 for	

S:	
 	
 diagonal	
 m	
 x	
 m	
 matrix	
 of	
 singular	
 values	
 expressing	
 the	

importance	
 of	
 each	
 dimension.	

C:	
 columns	
 corresponding	
 to	
 original	
 but	
 m	
 rows	
 corresponding	
 to	

singular	
 values	

Singular	
 Value	
 Decomposi8on	

238 LANDAUER AND DUMAIS

Appendix

An Introduction to Singular Value Decomposition and an LSA Example

Singu la r Value D e c o m p o s i t i o n (S V D)

A well-known proof in matrix algebra asserts that any rectangular
matrix (X) is equal to the product of three other matrices (W, S, and
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for
the basic math and computer algorithms of SVD). The first of these
(W) has rows corresponding to the rows of the original, but has m
columns corresponding to new, specially derived variables such that
there is no correlation between any two columns; that is, each is linearly
independent of the others, which means that no one can be constructed
as a linear combination of others. Such derived variables are often called
principal components, basis vectors, factors, or dimensions. The third
matrix (C) has columns corresponding to the original columns, but m
rows composed of derived singular vectors. The second matrix (S) is a
diagonal matrix; that is, it is a square m × m matrix with nonzero entries
only along one central diagonal. These are derived constants called
singular values. Their role is to relate the scale of the factors in the first
two matrices to each other. This relation is shown schematically in Figure
A1. To keep the connection to the concrete applications of SVD in the
main text clear, we have labeled the rows and columns words (w) and
contexts (c) . The figure caption defines SVD more formally.

The fundamental proof of SVD shows that there always exists a
decomposition of this form such that matrix mu!tiplication of the three
derived matrices reproduces the original matrix exactly so long as there
are enough factors, where enough is always less than or equal to the
smaller of the number of rows or columns of the original matrix. The
number actually needed, referred to as the rank of the matrix, depends
on (or expresses) the intrinsic dimensionality of the data contained in
the cells of the original matrix. Of critical importance for latent semantic
analysis (LSA), if one or more factor is omitted (that is, if one or more
singular values in the diagonal matrix along with the corresponding
singular vectors of the other two matrices are deleted), the reconstruction
is a least-squares best approximation to the original given the remaining
dimensions. Thus, for example, after constructing an SVD, one can
reduce the number of dimensions systematically by, for example, remov-
ing those with the smallest effect on the sum-squared error of the approx-
imation simply by deleting those with the smallest singular values.

The actual algorithms used to compute SVDs for large sparse matrices
of the sort involved in LSA are rather sophisticated and are not described
here. Suffice it to say that cookbook versions of SVD adequate for
small (e.g., 100 × 100) matrices are available in several places (e.g.,
Mathematica, 1991), and a free software version (Berry, 1992) suitable

Contexts

3=
m x m m x c

w x c w x m

Figure A1. Schematic diagram of the singular value decomposition
(SVD) of a rectangular word (w) by context (c) matrix (X). The
original matrix is decomposed into three matrices: W and C, which are
orthonormal, and S, a diagonal matrix. The m columns of W and the m
rows of C ' are linearly independent.

for very large matrices such as the one used here to analyze an encyclope-
dia can currently be obtained from the WorldWideWeb (http://www.net-
l ib.org/svdpack/index.html). University-affiliated researchers may be
able to obtain a research-only license and complete software package
for doing LSA by contacting Susan Dumais. A~ With Berry 's software
and a high-end Unix work-station with approximately 100 megabytes
of RAM, matrices on the order of 50,000 × 50,000 (e.g., 50,000 words
and 50,000 contexts) can currently be decomposed into representations
in 300 dimensions with about 2 - 4 hr of computation. The computational
complexity is O(3Dz) , where z is the number of nonzero elements in
the Word (w) × Context (c) matrix and D is the number of dimensions
returned. The maximum matrix size one can compute is usually limited
by the memory (RAM) requirement, which for the fastest of the methods
in the Berry package is (10 + D + q) N + (4 + q)q , where N = w +
c and q = min (N, 600), plus space for the W × C matrix. Thus,
whereas the computational difficulty of methods such as this once made
modeling and simulation of data equivalent in quantity to human experi-
ence unthinkable, it is now quite feasible in many cases.

Note, however, that the simulations of adult psycholinguistic data
reported here were still limited to corpora much smaller than the total
text to which an educated adult has been exposed.

An LSA Example

Here is a small example that gives the flavor of the analysis and
demonstrates what the technique can accomplish. A2 This example uses
as text passages the titles of nine technical memoranda, five about human
computer interaction (HCI) , and four about mathematical graph theory,
topics that are conceptually rather disjoint. The titles are shown below.

cl : Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement
ml : The generation of random, binary, ordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey

The matrix formed to represent this text is shown in Figure A2. (We
discuss the highlighted parts of the tables in due course.) The initial
matrix has nine columns, one for each title, and we have given it 12
rows, each corresponding to a content word that occurs in at least two
contexts. These are the words in italics. In LSA analyses of text, includ-
ing some of those reported above, words that appear in only one context
are often omitted in doing the SVD. These contribute little to derivation
of the space, their vectors can be constructed after the SVD with little
loss as a weighted average of words in the sample in which they oc-
curred, and their omission sometimes greatly reduces the computation.
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and
Dumais (1994) for more on such details. For simplicity of presentation,

A~ Inquiries about LSA computer programs should be addressed to
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey
07960. Electronic mail may be sent via Intemet to std@bellcore.com.

A2 This example has been used in several previous publications (e.g.,
Deerwester et al., 1990; Landauer & Dumais, 1996).

9	
 Landuaer	
 and	
 Dumais	
 1997	

SVD	
 applied	
 to	
 term-­‐document	
 matrix:	

Latent	
 Seman8c	
 Analysis	

•  If	
 instead	
 of	
 keeping	
 all	
 m	
 dimensions,	
 we	
 just	
 keep	
 the	
 top	
 k	

singular	
 values.	
 Let’s	
 say	
 300.	

•  The	
 result	
 is	
 a	
 least-­‐squares	
 approxima>on	
 to	
 the	
 original	
 X	

•  But	
 instead	
 of	
 mul>plying,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

we’ll	
 just	
 make	
 use	
 of	
 W.	

•  Each	
 row	
 of	
 W:	

•  A	
 k-­‐dimensional	
 vector	

•  Represen>ng	
 word	
 W	

10	

238 LANDAUER AND DUMAIS

Appendix

An Introduction to Singular Value Decomposition and an LSA Example

Singu la r Value D e c o m p o s i t i o n (S V D)

A well-known proof in matrix algebra asserts that any rectangular
matrix (X) is equal to the product of three other matrices (W, S, and
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for
the basic math and computer algorithms of SVD). The first of these
(W) has rows corresponding to the rows of the original, but has m
columns corresponding to new, specially derived variables such that
there is no correlation between any two columns; that is, each is linearly
independent of the others, which means that no one can be constructed
as a linear combination of others. Such derived variables are often called
principal components, basis vectors, factors, or dimensions. The third
matrix (C) has columns corresponding to the original columns, but m
rows composed of derived singular vectors. The second matrix (S) is a
diagonal matrix; that is, it is a square m × m matrix with nonzero entries
only along one central diagonal. These are derived constants called
singular values. Their role is to relate the scale of the factors in the first
two matrices to each other. This relation is shown schematically in Figure
A1. To keep the connection to the concrete applications of SVD in the
main text clear, we have labeled the rows and columns words (w) and
contexts (c) . The figure caption defines SVD more formally.

The fundamental proof of SVD shows that there always exists a
decomposition of this form such that matrix mu!tiplication of the three
derived matrices reproduces the original matrix exactly so long as there
are enough factors, where enough is always less than or equal to the
smaller of the number of rows or columns of the original matrix. The
number actually needed, referred to as the rank of the matrix, depends
on (or expresses) the intrinsic dimensionality of the data contained in
the cells of the original matrix. Of critical importance for latent semantic
analysis (LSA), if one or more factor is omitted (that is, if one or more
singular values in the diagonal matrix along with the corresponding
singular vectors of the other two matrices are deleted), the reconstruction
is a least-squares best approximation to the original given the remaining
dimensions. Thus, for example, after constructing an SVD, one can
reduce the number of dimensions systematically by, for example, remov-
ing those with the smallest effect on the sum-squared error of the approx-
imation simply by deleting those with the smallest singular values.

The actual algorithms used to compute SVDs for large sparse matrices
of the sort involved in LSA are rather sophisticated and are not described
here. Suffice it to say that cookbook versions of SVD adequate for
small (e.g., 100 × 100) matrices are available in several places (e.g.,
Mathematica, 1991), and a free software version (Berry, 1992) suitable

Contexts

3=
m x m m x c

w x c w x m

Figure A1. Schematic diagram of the singular value decomposition
(SVD) of a rectangular word (w) by context (c) matrix (X). The
original matrix is decomposed into three matrices: W and C, which are
orthonormal, and S, a diagonal matrix. The m columns of W and the m
rows of C ' are linearly independent.

for very large matrices such as the one used here to analyze an encyclope-
dia can currently be obtained from the WorldWideWeb (http://www.net-
l ib.org/svdpack/index.html). University-affiliated researchers may be
able to obtain a research-only license and complete software package
for doing LSA by contacting Susan Dumais. A~ With Berry 's software
and a high-end Unix work-station with approximately 100 megabytes
of RAM, matrices on the order of 50,000 × 50,000 (e.g., 50,000 words
and 50,000 contexts) can currently be decomposed into representations
in 300 dimensions with about 2 - 4 hr of computation. The computational
complexity is O(3Dz) , where z is the number of nonzero elements in
the Word (w) × Context (c) matrix and D is the number of dimensions
returned. The maximum matrix size one can compute is usually limited
by the memory (RAM) requirement, which for the fastest of the methods
in the Berry package is (10 + D + q) N + (4 + q)q , where N = w +
c and q = min (N, 600), plus space for the W × C matrix. Thus,
whereas the computational difficulty of methods such as this once made
modeling and simulation of data equivalent in quantity to human experi-
ence unthinkable, it is now quite feasible in many cases.

Note, however, that the simulations of adult psycholinguistic data
reported here were still limited to corpora much smaller than the total
text to which an educated adult has been exposed.

An LSA Example

Here is a small example that gives the flavor of the analysis and
demonstrates what the technique can accomplish. A2 This example uses
as text passages the titles of nine technical memoranda, five about human
computer interaction (HCI) , and four about mathematical graph theory,
topics that are conceptually rather disjoint. The titles are shown below.

cl : Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement
ml : The generation of random, binary, ordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey

The matrix formed to represent this text is shown in Figure A2. (We
discuss the highlighted parts of the tables in due course.) The initial
matrix has nine columns, one for each title, and we have given it 12
rows, each corresponding to a content word that occurs in at least two
contexts. These are the words in italics. In LSA analyses of text, includ-
ing some of those reported above, words that appear in only one context
are often omitted in doing the SVD. These contribute little to derivation
of the space, their vectors can be constructed after the SVD with little
loss as a weighted average of words in the sample in which they oc-
curred, and their omission sometimes greatly reduces the computation.
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and
Dumais (1994) for more on such details. For simplicity of presentation,

A~ Inquiries about LSA computer programs should be addressed to
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey
07960. Electronic mail may be sent via Intemet to std@bellcore.com.

A2 This example has been used in several previous publications (e.g.,
Deerwester et al., 1990; Landauer & Dumais, 1996).

k	

/	

/	

k	

/	

k	

/	

k	

Deerwester	
 et	
 al	
 (1988)	

Let’s	
 return	
 to	
 PPMI	
 word-­‐word	
 matrices	

•  Can	
 we	
 apply	
 SVD	
 to	
 them?	

11	

SVD	
 applied	
 to	
 term-­‐term	
 matrix	

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ |V |

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sV

3

777775

|V |⇥ |V |

2

666664
C

3

777775

|V |⇥ |V |

Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ k

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sk

3

777775

k⇥ k

h
C

i

k⇥ |V |

Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

12	
 (I’m	
 simplifying	
 here	
 by	
 assuming	
 the	
 matrix	
 has	
 rank	
 |V|)	

Truncated	
 SVD	
 on	
 term-­‐term	
 matrix	

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ |V |

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sV

3

777775

|V |⇥ |V |

2

666664
C

3

777775

|V |⇥ |V |

Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ k

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sk

3

777775

k⇥ k

h
C

i

k⇥ |V |

Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

13	

Truncated	
 SVD	
 produces	
 embeddings	

14	

•  Each	
 row	
 of	
 W	
 matrix	
 is	
 a	
 k-­‐dimensional	

representa>on	
 of	
 each	
 word	
 w	

•  K	
 might	
 range	
 from	
 50	
 to	
 1000	

•  Generally	
 we	
 keep	
 the	
 top	
 k	
 dimensions,	

but	
 some	
 experiments	
 suggest	
 that	

gelng	
 rid	
 of	
 the	
 top	
 1	
 dimension	
 or	
 	
 even	

the	
 top	
 50	
 dimensions	
 is	
 helpful	
 (Lapesa	

and	
 Evert	
 2014).	

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ |V |

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sV

3

777775

|V |⇥ |V |

2

666664
C

3

777775

|V |⇥ |V |

Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
2

666664
X

3

777775

|V |⇥ |V |

=

2

666664
W

3

777775

|V |⇥ k

2

666664

s1 0 0 . . . 0
0 s2 0 . . . 0
0 0 s3 . . . 0
...

...
...

. . .
...

0 0 0 . . . sk

3

777775

k⇥ k

h
C

i

k⇥ |V |

Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

embedding
for

word i

Embeddings	
 versus	
 sparse	
 vectors	

•  Dense	
 SVD	
 embeddings	
 some>mes	
 work	
 beLer	
 than	

sparse	
 PPMI	
 matrices	
 at	
 tasks	
 like	
 word	
 similarity	

•  Denoising:	
 low-­‐order	
 dimensions	
 may	
 represent	
 unimportant	

informa>on	

•  Trunca>on	
 may	
 help	
 the	
 models	
 generalize	
 beLer	
 to	
 unseen	
 data.	

•  Having	
 a	
 smaller	
 number	
 of	
 dimensions	
 may	
 make	
 it	
 easier	
 for	

classifiers	
 to	
 properly	
 weigh	
 the	
 dimensions	
 for	
 the	
 task.	

•  Dense	
 models	
 may	
 do	
 beLer	
 at	
 capturing	
 higher	
 order	
 co-­‐
occurrence.	
 	

15	

Vector Semantics
Embeddings	
 inspired	
 by	

neural	
 language	
 models:	

skip-­‐grams	
 and	
 CBOW	

Predic8on-­‐based	
 models:	

An	
 alterna8ve	
 way	
 to	
 get	
 dense	
 vectors	

•  Skip-­‐gram	
 (Mikolov	
 et	
 al.	
 2013a)	
 	
 CBOW	
 (Mikolov	
 et	
 al.	
 2013b)	

•  Learn	
 embeddings	
 as	
 part	
 of	
 the	
 process	
 of	
 word	
 predic>on.	

•  Train	
 a	
 neural	
 network	
 to	
 predict	
 neighboring	
 words	

•  Inspired	
 by	
 neural	
 net	
 language	
 models.	

•  In	
 so	
 doing,	
 learn	
 dense	
 embeddings	
 for	
 the	
 words	
 in	
 the	
 training	
 corpus.	

•  Advantages:	

•  Fast,	
 easy	
 to	
 train	
 (much	
 faster	
 than	
 SVD)	

•  Available	
 online	
 in	
 the	
 word2vec	
 package	

•  Including	
 sets	
 of	
 pretrained	
 embeddings!	
 17	

Embeddings	
 capture	
 rela8onal	
 meaning!	

vector(‘king’)	
 -­‐	
 vector(‘man’)	
 +	
 vector(‘woman’)	
 	
 ≈ vector(‘queen’)	

vector(‘Paris’)	
 -­‐	
 vector(‘France’)	
 +	
 vector(‘Italy’)	
 ≈	
 vector(‘Rome’)	

	

18	

Vector Semantics
Brown	
 clustering	

Brown	
 clustering	

•  An	
 agglomera>ve	
 clustering	
 algorithm	
 that	
 clusters	
 words	
 based	

on	
 which	
 words	
 precede	
 or	
 follow	
 them	

•  These	
 word	
 clusters	
 can	
 be	
 turned	
 into	
 a	
 kind	
 of	
 vector	

•  We’ll	
 give	
 a	
 very	
 brief	
 sketch	
 here.	

20	

Brown	
 clustering	
 algorithm	

•  Each	
 word	
 is	
 ini>ally	
 assigned	
 to	
 its	
 own	
 cluster.	
 	

•  We	
 now	
 consider	
 merging	
 each	
 pair	
 of	
 clusters.	
 Highest	
 quality	

merge	
 is	
 chosen.	

•  Quality	
 =	
 merges	
 two	
 words	
 that	
 have	
 similar	
 probabili>es	
 of	
 preceding	

and	
 following	
 words	

•  (More	
 technically	
 quality	
 =	
 smallest	
 decrease	
 in	
 the	
 likelihood	
 of	
 the	

corpus	
 according	
 to	
 a	
 class-­‐based	
 language	
 model)	
 	

•  Clustering	
 proceeds	
 un>l	
 all	
 words	
 are	
 in	
 one	
 big	
 cluster.	
 	

21	

Brown	
 Clusters	
 as	
 vectors	

•  By	
 tracing	
 the	
 order	
 in	
 which	
 clusters	
 are	
 merged,	
 the	
 model	

builds	
 a	
 binary	
 tree	
 from	
 boLom	
 to	
 top.	

•  Each	
 word	
 represented	
 by	
 binary	
 string	
 =	
 path	
 from	
 root	
 to	
 leaf	

•  Each	
 intermediate	
 node	
 is	
 a	
 cluster	
 	

•  Chairman	
 is	
 0010,	
 “months”	
 =	
 01,	
 and	
 verbs	
 =	
 1	

22	

Brown Algorithm

• Words merged according to contextual
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

Brown	
 cluster	
 examples	

20 CHAPTER 19 • VECTOR SEMANTICSBrown Algorithm

• Words merged according to contextual
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

Figure 19.16 Brown clustering as a binary tree. A full binary string represents a word; each
binary prefix represents a larger class to which the word belongs and can be used as an vector
representation for the word. After Koo et al. (2008).

After clustering, a word can be represented by the binary string that corresponds
to its path from the root node; 0 for left, 1 for right, at each choice point in the binary
tree. For example in Fig. 19.16, the word chairman is the vector 0010 and October
is 011. Since Brown clustering is a hard clustering algorithm (each word has onlyhard clustering

cluster), there is just one string per word.
Now we can extract useful features by taking the binary prefixes of this bit string;

each prefix represents a cluster to which the word belongs. For example the string 01
in the figure represents the cluster of month names {November, October}, the string
0001 the names of common nouns for corporate executives {chairman, president},
1 is verbs {run, sprint, walk}, and 0 is nouns. These prefixes can then be used
as a vector representation for the word; the shorter the prefix, the more abstract
the cluster. The length of the vector representation can thus be adjusted to fit the
needs of the particular task. Koo et al. (2008) improving parsing by using multiple
features: a 4-6 bit prefix to capture part of speech information and a full bit string to
represent words. Spitkovsky et al. (2011) shows that vectors made of the first 8 or
9-bits of a Brown clustering perform well at grammar induction. Because they are
based on immediately neighboring words, Brown clusters are most commonly used
for representing the syntactic properties of words, and hence are commonly used as
a feature in parsers. Nonetheless, the clusters do represent some semantic properties
as well. Fig. 19.17 shows some examples from a large clustering from Brown et al.
(1992).

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody
had hadn’t hath would’ve could’ve should’ve must’ve might’ve
asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle
great big vast sudden mere sheer gigantic lifelong scant colossal
down backwards ashore sideways southward northward overboard aloft downwards adrift
Figure 19.17 Some sample Brown clusters from a 260,741-word vocabulary trained on 366
million words of running text (Brown et al., 1992). Note the mixed syntactic-semantic nature
of the clusters.

Note that the naive version of the Brown clustering algorithm described above is
extremely inefficient — O(n5): at each of n iterations, the algorithm considers each
of n2 merges, and for each merge, compute the value of the clustering by summing
over n2 terms. because it has to consider every possible pair of merges. In practice
we use more efficient O(n3) algorithms that use tables to pre-compute the values for
each merge (Brown et al. 1992, Liang 2005).

23	

Vector Semantics
Evalua>ng	
 similarity	

Evalua8ng	
 similarity	

•  Extrinsic	
 (task-­‐based,	
 end-­‐to-­‐end)	
 Evalua>on:	

•  Ques>on	
 Answering	

•  Spell	
 Checking	

•  Essay	
 grading	

•  Intrinsic	
 Evalua>on:	

•  Correla>on	
 between	
 algorithm	
 and	
 human	
 word	
 similarity	
 ra>ngs	

•  Wordsim353:	
 353	
 noun	
 pairs	
 rated	
 0-­‐10.	
 	
 	
 sim(plane,car)=5.77	

•  Taking	
 TOEFL	
 mul>ple-­‐choice	
 vocabulary	
 tests	

•  Levied is closest in meaning to:
 imposed, believed, requested, correlated	

Summary	

•  Distribu>onal	
 (vector)	
 models	
 of	
 meaning	

•  Sparse	
 (PPMI-­‐weighted	
 	
 word-­‐word	
 co-­‐occurrence	
 matrices)	

•  Dense:	

• Word-­‐word	
 	
 SVD	
 50-­‐2000	
 dimensions	

•  Skip-­‐grams	
 and	
 CBOW	
 	

•  Brown	
 clusters	
 5-­‐20	
 binary	
 dimensions.	

26	

