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  Vectors	
  	
  



Sparse	
  versus	
  dense	
  vectors	
  

•  PPMI	
  vectors	
  are	
  
•  long	
  (length	
  |V|=	
  20,000	
  to	
  50,000)	
  
•  sparse	
  (most	
  elements	
  are	
  zero)	
  

•  Alterna>ve:	
  learn	
  vectors	
  which	
  are	
  
•  short	
  (length	
  200-­‐1000)	
  
•  dense	
  (most	
  elements	
  are	
  non-­‐zero)	
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Sparse	
  versus	
  dense	
  vectors	
  

•  Why	
  dense	
  vectors?	
  
•  Short	
  vectors	
  may	
  be	
  easier	
  to	
  use	
  as	
  features	
  in	
  machine	
  
learning	
  (less	
  weights	
  to	
  tune)	
  

•  Dense	
  vectors	
  may	
  generalize	
  beLer	
  than	
  storing	
  explicit	
  counts	
  
•  They	
  may	
  do	
  beLer	
  at	
  capturing	
  synonymy:	
  
•  car	
  and	
  automobile	
  are	
  synonyms;	
  but	
  are	
  represented	
  as	
  
dis>nct	
  dimensions;	
  this	
  fails	
  to	
  capture	
  similarity	
  between	
  a	
  
word	
  with	
  car	
  as	
  a	
  neighbor	
  and	
  a	
  word	
  with	
  automobile	
  as	
  a	
  
neighbor	
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Three	
  methods	
  for	
  ge5ng	
  short	
  dense	
  
vectors	
  

•  Singular	
  Value	
  Decomposi>on	
  (SVD)	
  
•  A	
  special	
  case	
  of	
  this	
  is	
  called	
  LSA	
  –	
  Latent	
  Seman>c	
  Analysis	
  

•  “Neural	
  Language	
  Model”-­‐inspired	
  predic>ve	
  models	
  
•  skip-­‐grams	
  and	
  CBOW	
  

•  Brown	
  clustering	
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Vector Semantics 
Dense	
  Vectors	
  via	
  SVD	
  



Intui8on	
  
•  Approximate	
  an	
  N-­‐dimensional	
  dataset	
  using	
  fewer	
  dimensions	
  
•  By	
  first	
  rota>ng	
  the	
  axes	
  into	
  a	
  new	
  space	
  
•  In	
  which	
  the	
  highest	
  order	
  dimension	
  captures	
  the	
  most	
  

variance	
  in	
  the	
  original	
  dataset	
  
•  And	
  the	
  next	
  dimension	
  captures	
  the	
  next	
  most	
  variance,	
  etc.	
  
•  Many	
  such	
  (related)	
  methods:	
  

•  PCA	
  –	
  principle	
  components	
  analysis	
  
•  Factor	
  Analysis	
  
•  SVD	
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Singular	
  Value	
  Decomposi8on	
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Any	
  rectangular	
  matrix	
  X	
  equals	
  the	
  product	
  of	
  3	
  matrices:	
  
W:	
  rows	
  corresponding	
  to	
  original	
  but	
  m	
  columns	
  represents	
  a	
  
dimension	
  in	
  a	
  new	
  latent	
  space,	
  such	
  that	
  	
  

•  M	
  column	
  vectors	
  are	
  orthogonal	
  to	
  each	
  other	
  
•  Columns	
  are	
  ordered	
  by	
  the	
  amount	
  of	
  variance	
  in	
  the	
  dataset	
  each	
  new	
  
dimension	
  accounts	
  for	
  

S:	
  	
  diagonal	
  m	
  x	
  m	
  matrix	
  of	
  singular	
  values	
  expressing	
  the	
  
importance	
  of	
  each	
  dimension.	
  
C:	
  columns	
  corresponding	
  to	
  original	
  but	
  m	
  rows	
  corresponding	
  to	
  
singular	
  values	
  



Singular	
  Value	
  Decomposi8on	
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 

Contexts 

3= 
m x m  m x c  

w x c  w x m  

Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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SVD	
  applied	
  to	
  term-­‐document	
  matrix:	
  
Latent	
  Seman8c	
  Analysis	
  

•  If	
  instead	
  of	
  keeping	
  all	
  m	
  dimensions,	
  we	
  just	
  keep	
  the	
  top	
  k	
  
singular	
  values.	
  Let’s	
  say	
  300.	
  

•  The	
  result	
  is	
  a	
  least-­‐squares	
  approxima>on	
  to	
  the	
  original	
  X	
  
•  But	
  instead	
  of	
  mul>plying,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

we’ll	
  just	
  make	
  use	
  of	
  W.	
  
•  Each	
  row	
  of	
  W:	
  

•  A	
  k-­‐dimensional	
  vector	
  
•  Represen>ng	
  word	
  W	
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 
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Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 
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Let’s	
  return	
  to	
  PPMI	
  word-­‐word	
  matrices	
  

•  Can	
  we	
  apply	
  SVD	
  to	
  them?	
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SVD	
  applied	
  to	
  term-­‐term	
  matrix	
  

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
2
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Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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  simplifying	
  here	
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  matrix	
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  rank	
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Truncated	
  SVD	
  on	
  term-­‐term	
  matrix	
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Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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  embeddings	
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•  Each	
  row	
  of	
  W	
  matrix	
  is	
  a	
  k-­‐dimensional	
  
representa>on	
  of	
  each	
  word	
  w	
  

•  K	
  might	
  range	
  from	
  50	
  to	
  1000	
  
•  Generally	
  we	
  keep	
  the	
  top	
  k	
  dimensions,	
  

but	
  some	
  experiments	
  suggest	
  that	
  
gelng	
  rid	
  of	
  the	
  top	
  1	
  dimension	
  or	
  	
  even	
  
the	
  top	
  50	
  dimensions	
  is	
  helpful	
  (Lapesa	
  
and	
  Evert	
  2014).	
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for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
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Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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Embeddings	
  versus	
  sparse	
  vectors	
  

•  Dense	
  SVD	
  embeddings	
  some>mes	
  work	
  beLer	
  than	
  
sparse	
  PPMI	
  matrices	
  at	
  tasks	
  like	
  word	
  similarity	
  
•  Denoising:	
  low-­‐order	
  dimensions	
  may	
  represent	
  unimportant	
  
informa>on	
  

•  Trunca>on	
  may	
  help	
  the	
  models	
  generalize	
  beLer	
  to	
  unseen	
  data.	
  
•  Having	
  a	
  smaller	
  number	
  of	
  dimensions	
  may	
  make	
  it	
  easier	
  for	
  
classifiers	
  to	
  properly	
  weigh	
  the	
  dimensions	
  for	
  the	
  task.	
  

•  Dense	
  models	
  may	
  do	
  beLer	
  at	
  capturing	
  higher	
  order	
  co-­‐
occurrence.	
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Vector Semantics 
Embeddings	
  inspired	
  by	
  
neural	
  language	
  models:	
  
skip-­‐grams	
  and	
  CBOW	
  



Predic8on-­‐based	
  models:	
  
An	
  alterna8ve	
  way	
  to	
  get	
  dense	
  vectors	
  

•  Skip-­‐gram	
  (Mikolov	
  et	
  al.	
  2013a)	
  	
  CBOW	
  (Mikolov	
  et	
  al.	
  2013b)	
  
•  Learn	
  embeddings	
  as	
  part	
  of	
  the	
  process	
  of	
  word	
  predic>on.	
  
•  Train	
  a	
  neural	
  network	
  to	
  predict	
  neighboring	
  words	
  
•  Inspired	
  by	
  neural	
  net	
  language	
  models.	
  
•  In	
  so	
  doing,	
  learn	
  dense	
  embeddings	
  for	
  the	
  words	
  in	
  the	
  training	
  corpus.	
  

•  Advantages:	
  
•  Fast,	
  easy	
  to	
  train	
  (much	
  faster	
  than	
  SVD)	
  
•  Available	
  online	
  in	
  the	
  word2vec	
  package	
  
•  Including	
  sets	
  of	
  pretrained	
  embeddings!	
  17	
  



Embeddings	
  capture	
  rela8onal	
  meaning!	
  

vector(‘king’)	
  -­‐	
  vector(‘man’)	
  +	
  vector(‘woman’)	
  	
  ≈  vector(‘queen’)	
  
vector(‘Paris’)	
  -­‐	
  vector(‘France’)	
  +	
  vector(‘Italy’)	
  ≈	
  vector(‘Rome’)	
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Vector Semantics 
Brown	
  clustering	
  



Brown	
  clustering	
  

•  An	
  agglomera>ve	
  clustering	
  algorithm	
  that	
  clusters	
  words	
  based	
  
on	
  which	
  words	
  precede	
  or	
  follow	
  them	
  

•  These	
  word	
  clusters	
  can	
  be	
  turned	
  into	
  a	
  kind	
  of	
  vector	
  
•  We’ll	
  give	
  a	
  very	
  brief	
  sketch	
  here.	
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Brown	
  clustering	
  algorithm	
  

•  Each	
  word	
  is	
  ini>ally	
  assigned	
  to	
  its	
  own	
  cluster.	
  	
  
•  We	
  now	
  consider	
  merging	
  each	
  pair	
  of	
  clusters.	
  Highest	
  quality	
  

merge	
  is	
  chosen.	
  
•  Quality	
  =	
  merges	
  two	
  words	
  that	
  have	
  similar	
  probabili>es	
  of	
  preceding	
  
and	
  following	
  words	
  

•  (More	
  technically	
  quality	
  =	
  smallest	
  decrease	
  in	
  the	
  likelihood	
  of	
  the	
  
corpus	
  according	
  to	
  a	
  class-­‐based	
  language	
  model)	
  	
  

•  Clustering	
  proceeds	
  un>l	
  all	
  words	
  are	
  in	
  one	
  big	
  cluster.	
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Brown	
  Clusters	
  as	
  vectors	
  

•  By	
  tracing	
  the	
  order	
  in	
  which	
  clusters	
  are	
  merged,	
  the	
  model	
  
builds	
  a	
  binary	
  tree	
  from	
  boLom	
  to	
  top.	
  

•  Each	
  word	
  represented	
  by	
  binary	
  string	
  =	
  path	
  from	
  root	
  to	
  leaf	
  
•  Each	
  intermediate	
  node	
  is	
  a	
  cluster	
  	
  
•  Chairman	
  is	
  0010,	
  “months”	
  =	
  01,	
  and	
  verbs	
  =	
  1	
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Brown Algorithm

• Words merged according to contextual 
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
the clustering

011
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run sprint
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0 1
00 01

00110010
001

10 11
000 100 101010



Brown	
  cluster	
  examples	
  

20 CHAPTER 19 • VECTOR SEMANTICSBrown Algorithm

• Words merged according to contextual 
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
the clustering

011

president

walk
run sprint

chairman
CEO November October

0 1
00 01

00110010
001

10 11
000 100 101010

Figure 19.16 Brown clustering as a binary tree. A full binary string represents a word; each
binary prefix represents a larger class to which the word belongs and can be used as an vector
representation for the word. After Koo et al. (2008).

After clustering, a word can be represented by the binary string that corresponds
to its path from the root node; 0 for left, 1 for right, at each choice point in the binary
tree. For example in Fig. 19.16, the word chairman is the vector 0010 and October
is 011. Since Brown clustering is a hard clustering algorithm (each word has onlyhard clustering

cluster), there is just one string per word.
Now we can extract useful features by taking the binary prefixes of this bit string;

each prefix represents a cluster to which the word belongs. For example the string 01
in the figure represents the cluster of month names {November, October}, the string
0001 the names of common nouns for corporate executives {chairman, president},
1 is verbs {run, sprint, walk}, and 0 is nouns. These prefixes can then be used
as a vector representation for the word; the shorter the prefix, the more abstract
the cluster. The length of the vector representation can thus be adjusted to fit the
needs of the particular task. Koo et al. (2008) improving parsing by using multiple
features: a 4-6 bit prefix to capture part of speech information and a full bit string to
represent words. Spitkovsky et al. (2011) shows that vectors made of the first 8 or
9-bits of a Brown clustering perform well at grammar induction. Because they are
based on immediately neighboring words, Brown clusters are most commonly used
for representing the syntactic properties of words, and hence are commonly used as
a feature in parsers. Nonetheless, the clusters do represent some semantic properties
as well. Fig. 19.17 shows some examples from a large clustering from Brown et al.
(1992).

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody
had hadn’t hath would’ve could’ve should’ve must’ve might’ve
asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle
great big vast sudden mere sheer gigantic lifelong scant colossal
down backwards ashore sideways southward northward overboard aloft downwards adrift
Figure 19.17 Some sample Brown clusters from a 260,741-word vocabulary trained on 366
million words of running text (Brown et al., 1992). Note the mixed syntactic-semantic nature
of the clusters.

Note that the naive version of the Brown clustering algorithm described above is
extremely inefficient — O(n5): at each of n iterations, the algorithm considers each
of n2 merges, and for each merge, compute the value of the clustering by summing
over n2 terms. because it has to consider every possible pair of merges. In practice
we use more efficient O(n3) algorithms that use tables to pre-compute the values for
each merge (Brown et al. 1992, Liang 2005).
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Vector Semantics 
Evalua>ng	
  similarity	
  



Evalua8ng	
  similarity	
  
•  Extrinsic	
  (task-­‐based,	
  end-­‐to-­‐end)	
  Evalua>on:	
  

•  Ques>on	
  Answering	
  
•  Spell	
  Checking	
  
•  Essay	
  grading	
  

•  Intrinsic	
  Evalua>on:	
  
•  Correla>on	
  between	
  algorithm	
  and	
  human	
  word	
  similarity	
  ra>ngs	
  
•  Wordsim353:	
  353	
  noun	
  pairs	
  rated	
  0-­‐10.	
  	
  	
  sim(plane,car)=5.77	
  

•  Taking	
  TOEFL	
  mul>ple-­‐choice	
  vocabulary	
  tests	
  
•  Levied is closest in meaning to:
 imposed, believed, requested, correlated	
  



Summary	
  

•  Distribu>onal	
  (vector)	
  models	
  of	
  meaning	
  
•  Sparse	
  (PPMI-­‐weighted	
  	
  word-­‐word	
  co-­‐occurrence	
  matrices)	
  
•  Dense:	
  
• Word-­‐word	
  	
  SVD	
  50-­‐2000	
  dimensions	
  
•  Skip-­‐grams	
  and	
  CBOW	
  	
  
•  Brown	
  clusters	
  5-­‐20	
  binary	
  dimensions.	
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