Language Modeling

Introduction to N-grams

Many Slides are adapted from slides by Dan Jurafsky

Probabilistic Language Models

- Today's goal: assign a probability to a sentence
- Machine Translation:
- $P($ high winds tonite $)>P($ large winds tonite $)$

Why?

- Spell Correction
- The office is about fifteen minuets from my house
- $P($ about fifteen minutes from $)>P($ about fifteen minuets from)
- Speech Recognition
- $P(I$ saw a van) >> P (eyes awe of an)
- + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:

$$
\mathrm{P}\left(\mathrm{w}_{5} \mid \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)
$$

- A model that computes either of these: $P(W)$ or $P\left(w_{n} \mid w_{1}, w_{2} \ldots w_{n-1}\right) \quad$ is called a language model.
- Better: the grammar

How to compute P(W)

- How to compute this joint probability:
- P (its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

Reminder: The Chain Rule

- With 4 variables:

$$
P(A, B, C, D)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid A, B, C)
$$

- The Chain Rule in General

$$
P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots P\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)
$$

The Chain Rule applied to compute joint probability of words in sentence

$$
P\left(w_{1} w_{2} \ldots w_{n}\right)=\prod_{i} P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right)
$$

P ("its water is so transparent") $=$
P (its) $\times \mathrm{P}$ (water \mid its $) \times \mathrm{P}$ (is \mid its water $)$
$\times \mathrm{P}$ (so|its water is) $\times \mathrm{P}$ (transparent|its water is
so)

How to estimate these probabilities

- Could we just count and divide?
$P($ the lits water is so transparent that $)=$
Count(its water is so transparent that the)
Count(its water is so transparent that)
- No! Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)
$$

- In other words, we approximate each component in the product
$P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-k} \ldots w_{i-1}\right)$

Markov Assumption

- Simplifying assumption:
$P($ the lits water is so transparent that $) \approx P($ the I that $)$
- Or maybe
$P($ the lits water is so transparent that $) \approx P($ the \mid transparent that $)$

Simplest case: Unigram model

$$
P\left(w_{1} w_{2} \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i}\right)
$$

Some automatically generated sentences from a unigram model
fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass
thrift, did, eighty, said, hard, 'm, july, bullish
that, or, limited, the

Bigram model

- Condition on the previous word:
$P\left(w_{i} \mid w_{1} w_{2} \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)$
texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen
outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
- because language has long-distance dependencies:
"The computer which I had just put into the machine room on the fifth floor crashed."
- But we can often get away with N -gram models

Still, Most words depend on their previous few words

Language Modeling

Introduction to N-grams

Language Modeling

Estimating N-gram Probabilities

Estimating bigram probabilities

- The Maximum Likelihood Estimate

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
\end{gathered}
$$

An example

$P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)} \quad \begin{aligned} & \text { <s> I am Sam </s> } \\ & \text { <s }>\text { Sam I am </s }> \\ & \text { <s I do not like green eggs and ham </s> }\end{aligned}$

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

More examples: Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

- Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

- Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

- Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities

$\mathrm{P}(\langle s\rangle$ I want english food $\langle/ s\rangle)=$ $\mathrm{P}(\mathrm{I} \mid<\mathrm{s}>)$
$\times \mathrm{P}$ (want|I)
$\times \mathrm{P}$ (english|want)
$\times P($ food \mid english $)$
$\times P(</ s>\mid$ food $)$
$=.000031$

What kinds of knowledge?

- $P($ english|want) $=.0011$
- $\mathrm{P}($ chinese \mid want $)=.0065$
- P (to|want) $=.66$
- $P($ eat \mid to $)=.28$
- $P($ food \mid to $)=0$
- $P($ want \mid spend $)=0$
- $P(i \mid<s>)=.25$

Practical Issues

- We do everything in log space
- Avoid underflow
- (also adding is faster than multiplying)

$$
\log \left(p_{1} \times p_{2} \times p_{3} \times p_{4}\right)=\log p_{1}+\log p_{2}+\log p_{3}+\log p_{4}
$$

Language Modeling Toolkits

- SRILM
- http://www.speech.sri.com/projects/srilm/

Google N-Gram Release, August 2006 http://ngrams.googlelabs.com/

All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team
Here at Google Research we have been using word n-gram models for a variety of R\&D projects,

That's why we decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Language Modeling

Estimating N-gram Probabilities

Language Modeling

Evaluation and Perplexity

Extrinsic evaluation of N -gram models

- Best evaluation for comparing models A and B
- Put each model in a task
- spelling corrector, speech recognizer, MT system
- Run the task, get an accuracy for A and for B
- How many misspelled words corrected properly
- How many words translated correctly
- Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of N -gram models

- Extrinsic evaluation
- Time-consuming; can take days or weeks
- So
- Sometimes use intrinsic evaluation: perplexity

Intuition of Perplexity

- The Shannon Game:
- How well can we predict the next word?

I always order pizza with cheese and \qquad
The $33^{\text {rd }}$ President of the US was \qquad
I saw a \qquad

- Unigrams are terrible at this game. (Why?)
mushrooms 0.1
pepperoni 0.1
anchovies 0.01
fried rice 0.0001
and 1e-100
- A better model of a text
- is one which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest P(sentence)

Perplexity is the inverse probability of

$$
P P(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}
$$ the test set, normalized by the number of words:

Chain rule:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}
$$

For bigrams:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

Minimizing perplexity is the same as maximizing probability

Lower perplexity = better model

- Training 38 million words, test 1.5 million words, WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Language Modeling

Evaluation and Perplexity

Language Modeling

Generalization and
 zeros

The Shannon Visualization Method

- Choose a random bigram (<s>, w) according to its probability

```
<s> I
    I want
    want to
    to eat
        eat Chinese
        Chinese food
                            food </s>
```

I want to eat Chinese food

Approximating Shakespeare

Unigram

To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Every enter now severally so, let
Hill he late speaks; or! a more to leg less first you enter
Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Bigram

What means, sir. I confess she? then all sorts, he is trim, captain.
Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?

Trigram

Sweet prince, Falstaff shall die. Harry of Monmouth's grave.
This shall forbid it should be branded, if renown made it empty.
Indeed the duke; and had a very good friend.
Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.

Quadrigram

King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; Will you not tell me who I am?
It cannot be but so.
Indeed the short and the long. Marry, 'tis a noble Lepidus.

Shakespeare as corpus

- $\mathrm{N}=884,647$ tokens, $\mathrm{V}=29,066$
- Shakespeare produced 300,000 bigram types out of $\mathrm{V}^{2}=844$ million possible bigrams.
- So 99.96% of the possible bigrams were never seen (have zero entries in the table)
- Quadrigrams worse: What's coming out looks like Shakespeare because it is Shakespeare

The wall street journal is not shakespeare (no offense)

Unigram

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Bigram

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keed her

Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

The perils of overfitting

- N -grams only work well for word prediction if the test corpus looks like the training corpus
- In real life, it often doesn't
- We need to train robust models that generalize!
- One kind of generalization: Zeros!
- Things that don't ever occur in the training set
- But occur in the test set

Zeros

- Training set:
... denied the allegations
... denied the reports
- Test set
... denied the offer ... denied the loan
... denied the claims
... denied the request
$P($ "offer" | denied the) $=0$

Zero probability bigrams

- Bigrams with zero probability
- mean that we will assign 0 probability to the test set!
- And hence we cannot compute perplexity (can’t divide by 0)!

Language Modeling

Generalization and
 zeros

Language Modeling

Smoothing: Add-one
 (Laplace) smoothing

Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!
- MLE estimate:

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

- Add-1 estimate:

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V+1}
$$

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$
P^{*}\left(w_{n} \mid w_{n-1}\right)=\frac{C\left(w_{n-1} w_{n}\right)+1}{C\left(w_{n-1}\right)+V+1}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted counts

$$
c^{*}\left(w_{n-1} w_{n}\right)=\frac{\left[C\left(w_{n-1} w_{n}\right)+1\right] \times C\left(w_{n-1}\right)}{C\left(w_{n-1}\right)+V+1}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Compare with raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-1 estimation is a blunt instrument

- So add-1 isn't used for N -grams:
- We'll see better methods
- But add-1 is used to smooth other NLP models
- For text classification
- In domains where the number of zeros isn't so huge.

Language Modeling

Smoothing: Add-one
 (Laplace) smoothing

Language Modeling

Interpolation, Backoff

Backoff and Interpolation

- Sometimes it helps to use less context
- Condition on less context for contexts you haven't learned much about
- Backoff:
- use trigram if you have good evidence,
- otherwise bigram, otherwise unigram
- Interpolation:
- mix unigram, bigram, trigram
- Interpolation works better

Linear Interpolation

- Simple interpolation

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-1} w_{n-2}\right)= & \lambda_{1} P\left(w_{n} \mid w_{n-1} w_{n-2}\right) \quad \quad \sum_{i} \lambda_{i}=1 \\
& +\lambda_{2} P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3} P\left(w_{n}\right)
\end{aligned}
$$

- Lambdas conditional on context:

$$
\begin{aligned}
\hat{P}\left(w_{n} \mid w_{n-2} w_{n-1}\right)= & \lambda_{1}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-2} w_{n-1}\right) \\
& +\lambda_{2}\left(w_{n-2}^{n-1}\right) P\left(w_{n} \mid w_{n-1}\right) \\
& +\lambda_{3}\left(w_{n-2}^{n-1}\right) P\left(w_{n}\right)
\end{aligned}
$$

N -gram Smoothing Summary

- Add-1 smoothing:
- OK for text categorization, not for language modeling
- Backoff and Interpolation work better
- The most commonly used method:
- Extended Interpolated Kneser-Ney

Language Modeling

Interpolation, Backoff

Language Modeling

Advanced:
Kneser-Ney Smoothing

Advanced smoothing algorithms

- Intuition used by many smoothing algorithms
- Good-Turing
- Kneser-Ney
- Use the count of things we've seen
- to help estimate the count of things we've never seen

Kneser-Ney Smoothing I (smart backoff)

- Better estimate for probabilities of lower-order unigrams!
- Shannon game: I can't see without my reading \qquad Fglumssieso ?
- "Francisco" is more common than "glasses"
- ... but "Francisco" always follows "San"
- Instead of $P(w)$: "How likely is w"
- $\mathrm{P}_{\text {continuation }}(\mathrm{w})$: "How likely is w to appear as a novel continuation?
- For each word, count the number of unique bigram types it completes
- Every bigram type was a novel continuation the first time it was seen

$$
P_{\text {CONtinuation }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

Kneser-Ney Smoothing II

- How many times does w appear as a novel continuation:

$$
P_{\text {CONTINUATION }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

- Normalized by the total number of word bigram types

$$
\begin{gathered}
\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right| \\
P_{\text {CONTINUATION }}(w)=\frac{\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|}{\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right|}
\end{gathered}
$$

Kneser-Ney Smoothing III

$$
P_{K N}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left(c\left(w_{i-1}, w_{i}\right)-d, 0\right)}{c\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) P_{\text {CONTINUATION }}\left(w_{i}\right)
$$

λ is a normalizing constant; the probability mass we've discounted

$$
\begin{aligned}
& \qquad \lambda\left(w_{i-1}\right)=\frac{d}{c\left(w_{i-1}\right)}\left|\left\{w^{\prime}: c\left(w_{i-1}, w\right)>0\right\}\right| \\
& \text { the normalized discount }
\end{aligned} \begin{aligned}
& \text { The number of word types that can follow } w_{i-1} \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Language Modeling

Advanced:
Kneser-Ney Smoothing

