Discriminative Estimation
(Maxent models and perceptron)

Generative vs. Discriminative
models

Many slides are adapted from slides by Christopher Manning



Introduction

So far we’ve looked at “generative models”
* Naive Bayes

But there is now much use of conditional or discriminative
probabilistic models in NLP, Speech, IR (and ML generally)
Because:

e They give high accuracy performance

e They make it easy to incorporate lots of linguistically important features



Joint Models

e We have some data {(d, c¢)} of paired observations
d and hidden classes c.

e Joint (generative) models place probabilities over P(c,d)
both observed data and the hidden stuff (gene-
rate the observed data from hidden stuff):
e All the classic StatNLP models:

e n-gram models, Naive Bayes classifiers, hidden
Markov models, probabilistic context-free grammars,
IBM machine translation alignment models



Conditional Models

e Discriminative (conditional) models take the data P(c|d)
as given, and put a probability over hidden

structure given the data:

e Logistic regression, conditional loglinear or maximum
entropy models, conditional random fields

e Also, SVMs, (averaged) perceptron, etc. are
discriminative classifiers (but not directly probabilistic)



Joint Likelihood vs. Conditional Likelihood

e A joint model gives probabilities P(d,c) and tries to maximize this
joint likelihood.

e |t turns out to be trivial to choose weights: just relative frequencies.
e A conditional model gives probabilities P(c|d). It takes the data
as given and only models the conditional probability of the class.
e Harder to do.

* More closely related to classification error.



Maxent Models and
Discriminative
Estimation

Generative vs. Discriminative
models



The Maxent Model



Example features

 fi(c, d)=[c=LOCATION A w_ = “in" A isCapitalized(w)] weight: 1.8
* fr(c d) = [¢c = LOCATION A hasAccentedLatinChar(w)] weight: -0.6
e fi(c, d)=[c =DRUG A ends(w, “c”)] weight: 0.3

QArcadm @ @ng Za@ saw Sue

 Models will assign to each feature a weight:
e A positive weight votes that this configuration is likely correct

* A negative weight votes that this configuration is likely incorrect



The Maxent Model

e Exponential (log-linear, maxent, logistic, Gibbs) models:

CXPE)%fi(Cad) <+<— Makes votes positive
P(c|d,A) = - :
2 cXp E A S (¢',d) <— Normalizes votes
« P( lin Québec) = e'-8e70-6/(e1-8e70-6 + €0-3 + 0) = 0.586
o P( lin Québec) = e0-3 /(e'-8e70-6 + €03 + ¢0) = 0.238

o P( lin Québec) = €0 /(e!-8e0-6 + 03 + 0) = 0.176



The Likelihood Value

e The (log) conditional likelihood of iid data (C,D)
according to maxent model is a function of the
data and the parameters A:

log P(C | D,A) =log P(c|d,)) = log P(c|d,A)
(c,d)=(C,D) (c,dYE(C,D)
e |If there aren’t many values of ¢, it’s easy to
calculate: expEAf(c d)

log P(C|D,A) = log
e HEIDA) (cdg(cm Eexpz;\f(c d)



A likelihood surface
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The Likelihood Value

e We can separate this into two components:

log P(C|D,A) = E logexpz)»ifi(c,d) — E logzexpz)»ifi(c',d)

(c,d¥XC.D) (c,d¥XC.D) c ;

log P(C| D, 1) =N(}) = M(L)

e The derivative is the difference between the
derivatives of each component



The Derivative I: Numerator

i, logexp Y A, f.(c,d) J A fi(c,d)
IN(A) _ _(cdiC.D) 2 _ (c,d;C,D) Z
A, A, A,
0y 4, fi(c.d)
B (c,d;C,D) a)\’l
= Ji(c,d)
(c,d5(C,D)

Derivative of the numerator is: the empirical count(f, c)



The Derivative II: Denominator

d log M exp » A f.(c',d)
m2)_uten) 2P
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. GEGXpE)\.ifi(c',d)
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The Derivative Il
dlog P(C|D,A)

vy = actual count( f,,C) —predicted count( f,,A)

l
e The optimum parameters are the ones for which each feature’s

predicted expectation equals its empirical expectation. The optimum
distribution is:

e Always unique (but parameters may not be unique)

e Always exists (if feature counts are from actual data).

e These models are also called maximum entropy models because we
find the model having maximum entropy and satisfying the

constraints: Ep (]F]) — Eﬁ (L),Vj



Feature Expectations

e We will crucially make use of two expectations
e actual or predicted counts of a feature firing:

e Empirical count (expectation) of a feature: Goal: well fit the data
cmp irical E(fl) - E(c,d)Eobserved(C,D)fi (C’ d)

e Model expectation of a feature:

E(fz) = E(c,d)E(C,D)P(C’d)fi (Cad)



The Maxent Model



NB vs. Maxent



Naive Bayes vs. Maxent Models

* Naive Bayes models multi-count correlated evidence

e Each feature is multiplied in, even when you have multiple features telling
you the same thing

e Maximum Entropy models (pretty much) solve this problem

e this is done by weighting features, avoid to assign equally high weights to
correlated features.



Text classification: Asia or Europe

Training Data

Monaco Monaco Monaco Monaco Hon ClETTEn Hon 2
Monaco Monaco Hong J g g
Kong Kong Kong Kong

Monaco




The Maxent Model



Perceptron

Another Discriminative
Learning algorithm
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Perceptron Algorithm

e Algorithm is Very similar to logistic regression
* Not exactly computing gradients

Initalize weight vector w =0
Loop for K iterations
Loop For all training examples x_i
if sign(w * x_i) =y i
w +=(y_i - sign(w * x_i)) * x_i




Regularization in the Perceptron Algorithm

* run different numbers of iterations

e Use parameter averaging, for instance, average of all
parameters after seeing each data point
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