
Discriminative	Estimation
(Maxent models and perceptron)

Generative	vs.	Discriminative	
models

Many slides  are adapted from slides by Christopher Manning



Introduction

• So	far	we’ve	looked	at	“generative	models”
• Naive	Bayes

• But	there	is	now	much	use	of	conditional	or	discriminative	
probabilistic	models	in	NLP,	Speech,	IR	(and	ML	generally)

• Because:
• They	give	high	accuracy	performance
• They	make	it	easy	to	incorporate	lots	of	linguistically	important	features



Joint	Models

• We	have	some	data	{(d,	c)}	of	paired	observations	
d and	hidden	classes	c.

• Joint	(generative)	models	place	probabilities	over	
both	observed	data	and	the	hidden	stuff	(gene-
rate	the	observed	data	from	hidden	stuff):	
• All	the	classic	StatNLP models:
• n-gram	models,	Naive	Bayes	classifiers,	hidden	
Markov	models,	probabilistic	context-free	grammars,	
IBM	machine	translation	alignment	models

P(c,d)



Conditional	Models

• Discriminative	(conditional)	models	take	the	data	
as	given,	and	put	a	probability	over	hidden	
structure	given	the	data:

• Logistic	regression,	conditional	loglinear or	maximum	
entropy	models,	conditional	random	fields

• Also,	SVMs,	(averaged)	perceptron,	etc.	are	
discriminative	classifiers	(but	not	directly	probabilistic)

P(c|d)



Joint	Likelihood	vs.	Conditional	Likelihood

• A	jointmodel	gives	probabilities	P(d,c)	and	tries	to	maximize	this	
joint	likelihood.
• It	turns	out	to	be	trivial	to	choose	weights:	just	relative	frequencies.

• A	conditionalmodel	gives	probabilities	P(c|d).	It	takes	the	data	
as	given	and	only	models	the	conditional	probability	of	the	class.
• Harder	to	do.
• More	closely	related	to	classification	error.



Maxent Models	and	
Discriminative	
Estimation

Generative	vs.	Discriminative	
models



The	Maxent Model



Example	features

• f1(c, d) º [c = LOCATION Ù w-1 = “in” Ù isCapitalized(w)]     weight: 1.8
• f2(c, d) º [c = LOCATION Ù hasAccentedLatinChar(w)]          weight: -0.6
• f3(c, d) º [c = DRUG Ù ends(w, “c”)]                                         weight: 0.3

• Models	will	assign	to	each	feature	a	weight:
• A	positive	weight	votes	that	this	configuration	is	likely	correct
• A	negative	weight	votes	that	this	configuration	is	likely	incorrect

LOCATION
in Québec

PERSON
saw Sue

DRUG
taking Zantac

LOCATION
in Arcadia



The	Maxent Model
• Exponential	(log-linear,	maxent,	logistic,	Gibbs)	models:

• P(LOCATION|in Québec) = e1.8e–0.6/(e1.8e–0.6 + e0.3 + e0) = 0.586

• P(DRUG|in Québec) = e0.3 /(e1.8e–0.6 + e0.3 + e0) = 0.238

• P(PERSON|in Québec) = e0 /(e1.8e–0.6 + e0.3 + e0) = 0.176
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The	Likelihood	Value

• The	(log)	conditional	likelihood	of	iid data	(C,D)	
according	to	maxent model	is	a	function	of	the	
data	and	the	parameters	l:

• If	there	aren’t	many	values	of	c,	it’s	easy	to	
calculate:
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A	likelihood	surface



The	Likelihood	Value

• We	can	separate	this	into	two	components:

• The	derivative	is	the	difference	between	the	
derivatives	of	each	component
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The	Derivative	I:	Numerator

Derivative	of	the	numerator	is:	the	empirical	count(fi,	c)
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The	Derivative	II:	Denominator
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The	Derivative	III

• The	optimum	parameters	are	the	ones	for	which	each	feature’s	
predicted	expectation	equals	its	empirical	expectation.		The	optimum	
distribution	is:
• Always	unique	(but	parameters	may	not	be	unique)
• Always	exists	(if	feature	counts	are	from	actual	data).

• These	models	are	also	called	maximum	entropy	models	because	we	
find	the	model	having	maximum	entropy	and	satisfying	the	
constraints:
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Feature	Expectations

• We	will	crucially	make	use	of	two	expectations
• actual	or	predicted	counts	of	a	feature	firing:

• Empirical	count	(expectation)	of	a	feature:

• Model	expectation	of	a	feature:
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The	Maxent Model



NB	vs.	Maxent



Naive	Bayes	vs.	Maxent Models

• Naive	Bayes	models	multi-count	correlated	evidence
• Each	feature	is	multiplied	in,	even	when	you	have	multiple	features	telling	
you	the	same	thing

• Maximum	Entropy	models	(pretty	much)	solve	this	problem
• this	is	done	by	weighting	features,	avoid	to	assign	equally	high	weights	to	
correlated	features.	



Text	classification:	Asia	or	Europe
Europe AsiaTraining	Data
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The	Maxent Model



Perceptron

Another	Discriminative	
Learning	algorithm



Perceptron Algorithm

23



Regularization	in	the	Perceptron	Algorithm

• run different numbers of iterations
• Use parameter averaging, for instance, average of all

parameters after seeing each data point
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