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Can	we	figure	out	that	these	have	the	
same	meaning?

XYZ	corporation	bought the	stock.
They	sold the	stock	to	XYZ	corporation.
The	stock	was	bought by	XYZ	corporation.
The	purchase of	the	stock	by	XYZ	corporation...	
The	stock	purchase by	XYZ	corporation...	
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Semantic	Role	Labeling
Applications 

` Question & answer systems 

   Who      did what to whom      at where? 
 

30 

The police officer detained the suspect at the scene of the crime 

ARG0 ARG2 AM-loc V 
Agent ThemePredicate Location



A	Shallow	Semantic	Representation:	
Semantic	Roles

Predicates	(bought,	sold,	purchase)	represent	an	event
semantic	roles	express	the	abstract	role	that	arguments	of	a	
predicate	can	take	in	the	event
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Getting	to	semantic	roles

Neo-Davidsonian event	representation:

Sasha	broke	the	window
Pat	opened	the	door

Subjects	of	break	and	open:	Breaker and	Opener
Deep	roles	specific	to	each	event	(breaking,	opening)
Hard	to	reason	about	them	for	NLU	applications	like	QA
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Thematic Role Definition
AGENT The volitional causer of an event
EXPERIENCER The experiencer of an event
FORCE The non-volitional causer of the event
THEME The participant most directly affected by an event
RESULT The end product of an event
CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event
BENEFICIARY The beneficiary of an event
SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event
Figure 22.1 Some commonly used thematic roles with their definitions.

(22.1) Sasha broke the window.

(22.2) Pat opened the door.

A neo-Davidsonian event representation of these two sentences would be

9e,x,y Breaking(e)^Breaker(e,Sasha)
^BrokenT hing(e,y)^Window(y)

9e,x,y Opening(e)^Opener(e,Pat)
^OpenedT hing(e,y)^Door(y)

In this representation, the roles of the subjects of the verbs break and open are
Breaker and Opener respectively. These deep roles are specific to each event; Break-deep roles

ing events have Breakers, Opening events have Openers, and so on.
If we are going to be able to answer questions, perform inferences, or do any

further kinds of natural language understanding of these events, we’ll need to know
a little more about the semantics of these arguments. Breakers and Openers have
something in common. They are both volitional actors, often animate, and they have
direct causal responsibility for their events.

Thematic roles are a way to capture this semantic commonality between Break-Thematic roles

ers and Eaters.
We say that the subjects of both these verbs are agents. Thus, AGENT is theagents

thematic role that represents an abstract idea such as volitional causation. Similarly,
the direct objects of both these verbs, the BrokenThing and OpenedThing, are both
prototypically inanimate objects that are affected in some way by the action. The
semantic role for these participants is theme.theme

Thematic roles are one of the oldest linguistic models, proposed first by the
Indian grammarian Panini sometime between the 7th and 4th centuries BCE. Their
modern formulation is due to Fillmore (1968) and Gruber (1965). Although there is
no universally agreed-upon set of roles, Figs. 22.1 and 22.2 list some thematic roles
that have been used in various computational papers, together with rough definitions
and examples. Most thematic role sets have about a dozen roles, but we’ll see sets
with smaller numbers of roles with even more abstract meanings, and sets with very
large numbers of roles that are specific to situations. We’ll use the general term
semantic roles for all sets of roles, whether small or large.semantic roles



Thematic	roles

• Breaker and	Opener have	something	in	common!
• Volitional	actors
• Often	animate
• Direct	causal	responsibility	for	their	events

• Thematic	roles	are	a	way	to	capture	this	semantic	commonality	
between	Breakers	and	Eaters.	

• They	are	both	AGENTS.	
• The	BrokenThing and	OpenedThing,	are	THEMES.

• prototypically	inanimate	objects	affected	in	some	way	by	the	action7



Thematic	roles

• One	of	the	oldest	linguistic	models
• Indian	grammarian	Panini	between	the	7th	and	4th	centuries	BCE	

• Modern	formulation	from	Fillmore	(1966,1968),	Gruber	(1965)
• Fillmore	influenced	by	Lucien	Tesnière’s	(1959)	Éléments	de	Syntaxe	
Structurale,	the	book	that	introduced	dependency	grammar

• Fillmore	first	referred	to	roles	as	actants	(Fillmore,	1966)	but	switched	to	
the	term	case
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Thematic	roles

• A	typical	set:
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semantic roles for all sets of roles, whether small or large.semantic roles

22.2 • DIATHESIS ALTERNATIONS 3

Thematic Role Example
AGENT The waiter spilled the soup.
EXPERIENCER John has a headache.
FORCE The wind blows debris from the mall into our yards.
THEME Only after Benjamin Franklin broke the ice...
RESULT The city built a regulation-size baseball diamond...
CONTENT Mona asked “You met Mary Ann at a supermarket?”
INSTRUMENT He poached catfish, stunning them with a shocking device...
BENEFICIARY Whenever Ann Callahan makes hotel reservations for her boss...
SOURCE I flew in from Boston.
GOAL I drove to Portland.
Figure 22.2 Some prototypical examples of various thematic roles.

22.2 Diathesis Alternations

The main reason computational systems use semantic roles is to act as a shallow
meaning representation that can let us make simple inferences that aren’t possible
from the pure surface string of words, or even from the parse tree. To extend the
earlier examples, if a document says that Company A acquired Company B, we’d
like to know that this answers the query Was Company B acquired? despite the fact
that the two sentences have very different surface syntax. Similarly, this shallow
semantics might act as a useful intermediate language in machine translation.

Semantic roles thus help generalize over different surface realizations of pred-
icate arguments. For example, while the AGENT is often realized as the subject of
the sentence, in other cases the THEME can be the subject. Consider these possible
realizations of the thematic arguments of the verb break:

(22.3) John
AGENT

broke the window.
THEME

(22.4) John
AGENT

broke the window
THEME

with a rock.
INSTRUMENT

(22.5) The rock
INSTRUMENT

broke the window.
THEME

(22.6) The window
THEME

broke.

(22.7) The window
THEME

was broken by John.
AGENT

These examples suggest that break has (at least) the possible arguments AGENT,
THEME, and INSTRUMENT. The set of thematic role arguments taken by a verb is
often called the thematic grid, q -grid, or case frame. We can see that there arethematic grid

case frame (among others) the following possibilities for the realization of these arguments of
break:

AGENT/Subject, THEME/Object
AGENT/Subject, THEME/Object, INSTRUMENT/PPwith
INSTRUMENT/Subject, THEME/Object
THEME/Subject

It turns out that many verbs allow their thematic roles to be realized in various
syntactic positions. For example, verbs like give can realize the THEME and GOAL
arguments in two different ways:



Thematic	grid,	case	frame,	θ-grid
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thematic grid, case frame, θ-grid
Break:

AGENT, THEME, INSTRUMENT. 
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case frame (among others) the following possibilities for the realization of these arguments of
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Example	usages	of	“break”

Some	realizations:



Diathesis	alternations	(or	verb	alternation)

Dative	alternation:	particular	semantic	classes	of	verbs,	“verbs	of	future	having”	
(advance,	allocate,	offer,	owe),	“send	verbs”	(forward,	hand,	mail),	“verbs	of	
throwing”	(kick,	pass,	throw),	etc.
Levin	(1993):	47	semantic	classes	(“Levin	classes”)	for	3100	English	verbs	and	
alternations.	In	online	resource	VerbNet.
11
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(22.8) a. Doris
AGENT

gave the book
THEME

to Cary.
GOAL

b. Doris
AGENT

gave Cary
GOAL

the book.
THEME

These multiple argument structure realizations (the fact that break can take AGENT,
INSTRUMENT, or THEME as subject, and give can realize its THEME and GOAL in
either order) are called verb alternations or diathesis alternations. The alternationverb

alternation
we showed above for give, the dative alternation, seems to occur with particular se-dative

alternation
mantic classes of verbs, including “verbs of future having” (advance, allocate, offer,
owe), “send verbs” (forward, hand, mail), “verbs of throwing” (kick, pass, throw),
and so on. Levin (1993) lists for 3100 English verbs the semantic classes to which
they belong (47 high-level classes, divided into 193 more specific classes) and the
various alternations in which they participate. These lists of verb classes have been
incorporated into the online resource VerbNet (Kipper et al., 2000), which links each
verb to both WordNet and FrameNet entries.

22.3 Semantic Roles: Problems with Thematic Roles

Representing meaning at the thematic role level seems like it should be useful in
dealing with complications like diathesis alternations. Yet it has proved quite diffi-
cult to come up with a standard set of roles, and equally difficult to produce a formal
definition of roles like AGENT, THEME, or INSTRUMENT.

For example, researchers attempting to define role sets often find they need to
fragment a role like AGENT or THEME into many specific roles. Levin and Rappa-
port Hovav (2005) summarize a number of such cases, such as the fact there seem
to be at least two kinds of INSTRUMENTS, intermediary instruments that can appear
as subjects and enabling instruments that cannot:

(22.9) a. The cook opened the jar with the new gadget.
b. The new gadget opened the jar.

(22.10) a. Shelly ate the sliced banana with a fork.
b. *The fork ate the sliced banana.

In addition to the fragmentation problem, there are cases in which we’d like to
reason about and generalize across semantic roles, but the finite discrete lists of roles
don’t let us do this.

Finally, it has proved difficult to formally define the thematic roles. Consider the
AGENT role; most cases of AGENTS are animate, volitional, sentient, causal, but any
individual noun phrase might not exhibit all of these properties.

These problems have led to alternative semantic role models that use eithersemantic role

many fewer or many more roles.
The first of these options is to define generalized semantic roles that abstract

over the specific thematic roles. For example, PROTO-AGENT and PROTO-PATIENTproto-agent

proto-patient are generalized roles that express roughly agent-like and roughly patient-like mean-
ings. These roles are defined, not by necessary and sufficient conditions, but rather
by a set of heuristic features that accompany more agent-like or more patient-like
meanings. Thus, the more an argument displays agent-like properties (being voli-
tionally involved in the event, causing an event or a change of state in another par-
ticipant, being sentient or intentionally involved, moving) the greater the likelihood

Break: AGENT, INSTRUMENT, or THEME as 
subject

Give:  THEME and BENEFICIARY in either 
order

BENEFICIARY

BENEFICIARY



Problems	with	Thematic	Roles
Hard	to	create	standard	set	of	roles	or	formally	define	them
Often	roles	need	to	be	fragmented	to	be	defined.

Levin	and	Rappaport	Hovav (2015):	two	kinds	of	INSTRUMENTS

intermediary instruments	that	can	appear	as	subjects	
The	cook	opened	the	jar	with	the	new	gadget.	
The	new	gadget	opened	the	jar.	

enabling	instruments	that	cannot
Shelly	ate	the	sliced	banana	with	a	fork.	
*The	fork	ate	the	sliced	banana.	12



Semantic	Role	
Labeling

The	Proposition	Bank	
(PropBank)



Alternatives	to	thematic	roles

1. Fewer	roles:	generalized	semantic	roles,	defined	as	
prototypes	(Dowty 1991)
PROTO-AGENT	
PROTO-PATIENT	

2. More	roles:	Define	roles	specific	to	a	group	of	predicates

14

FrameNet

PropBank



PropBank

• Palmer,	Martha,	Daniel	Gildea,	and	Paul	Kingsbury.	2005.	The	
Proposition	Bank:	An	Annotated	Corpus	of	Semantic	Roles.	
Computational	Linguistics,	31(1):71–106	
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PropBank Roles

Proto-Agent
• Volitional	involvement	in	event	or	state
• Sentience	(and/or	perception)
• Causes	an	event	or	change	of	state	in	another	participant	
• Movement	(relative	to	position	of	another	participant)

Proto-Patient
• Undergoes	change	of	state
• Causally	affected	by	another	participant
• Stationary	relative	to	movement	of	another	participant

16

Following Dowty 1991



PropBank Roles

• Following	Dowty 1991
• Role	definitions	determined	verb	by	verb,	with	respect	to	the	other	roles	
• Semantic	roles	in	PropBank are	thus	verb-sense	specific.

• Each	verb	sense	has	numbered	argument:	Arg0,	Arg1,	Arg2,…
Arg0:	PROTO-AGENT
Arg1: PROTO-PATIENT
Arg2:	usually:	benefactive,	instrument,	attribute,	or	end	state
Arg3:	usually:	start	point,	benefactive,	instrument,	or	attribute
Arg4	the	end	point
(Arg2-Arg5	are	not	really	that	consistent,	causes	a	problem	for	labeling)17



PropBank Frame	Files
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22.4 • THE PROPOSITION BANK 5

that the argument can be labeled a PROTO-AGENT. The more patient-like the proper-
ties (undergoing change of state, causally affected by another participant, stationary
relative to other participants, etc.), the greater the likelihood that the argument can
be labeled a PROTO-PATIENT.

The second direction is instead to define semantic roles that are specific to a
particular verb or a particular group of semantically related verbs or nouns.

In the next two sections we describe two commonly used lexical resources that
make use of these alternative versions of semantic roles. PropBank uses both proto-
roles and verb-specific semantic roles. FrameNet uses semantic roles that are spe-
cific to a general semantic idea called a frame.

22.4 The Proposition Bank

The Proposition Bank, generally referred to as PropBank, is a resource of sen-PropBank

tences annotated with semantic roles. The English PropBank labels all the sentences
in the Penn TreeBank; the Chinese PropBank labels sentences in the Penn Chinese
TreeBank. Because of the difficulty of defining a universal set of thematic roles,
the semantic roles in PropBank are defined with respect to an individual verb sense.
Each sense of each verb thus has a specific set of roles, which are given only numbers
rather than names: Arg0, Arg1, Arg2, and so on. In general, Arg0 represents the
PROTO-AGENT, and Arg1, the PROTO-PATIENT. The semantics of the other roles
are less consistent, often being defined specifically for each verb. Nonetheless there
are some generalization; the Arg2 is often the benefactive, instrument, attribute, or
end state, the Arg3 the start point, benefactive, instrument, or attribute, and the Arg4
the end point.

Here are some slightly simplified PropBank entries for one sense each of the
verbs agree and fall. Such PropBank entries are called frame files; note that the
definitions in the frame file for each role (“Other entity agreeing”, “Extent, amount
fallen”) are informal glosses intended to be read by humans, rather than being formal
definitions.

(22.11) agree.01
Arg0: Agreer
Arg1: Proposition
Arg2: Other entity agreeing

Ex1: [Arg0 The group] agreed [Arg1 it wouldn’t make an offer].
Ex2: [ArgM-TMP Usually] [Arg0 John] agrees [Arg2 with Mary]

[Arg1 on everything].

(22.12) fall.01
Arg1: Logical subject, patient, thing falling
Arg2: Extent, amount fallen
Arg3: start point
Arg4: end point, end state of arg1
Ex1: [Arg1 Sales] fell [Arg4 to $25 million] [Arg3 from $27 million].
Ex2: [Arg1 The average junk bond] fell [Arg2 by 4.2%].

Note that there is no Arg0 role for fall, because the normal subject of fall is a
PROTO-PATIENT.
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Modifiers	or	adjuncts	of	the	predicate:	
Arg-M
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The PropBank semantic roles can be useful in recovering shallow semantic in-
formation about verbal arguments. Consider the verb increase:
(22.13) increase.01 “go up incrementally”

Arg0: causer of increase
Arg1: thing increasing
Arg2: amount increased by, EXT, or MNR
Arg3: start point
Arg4: end point

A PropBank semantic role labeling would allow us to infer the commonality in
the event structures of the following three examples, that is, that in each case Big
Fruit Co. is the AGENT and the price of bananas is the THEME, despite the differing
surface forms.
(22.14) [Arg0 Big Fruit Co. ] increased [Arg1 the price of bananas].
(22.15) [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co. ]
(22.16) [Arg1 The price of bananas] increased [Arg2 5%].

PropBank also has a number of non-numbered arguments called ArgMs, (ArgM-
TMP, ArgM-LOC, etc) which represent modification or adjunct meanings. These are
relatively stable across predicates, so aren’t listed with each frame file. Data labeled
with these modifiers can be helpful in training systems to detect temporal, location,
or directional modification across predicates. Some of the ArgM’s include:

TMP when? yesterday evening, now
LOC where? at the museum, in San Francisco
DIR where to/from? down, to Bangkok
MNR how? clearly, with much enthusiasm
PRP/CAU why? because ... , in response to the ruling
REC themselves, each other
ADV miscellaneous
PRD secondary predication ...ate the meat raw

While PropBank focuses on verbs, a related project, NomBank (Meyers et al.,
2004) adds annotations to noun predicates. For example the noun agreement in
Apple’s agreement with IBM would be labeled with Apple as the Arg0 and IBM as
the Arg2. This allows semantic role labelers to assign labels to arguments of both
verbal and nominal predicates.

22.5 FrameNet

While making inferences about the semantic commonalities across different sen-
tences with increase is useful, it would be even more useful if we could make such
inferences in many more situations, across different verbs, and also between verbs
and nouns. For example, we’d like to extract the similarity among these three sen-
tences:
(22.17) [Arg1 The price of bananas] increased [Arg2 5%].
(22.18) [Arg1 The price of bananas] rose [Arg2 5%].
(22.19) There has been a [Arg2 5%] rise [Arg1 in the price of bananas].

Note that the second example uses the different verb rise, and the third example
uses the noun rather than the verb rise. We’d like a system to recognize that the

19
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PropBanking a	Sentence
PropBank - A TreeBanked Sentence 
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in 

(S (NP-SBJ Analysts) 
     (VP have 
         (VP been 
             (VP expecting 

           (NP (NP a GM-Jaguar pact) 
                   (SBAR (WHNP-1 that) 
                 (S (NP-SBJ *T*-1) 
                            (VP would 
              (VP give 
                                   (NP the U.S. car maker) 
                 (NP (NP an eventual (ADJP 30 %) stake) 
             (PP-LOC in (NP the British company)))))))))))) 

Analysts have been expecting a GM-Jaguar  
pact that  would give the U.S. car maker an  
eventual 30% stake in the British company. 
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The	same	parse	tree	PropBankedThe same sentence, PropBanked 

Analysts 

have been expecting 

a GM-Jaguar 
pact 

Arg0 Arg1 

(S Arg0 (NP-SBJ Analysts) 
     (VP have 
         (VP been 
             (VP expecting 

           Arg1 (NP (NP a GM-Jaguar pact) 
                   (SBAR (WHNP-1 that) 
                       (S Arg0 (NP-SBJ *T*-1) 
                            (VP would 
                    (VP give  

                                        Arg2 (NP the U.S. car maker) 
                    Arg1 (NP (NP an eventual (ADJP 30 %) stake) 
              (PP-LOC in (NP the British 
company)))))))))))) that would give 

*T*-1 

the US car 
maker 

an eventual 30% stake in the 
British company 

 

Arg0 

Arg2 

Arg1 

expect(Analysts, GM-J pact) 
give(GM-J pact, US car maker, 30% stake) 21
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Annotated	PropBank Data

• Penn	English	TreeBank,	
OntoNotes 5.0.	

• Total	~2	million	words

• Penn	Chinese	TreeBank
• Hindi/Urdu	PropBank
• Arabic	PropBank
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Verb Frames Coverage By Language –  
Current Count of Senses (lexical units) 

Language Final Count Estimated Coverage 
in Running Text 

English   10,615* 99% 
Chinese 24, 642 98% 
Arabic     7,015 99%  

•  Only 111 English adjectives 

54 

2013	Verb	Frames	Coverage	
Count	of	word	sense	(lexical	units)

From	Martha	Palmer	2013	Tutorial



Plus	nouns	and	light	verbsEnglish Noun and LVC annotation 

!  Example Noun: Decision 
!  Roleset: Arg0: decider, Arg1: decision… 

!  “…[yourARG0] [decisionREL]  
    [to say look I don't want to go through this anymoreARG1]” 

!  Example within an LVC: Make a decision 
!  “…[the PresidentARG0] [madeREL-LVB]  

     the [fundamentally correctARGM-ADJ]  
    [decisionREL]  [to get on offenseARG1]” 

57 
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Labeling

Semantic	Role	Labeling	
Algorithm



Semantic	Role	Labeling
Applications 

` Question & answer systems 

   Who      did what to whom      at where? 
 

30 

The police officer detained the suspect at the scene of the crime 

ARG0 ARG2 AM-loc V 
Agent ThemePredicate Location



Why	Semantic	Role	Labeling

• A	useful	shallow	semantic	representation
• Improves	NLP	tasks	like:
• question	answering	
Shen	and	Lapata 2007,	Surdeanu et	al.	2011

• machine	translation	
Liu	and	Gildea 2010,	Lo	et	al.	2013
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History

• Semantic	roles	as	a	intermediate	semantics,	used	early	in
• machine	translation	(Wilks,	1973)
• question-answering	(Hendrix	et	al.,	1973)
• spoken-language	understanding	(Nash-Webber,	1975)
• dialogue	systems	(Bobrow et	al.,	1977)

• Early	SRL	systems
Simmons	1973,	Marcus	1980:	
• parser	followed	by	hand-written	rules	for	each	verb
• dictionaries	with	verb-specific	case	frames	(Levin	1977)	
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Semantic	role	labeling	(SRL)	

• The	task	of	finding	the	semantic	roles	of	each	argument	of	each	
predicate	in	a	sentence.

• FrameNet versus	PropBank:
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Recall that the difference between these two models of semantic roles is that
FrameNet (22.27) employs many frame-specific frame elements as roles, while Prop-
Bank (22.28) uses a smaller number of numbered argument labels that can be inter-
preted as verb-specific labels, along with the more general ARGM labels. Some
examples:

(22.27) [You] can’t [blame] [the program] [for being unable to identify it]
COGNIZER TARGET EVALUEE REASON

(22.28) [The San Francisco Examiner] issued [a special edition] [yesterday]
ARG0 TARGET ARG1 ARGM-TMP

A simplified semantic role labeling algorithm is sketched in Fig. 22.4. While
there are a large number of algorithms, many of them use some version of the steps
in this algorithm.

Most algorithms, beginning with the very earliest semantic role analyzers (Sim-
mons, 1973), begin by parsing, using broad-coverage parsers to assign a parse to the
input string. Figure 22.5 shows a parse of (22.28) above. The parse is then traversed
to find all words that are predicates.

For each of these predicates, the algorithm examines each node in the parse tree
and decides the semantic role (if any) it plays for this predicate.

This is generally done by supervised classification. Given a labeled training set
such as PropBank or FrameNet, a feature vector is extracted for each node, using
feature templates described in the next subsection.

A 1-of-N classifier is then trained to predict a semantic role for each constituent
given these features, where N is the number of potential semantic roles plus an
extra NONE role for non-role constituents. Most standard classification algorithms
have been used (logistic regression, SVM, etc). Finally, for each test sentence to be
labeled, the classifier is run on each relevant constituent. We give more details of
the algorithm after we discuss features.

function SEMANTICROLELABEL(words) returns labeled tree

parse PARSE(words)
for each predicate in parse do

for each node in parse do
featurevector EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 22.4 A generic semantic-role-labeling algorithm. CLASSIFYNODE is a 1-of-N clas-
sifier that assigns a semantic role (or NONE for non-role constituents), trained on labeled data
such as FrameNet or PropBank.

Features for Semantic Role Labeling

A wide variety of features can be used for semantic role labeling. Most systems use
some generalization of the core set of features introduced by Gildea and Jurafsky
(2000). A typical set of basic features are based on the following feature templates
(demonstrated on the NP-SBJ constituent The San Francisco Examiner in Fig. 22.5):

• The governing predicate, in this case the verb issued. The predicate is a cru-
cial feature since labels are defined only with respect to a particular predicate.

• The phrase type of the constituent, in this case, NP (or NP-SBJ). Some se-
mantic roles tend to appear as NPs, others as S or PP, and so on.



A	simple	modern	algorithm

22.6 • SEMANTIC ROLE LABELING 9

Recall that the difference between these two models of semantic roles is that
FrameNet (22.27) employs many frame-specific frame elements as roles, while Prop-
Bank (22.28) uses a smaller number of numbered argument labels that can be inter-
preted as verb-specific labels, along with the more general ARGM labels. Some
examples:

(22.27) [You] can’t [blame] [the program] [for being unable to identify it]
COGNIZER TARGET EVALUEE REASON

(22.28) [The San Francisco Examiner] issued [a special edition] [yesterday]
ARG0 TARGET ARG1 ARGM-TMP

A simplified semantic role labeling algorithm is sketched in Fig. 22.4. While
there are a large number of algorithms, many of them use some version of the steps
in this algorithm.

Most algorithms, beginning with the very earliest semantic role analyzers (Sim-
mons, 1973), begin by parsing, using broad-coverage parsers to assign a parse to the
input string. Figure 22.5 shows a parse of (22.28) above. The parse is then traversed
to find all words that are predicates.

For each of these predicates, the algorithm examines each node in the parse tree
and decides the semantic role (if any) it plays for this predicate.

This is generally done by supervised classification. Given a labeled training set
such as PropBank or FrameNet, a feature vector is extracted for each node, using
feature templates described in the next subsection.

A 1-of-N classifier is then trained to predict a semantic role for each constituent
given these features, where N is the number of potential semantic roles plus an
extra NONE role for non-role constituents. Most standard classification algorithms
have been used (logistic regression, SVM, etc). Finally, for each test sentence to be
labeled, the classifier is run on each relevant constituent. We give more details of
the algorithm after we discuss features.

function SEMANTICROLELABEL(words) returns labeled tree

parse PARSE(words)
for each predicate in parse do

for each node in parse do
featurevector EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 22.4 A generic semantic-role-labeling algorithm. CLASSIFYNODE is a 1-of-N clas-
sifier that assigns a semantic role (or NONE for non-role constituents), trained on labeled data
such as FrameNet or PropBank.

Features for Semantic Role Labeling

A wide variety of features can be used for semantic role labeling. Most systems use
some generalization of the core set of features introduced by Gildea and Jurafsky
(2000). A typical set of basic features are based on the following feature templates
(demonstrated on the NP-SBJ constituent The San Francisco Examiner in Fig. 22.5):

• The governing predicate, in this case the verb issued. The predicate is a cru-
cial feature since labels are defined only with respect to a particular predicate.

• The phrase type of the constituent, in this case, NP (or NP-SBJ). Some se-
mantic roles tend to appear as NPs, others as S or PP, and so on.
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How	do	we	decide	what	is	a	predicate

• If	we’re	just	doing	PropBank verbs
• Choose	all	verbs
• Possibly	removing	light	verbs	(from	a	list)

• If	we’re	doing	FrameNet (verbs,	nouns,	adjectives)
• Choose	every	word	that	was	labeled	as	a	target	in	training	data
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S

NP-SBJ = ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP = ARG1 PP-TMP = ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 22.5 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows the path feature NP"S#VP#VBD for ARG0, the NP-SBJ constituent The San Francisco Examiner.

• The headword of the constituent, Examiner. The headword of a constituent
can be computed with standard head rules, such as those given in Chapter 11
in Fig. ??. Certain headwords (e.g., pronouns) place strong constraints on the
possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 22.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP"S#VP#VBD. " and
# represent upward and downward movement in the tree, respectively. The
path is very useful as a compact representation of many kinds of grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP ! VBD
NP PP for the predicate in Fig. 22.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.
The following feature vector thus represents the first NP in our example (recall

that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP"S#VP#VBD, active, before, VP ! NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
constituent, or more complex versions of the path features (the upward or downward
halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the
basis of features, for example using dependency parse paths instead of constituency
paths.
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Features

Headword	of	constituent
Examiner

Headword	POS
NNP

Voice	of	the	clause
Active

Subcategorization of	pred
VP	->	VBD	NP	PP
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Figure 22.5 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows the path feature NP"S#VP#VBD for ARG0, the NP-SBJ constituent The San Francisco Examiner.

• The headword of the constituent, Examiner. The headword of a constituent
can be computed with standard head rules, such as those given in Chapter 11
in Fig. ??. Certain headwords (e.g., pronouns) place strong constraints on the
possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 22.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP"S#VP#VBD. " and
# represent upward and downward movement in the tree, respectively. The
path is very useful as a compact representation of many kinds of grammatical
function relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP ! VBD
NP PP for the predicate in Fig. 22.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.
The following feature vector thus represents the first NP in our example (recall

that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP"S#VP#VBD, active, before, VP ! NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
constituent, or more complex versions of the path features (the upward or downward
halves, or whether particular nodes occur in the path).

It’s also possible to use dependency parses instead of constituency parses as the
basis of features, for example using dependency parse paths instead of constituency
paths.

Named	Entity	type	of	constit
ORGANIZATION

First	and	last	words	of	constit
The,	Examiner

Linear	position,clause re:	predicate
before



Path	Features

Path in	the	parse	tree	from	the	constituent	to	the	predicate	
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path is very useful as a compact representation of many kinds of grammatical
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• The voice of the clause in which the constituent appears, in this case, active
(as contrasted with passive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than do active ones.

• The binary linear position of the constituent with respect to the predicate,
either before or after.

• The subcategorization of the predicate, the set of expected arguments that
appear in the verb phrase. We can extract this information by using the phrase-
structure rule that expands the immediate parent of the predicate; VP ! VBD
NP PP for the predicate in Fig. 22.5.

• The named entity type of the constituent.
• The first words and the last word of the constituent.
The following feature vector thus represents the first NP in our example (recall

that most observations will have the value NONE rather than, for example, ARG0,
since most constituents in the parse tree will not bear a semantic role):
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in Fig. ??. Certain headwords (e.g., pronouns) place strong constraints on the
possible semantic roles they are likely to fill.

• The headword part of speech of the constituent, NNP.
• The path in the parse tree from the constituent to the predicate. This path is

marked by the dotted line in Fig. 22.5. Following Gildea and Jurafsky (2000),
we can use a simple linear representation of the path, NP"S#VP#VBD. " and
# represent upward and downward movement in the tree, respectively. The
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• The subcategorization of the predicate, the set of expected arguments that
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ARG0: [issued, NP, Examiner, NNP, NP"S#VP#VBD, active, before, VP ! NP PP,
ORG, The, Examiner]

Other features are often used in addition, such as sets of n-grams inside the
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A	common	final	stage:	joint	inference

• The	algorithm	so	far	classifies	everything	locally	– each	decision	
about	a	constituent	is	made	independently	of	all	others

• But	this	can’t	be	right:	Lots	of	global	or joint interactions	
between	arguments
• Constituents	in	FrameNet and	PropBank must	be	non-overlapping.	
• A	local	system	may	incorrectly	label	two	overlapping	constituents	as	
arguments	

• PropBank does	not	allow	multiple	identical	arguments
• labeling	one	constituent	ARG0	
• Thus	should	increase	the	probability	of	another	being	ARG1	34



How	to	do	joint	inference

• Reranking
• The	first	stage	SRL	system	produces	multiple	
possible	labels	for	each	constituent
• The	second	stage	classifier	the	best	global label	for	
all	constituents
• Often	a	classifier	that	takes	all	the	inputs	along	with	
other	features	(sequences	of	labels)

35



Semantic	Role	
Labeling

Conclusion



Semantic	Role	Labeling
• A	level	of	shallow	semantics	for	representing	events	and	their	

participants
• Intermediate	between	parses	and	full	semantics

• Two	common	architectures,	for	various	languages
• FrameNet:	frame-specific	roles
• PropBank:	Proto-roles

• Current	systems	extract	by	
• parsing	sentence
• Finding	predicates	in	the	sentence
• For	each	one,	classify	each	parse	tree	constituent37


