#### Part-of-speech tagging

A simple but useful form of linguistic analysis

Many slides adapted from slides by Chris Manning

#### Parts of Speech

- Perhaps starting with Aristotle in the West (384–322 BCE), there was the idea of having parts of speech
  - a.k.a lexical categories, word classes, "tags", POS
- It comes from Dionysius Thrax of Alexandria (c. 100 BCE) the idea that is still with us that there are 8 parts of speech
  - But actually his 8 aren't exactly the ones we are taught today
    - Thrax: noun, verb, article, adverb, preposition, conjunction, participle, pronoun
    - School grammar: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection

| Open class (lexical) words |            |            |                      |                  |             |  |  |
|----------------------------|------------|------------|----------------------|------------------|-------------|--|--|
| Nouns                      |            | Verbs      | Adjectives           | old older oldest |             |  |  |
| Proper                     | Common     | Main       | Adverbs              | slowly           |             |  |  |
| IBM                        | cat / cats | see        |                      |                  |             |  |  |
| Italy                      | snow       | registered | Numbers              | more             |             |  |  |
|                            |            |            | 122,312              |                  |             |  |  |
| Closed class (functional)  |            |            | one                  |                  |             |  |  |
|                            | ,          | Modals     |                      |                  |             |  |  |
| Determiners the some       |            | can        | Prepositions to with |                  |             |  |  |
| Conjunctions and or        |            | nad        | Particles            | off up           | <i>more</i> |  |  |
| Pronouns                   | he its     |            | Interjections        | 6 Ow Eh          |             |  |  |

#### **POS Tagging**

- Words often have more than one POS: *back* 
  - The <u>back</u> door = JJ
  - On my <u>*back*</u> = NN
  - Win the voters <u>back</u> = RB
  - Promised to <u>back</u> the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

# **POS Tagging**

https://www.ling.upenn.edu/courses/Fall\_2003/ling001/penn\_treebank\_pos.html

- Input: Plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS

- Penn Treebank POS tags
- Output: Plays/VBZ well/RB with/IN others/NNS
- Uses:
  - Text-to-speech (how do we pronounce "lead"?)
  - Can write regexps like (Det) Adj\* N+ over the output for phrases, etc.
  - As input to or to speed up a full parser
  - If you know the tag, you can back off to it in other tasks

#### **POS tagging performance**

- How many tags are correct? (Tag accuracy)
  - About 97% currently
  - But baseline is already 90%
    - Baseline is performance of stupidest possible method
      - Tag every word with its most frequent tag
      - Tag unknown words as nouns
  - Partly easy because
    - Many words are unambiguous
    - You get points for them (*the, a,* etc.) and for punctuation marks!

#### How difficult is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., *that* 
  - I know *that* he is honest = IN Prepsition or Subordinating conjunction
  - Yes, *that* play was nice = DT
  - You can't go *that* far = RB
- 40% of the word tokens are ambiguous

# Deciding on the correct part of speech can be difficult even for people

- Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG
  particle
- All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN

• Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

# Part-of-speech tagging

A simple but useful form of linguistic analysis

# Part-of-speech tagging revisited

A simple but useful form of linguistic analysis

#### **Sources of information**

- What are the main sources of information for POS tagging?
  - Knowledge of neighboring words
    - Bill saw that man yesterday
    - NNP NN DT NN NN
    - VB VB(D) IN VB NN
  - Knowledge of word probabilities
    - *man* is rarely used as a verb....
- The latter proves the most useful, but the former also helps

# More and Better Features → Featurebased tagger

- Can do surprisingly well just looking at a word by itself:
  - Word the: the  $\rightarrow$  DT
  - Lowercased word Importantly: importantly  $\rightarrow$  RB
  - Prefixes unfathomable:  $un \rightarrow JJ$
  - Suffixes Importantly:  $-ly \rightarrow RB$
  - Capitalization Meridian:  $CAP \rightarrow NNP$
  - Word shapes 35-year:  $d-x \rightarrow JJ$
- Then build a maxent (or whatever) model to predict tag
  - Maxent P(t|w): 93.7% overall / 82.6% unknown

#### How to improve supervised results?

• Build better features!

RB PRP VBD IN RB IN PRP VBD . They left as soon as he arrived .

• We could fix this with a feature that looked at the next word

JJ NNP NNS VBD VBN . Intrinsic flaws remained undetected .

• We could fix this by linking capitalized words to their lowercase versions

#### **Tagging Without Sequence Information**

**Baseline** 

#### Three Words





| Model    | Features | Token  | Unknown |
|----------|----------|--------|---------|
| Baseline | 56,805   | 93.69% | 82.61%  |
| 3Words   | 239,767  | 96.57% | 86.78%  |

Using words only in a straight classifier works as well as a basic (HMM or discriminative) sequence model!!

# **Overview: POS Tagging Accuracies**

- Rough accuracies:
  - Most freq tag:
  - Maxent P(t|w):
  - Trigram HMM:
  - MEMM tagger:
  - Upper bound:



~98% (human agreement)

### Summary of POS Tagging

One profits from models for specifying dependence on **overlapping features of the observation** such as spelling, suffix analysis, etc.

- An MEMM allows integration of rich features of the observations and considers dependence with the previous word's tag, but can suffer strongly from assuming independence from following observations; this effect can be relieved by adding dependence on following words.
- This additional power (of the CRF, Structured Perceptron models) has been shown to result in improvements in accuracy
- The **higher accuracy** of discriminative models comes at the price of **much** slower training

# Part-of-speech tagging revisited

A simple but useful form of linguistic analysis