
Vector	Semantics

Dense	Vectors	



Sparse	versus	dense	vectors

• PPMI	vectors	are
• long (length	|V|=	20,000	to	50,000)
• sparse	(most	elements	are	zero)

• Alternative:	learn	vectors	which	are
• short (length	200-1000)
• dense (most	elements	are	non-zero)
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Sparse	versus	dense	vectors

• Why	dense	vectors?
• Short	vectors	may	be	easier	to	use	as	features	in	machine	
learning	(less	weights	to	tune)

• Dense	vectors	may	generalize	better	than	storing	explicit	counts
• They	may	do	better	at	capturing	synonymy:
• car and	automobile are	synonyms;	but	are	represented	as	
distinct	dimensions;	this	fails	to	capture	similarity	between	a	
word	with	car as	a	neighbor	and	a	word	with	automobile as	a	
neighbor
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Three	methods	for	getting	short	dense	
vectors

• Singular	Value	Decomposition	(SVD)
• A	special	case	of	this	is	called	LSA	– Latent	Semantic	Analysis

• “Neural	Language	Model”-inspired	predictive	models
• skip-grams	and	CBOW

• Brown	clustering
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Vector	Semantics

Dense	Vectors	via	SVD



Intuition
• Approximate	an	N-dimensional	dataset	using	fewer	dimensions
• By	first	rotating	the	axes	into	a	new	space
• In	which	the	highest	order	dimension	captures	the	most	

variance	in	the	original	dataset
• And	the	next	dimension	captures	the	next	most	variance,	etc.
• Many	such	(related)	methods:

• PCA	– principle	components	analysis
• Factor	Analysis
• SVD
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Singular	Value	Decomposition

8

Any	rectangular	matrix	X	equals	the	product	of	3	matrices:
W:	rows	corresponding	to	original	but	m	columns	represents	a	
dimension	in	a	new	latent	space,	such	that	

• M	column	vectors	are	orthogonal	to	each	other
• Columns	are	ordered	by	the	amount	of	variance	in	the	dataset	each	new	
dimension	accounts	for

S:		diagonal	m x	mmatrix	of	singular	values	expressing	the	
importance	of	each	dimension.
C:	columns	corresponding	to	original	but	m	rows	corresponding	to	
singular	values



Singular	Value	Decomposition
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 
matrix (X) is equal to the product of  three other matrices (W, S, and 
C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 
the basic math and computer algorithms of SVD).  The first of  these 
(W)  has rows corresponding to the rows of the original, but has m 
columns corresponding to new, specially derived variables such that 
there is no correlation between any two columns; that is, each is linearly 
independent of  the others, which means that no one can be constructed 
as a linear combination of others. Such derived variables are often called 
principal components, basis vectors, factors, or dimensions. The third 
matrix (C)  has columns corresponding to the original columns, but m 
rows composed of derived singular vectors. The second matrix (S)  is a 
diagonal matrix; that is, it is a square m × m matrix with nonzero entries 
only along one central diagonal. These are derived constants called 
singular values. Their role is to relate the scale of  the factors in the first 
two matrices to each other. This relation is shown schematically in Figure 
A1. To keep the connection to the concrete applications of SVD in the 
main text clear, we have labeled the rows and columns words (w)  and 
contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 
decomposition of this form such that matrix mu!tiplication of the three 
derived matrices reproduces the original matrix exactly so long as there 
are enough factors, where enough is always less than or equal to the 
smaller of  the number of  rows or columns of the original matrix. The 
number actually needed, referred to as the rank of the matrix, depends 
on (or expresses) the intrinsic dimensionality of  the data contained in 
the cells of the original matrix. Of critical importance for latent semantic 
analysis (LSA),  if one or more factor is omitted (that is, if one or more 
singular values in the diagonal matrix along with the corresponding 
singular vectors of  the other two matrices are deleted), the reconstruction 
is a least-squares best approximation to the original given the remaining 
dimensions. Thus, for example, after constructing an SVD, one can 
reduce the number of dimensions systematically by, for example, remov- 
ing those with the smallest effect on the sum-squared error of the approx- 
imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 
of  the sort involved in LSA are rather sophisticated and are not described 
here. Suffice it to say that cookbook versions of SVD adequate for 
small (e.g., 100 × 100) matrices are available in several places (e.g., 
Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 

Contexts 

3= 
m x m  m x c  

w x c  w x m  

Figure A1. Schematic diagram of the singular value decomposition 
(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 
original matrix is decomposed into three matrices: W and C, which are 
orthonormal, and S, a diagonal matrix. The m columns of W and the m 
rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 
dia can currently be obtained from the WorldWideWeb (http://www.net- 
l ib.org/svdpack/index.html).  University-affiliated researchers may be 
able to obtain a research-only license and complete software package 
for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 
and a high-end Unix work-station with approximately 100 megabytes 
of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 
and 50,000 contexts) can currently be decomposed into representations 
in 300 dimensions with about 2 - 4  hr of  computation. The computational 
complexity is O(3Dz) ,  where z is the number of  nonzero elements in 
the Word (w) × Context (c) matrix and D is the number of  dimensions 
returned. The maximum matrix size one can compute is usually limited 
by the memory (RAM) requirement, which for the fastest of  the methods 
in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 
c and q = min (N, 600),  plus space for the W × C matrix. Thus, 
whereas the computational difficulty of methods such as this once made 
modeling and simulation of data equivalent in quantity to human experi- 
ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 
reported here were still limited to corpora much smaller than the total 
text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 
demonstrates what the technique can accomplish. A2 This example uses 
as text passages the titles of  nine technical memoranda, five about human 
computer interaction (HCI) ,  and four about mathematical graph theory, 
topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 
c2: A survey of user opinion of computer system response time 
c3: The EPS user interface management system 
c4: System and human system engineering testing of EPS 
c5: Relation of user perceived response time to error measurement 
ml :  The generation of random, binary, ordered trees 
m2: The intersection graph of paths in trees 
m3: Graph minors IV: Widths of trees and well-quasi-ordering 
m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 
discuss the highlighted parts of  the tables in due course.) The initial 
matrix has nine columns, one for each title, and we have given it 12 
rows, each corresponding to a content word that occurs in at least two 
contexts. These are the words in italics. In LSA analyses of  text, includ- 
ing some of those reported above, words that appear in only one context 
are often omitted in doing the SVD. These contribute little to derivation 
of the space, their vectors can be constructed after the SVD with little 
loss as a weighted average of words in the sample in which they oc- 
curred, and their omission sometimes greatly reduces the computation. 
See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 
Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 
Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 
07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 
Deerwester et al., 1990; Landauer & Dumais, 1996). 

9 Landuaer and	Dumais 1997



Truncated	SVD

• If	instead	of	keeping	all	m	dimensions,	we	just	keep	the	top	k	
singular	values.	Let’s	say	300.

• The	result	is	a	least-squares	approximation	to	the	original	X
• But	instead	of	multiplying,																																																																				

we’ll	just	make	use	of	W.
• Each	row	of	W:

• A	k-dimensional	vector
• Representing	word	W

10
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Dumais (1994) for more on such details. For simplicity of  presentation, 
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SVD	applied	to	term-term	matrix

19.3 • DENSE VECTORS AND SVD 13

Singular Value Decomposition (SVD) is a method for finding the most impor-
tant dimensions of a data set, those dimensions along which the data varies the most.
It can be applied to any rectangular matrix and in language processing it was first
applied to the task of generating embeddings from term-document matrices by Deer-
wester et al. (1988) in a model called Latent Semantic Indexing. In this section
let’s look just at its application to a square term-context matrix M with |V | rows (one
for each word) and columns (one for each context word)

SVD factorizes M into the product of three square |V |⇥ |V | matrices W , S, and
CT . In W each row still represents a word, but the columns do not; each column
now represents a dimension in a latent space, such that the |V | column vectors are
orthogonal to each other and the columns are ordered by the amount of variance
in the original dataset each accounts for. S is a diagonal |V |⇥ |V | matrix, with
singular values along the diagonal, expressing the importance of each dimension.
The |V |⇥ |V | matrix CT still represents contexts, but the rows now represent the new
latent dimensions and the |V | row vectors are orthogonal to each other.

By using only the first k dimensions, of W, S, and C instead of all |V | dimen-
sions, the product of these 3 matrices becomes a least-squares approximation to the
original M. Since the first dimensions encode the most variance, one way to view
the reconstruction is thus as modeling the most important information in the original
dataset.

SVD applied to co-occurrence matrix X:
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Taking only the top k dimensions after SVD applied to co-occurrence matrix X:
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).

11 (I’m	simplifying	here	by	assuming	the	matrix	has	rank	|V|)



Truncated	SVD	on	term-term	matrix
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
can be used as an embedding.

Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
(Levy et al., 2015).
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Truncated	SVD	produces	embeddings

13

• Each	row	of	W	matrix	is	a	k-dimensional	
representation	of	each	word	w

• K	might	range	from	50	to	1000
• Generally	we	keep	the	top	k	dimensions,	

but	some	experiments	suggest	that	
getting	rid	of	the	top	1	dimension	or		even	
the	top	50	dimensions	is	helpful	(Lapesa
and	Evert	2014).
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Figure 19.11 SVD factors a matrix X into a product of three matrices, W, S, and C. Taking
the first k dimensions gives a |V |⇥k matrix Wk that has one k-dimensioned row per word that
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Using only the top k dimensions (corresponding to the k most important singular
values), leads to a reduced |V |⇥k matrix Wk, with one k-dimensioned row per word.
This row now acts as a dense k-dimensional vector (embedding) representing that
word, substituting for the very high-dimensional rows of the original M.3

3 Note that early systems often instead weighted Wk by the singular values, using the product Wk ·Sk as
an embedding instead of just the matrix Wk , but this weighting leads to significantly worse embeddings
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Embeddings versus	sparse	vectors

• Dense	SVD	embeddings sometimes	work	better	than	
sparse	PPMI	matrices	at	tasks	like	word	similarity
• Denoising:	low-order	dimensions	may	represent	unimportant	
information

• Truncation	may	help	the	models	generalize	better	to	unseen	data.
• Having	a	smaller	number	of	dimensions	may	make	it	easier	for	
classifiers	to	properly	weigh	the	dimensions	for	the	task.

• Dense	models	may	do	better	at	capturing	higher	order	co-
occurrence.	
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Vector	Semantics

Embeddings inspired	by	
neural	language	models:	
skip-grams	and	CBOW



Prediction-based	models:
An	alternative	way	to	get	dense	vectors

• Skip-gram (Mikolov et	al.	2013a)		CBOW (Mikolov et	al.	2013b)
• Learn	embeddings as	part	of	the	process	of	word	prediction.
• Train	a	neural	network	to	predict	neighboring	words
• Inspired	by	neural	net	language	models.
• In	so	doing,	learn	dense	embeddings for	the	words	in	the	training	corpus.

• Advantages:
• Fast,	easy	to	train	(much	faster	than	SVD)
• Available	online	in	the	word2vec package
• Including	sets	of	pretrained embeddings!16



Embeddings capture	relational	meaning!

vector(‘king’)	- vector(‘man’)	+	vector(‘woman’)	 ≈	vector(‘queen’)
vector(‘Paris’)	- vector(‘France’)	+	vector(‘Italy’)	≈ vector(‘Rome’)

17



Vector	Semantics

Brown	clustering



Brown	clustering

• An	agglomerative	clustering	algorithm	that	clusters	words	based	
on	which	words	precede	or	follow	them

• These	word	clusters	can	be	turned	into	a	kind	of	vector
• We’ll	give	a	very	brief	sketch	here.

19



Brown	clustering	algorithm

• Each	word	is	initially	assigned	to	its	own	cluster.	
• We	now	consider	merging	each	pair	of	clusters.	Highest	quality	

merge	is	chosen.
• Quality	=	merges	two	words	that	have	similar	probabilities	of	preceding	
and	following	words

• Clustering	proceeds	until	all	words	are	in	one	big	cluster.	

20



Brown	Clusters	as	vectors

• By	tracing	the	order	in	which	clusters	are	merged,	the	model	
builds	a	binary	tree	from	bottom	to	top.

• Each	word	represented	by	binary	string	=	path	from	root	to	leaf
• Each	intermediate	node	is	a	cluster	
• Chairman	is	0010,	“months”	=	01,	and	verbs	=	1
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Brown Algorithm

• Words merged according to contextual 
similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
the clustering
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Brown	cluster	examples
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similarity

• Clusters are equivalent to bit-string prefixes

• Prefix length determines the granularity of 
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Figure 19.16 Brown clustering as a binary tree. A full binary string represents a word; each
binary prefix represents a larger class to which the word belongs and can be used as an vector
representation for the word. After Koo et al. (2008).

After clustering, a word can be represented by the binary string that corresponds
to its path from the root node; 0 for left, 1 for right, at each choice point in the binary
tree. For example in Fig. 19.16, the word chairman is the vector 0010 and October
is 011. Since Brown clustering is a hard clustering algorithm (each word has onlyhard clustering

cluster), there is just one string per word.
Now we can extract useful features by taking the binary prefixes of this bit string;

each prefix represents a cluster to which the word belongs. For example the string 01
in the figure represents the cluster of month names {November, October}, the string
0001 the names of common nouns for corporate executives {chairman, president},
1 is verbs {run, sprint, walk}, and 0 is nouns. These prefixes can then be used
as a vector representation for the word; the shorter the prefix, the more abstract
the cluster. The length of the vector representation can thus be adjusted to fit the
needs of the particular task. Koo et al. (2008) improving parsing by using multiple
features: a 4-6 bit prefix to capture part of speech information and a full bit string to
represent words. Spitkovsky et al. (2011) shows that vectors made of the first 8 or
9-bits of a Brown clustering perform well at grammar induction. Because they are
based on immediately neighboring words, Brown clusters are most commonly used
for representing the syntactic properties of words, and hence are commonly used as
a feature in parsers. Nonetheless, the clusters do represent some semantic properties
as well. Fig. 19.17 shows some examples from a large clustering from Brown et al.
(1992).

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
June March July April January December October November September August
pressure temperature permeability density porosity stress velocity viscosity gravity tension
anyone someone anybody somebody
had hadn’t hath would’ve could’ve should’ve must’ve might’ve
asking telling wondering instructing informing kidding reminding bothering thanking deposing
mother wife father son husband brother daughter sister boss uncle
great big vast sudden mere sheer gigantic lifelong scant colossal
down backwards ashore sideways southward northward overboard aloft downwards adrift
Figure 19.17 Some sample Brown clusters from a 260,741-word vocabulary trained on 366
million words of running text (Brown et al., 1992). Note the mixed syntactic-semantic nature
of the clusters.

Note that the naive version of the Brown clustering algorithm described above is
extremely inefficient — O(n5): at each of n iterations, the algorithm considers each
of n2 merges, and for each merge, compute the value of the clustering by summing
over n2 terms. because it has to consider every possible pair of merges. In practice
we use more efficient O(n3) algorithms that use tables to pre-compute the values for
each merge (Brown et al. 1992, Liang 2005).
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