Probabilistic Context Free Grammars

Overview

- Probabilistic Context-Free Grammars (PCFGs)
- ► The CKY Algorithm for parsing with PCFGs

A Probabilistic Context-Free Grammar (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is $p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$ where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

DERIVATION

S

NP VP

DT NN VP

the NN VP

the dog VP

the dog Vi

the dog laughs

RULES USED

 $S \rightarrow NP VP$

 $\mathsf{NP} \to \mathsf{DT} \; \mathsf{NN}$

 $\mathsf{DT} \to \mathsf{the}$

 $\mathsf{NN} \to \mathsf{dog}$

 $\mathsf{VP} \to \mathsf{Vi}$

 $\mathsf{Vi} \to \mathsf{laughs}$

PROBABILITY

1.0

0.3

1.0

0.1

0.4

0.5

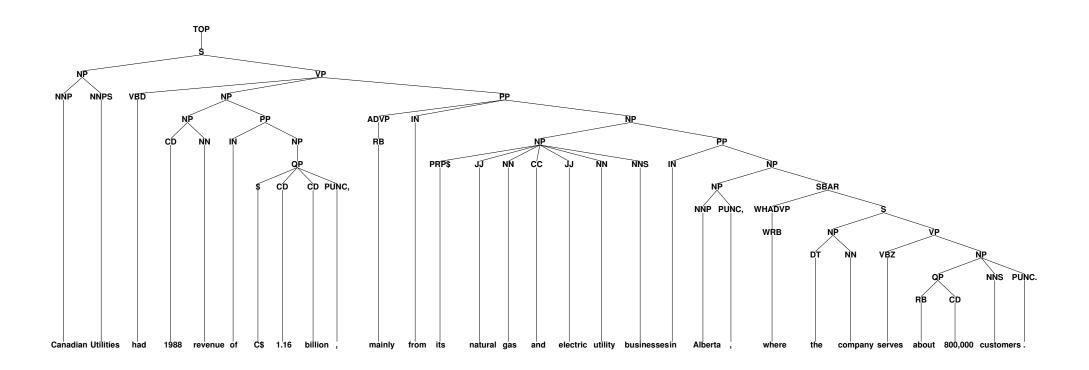
Properties of PCFGs

 Assigns a probability to each *left-most derivation*, or parse-tree, allowed by the underlying CFG

Properties of PCFGs

- Assigns a probability to each left-most derivation, or parse-tree, allowed by the underlying CFG
- Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$. i.e., we now have a ranking in order of probability.

Properties of PCFGs


- Assigns a probability to each left-most derivation, or parse-tree, allowed by the underlying CFG
- Say we have a sentence s, set of derivations for that sentence is $\mathcal{T}(s)$. Then a PCFG assigns a probability p(t) to each member of $\mathcal{T}(s)$. i.e., we now have a ranking in order of probability.
- ightharpoonup The most likely parse tree for a sentence s is

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Data for Parsing Experiments: Treebanks

- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Deriving a PCFG from a Treebank

- ► Given a set of example trees (a treebank), the underlying CFG can simply be **all rules seen in the corpus**
- Maximum Likelihood estimates:

$$q_{ML}(\alpha \to \beta) = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

where the counts are taken from a training set of example trees.

▶ If the training data is generated by a PCFG, then as the training data size goes to infinity, the maximum-likelihood PCFG will converge to the same distribution as the "true" PCFG.

Parsing with a PCFG

- ▶ Given a PCFG and a sentence s, define $\mathcal{T}(s)$ to be the set of trees with s as the yield.
- ightharpoonup Given a PCFG and a sentence s, how do we find

$$\arg\max_{t\in\mathcal{T}(s)}p(t)$$

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- ightharpoonup R is a set of rules which take one of two forms:
 - $lacksquare X o Y_1Y_2 \text{ for } X \in N$, and $Y_1,Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $ightharpoonup S \in N$ is a distinguished start symbol

A Dynamic Programming Algorithm

ightharpoonup Given a PCFG and a sentence s, how do we find

$$\max_{t \in \mathcal{T}(s)} p(t)$$

Notation:

n= number of words in the sentence $w_i=i$ 'th word in the sentence N= the set of non-terminals in the grammar S= the start symbol in the grammar

Define a dynamic programming table

 $\pi[i,j,X]=\max \max \text{ maximum probability of a constituent with non-terminal }X$ spanning words $i\ldots j$ inclusive

▶ Our goal is to calculate $\max_{t \in \mathcal{T}(s)} p(t) = \pi[1, n, S]$

A Dynamic Programming Algorithm

▶ Base case definition: for all $i = 1 \dots n$, for $X \in N$

$$\pi[i, i, X] = q(X \to w_i)$$

(note: define $q(X \to w_i) = 0$ if $X \to w_i$ is not in the grammar)

▶ Recursive definition: for all $i=1\dots n$, $j=(i+1)\dots n$, $X\in N$,

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

The Full Dynamic Programming Algorithm

Input: a sentence $s = x_1 \dots x_n$, a PCFG $G = (N, \Sigma, S, R, q)$. **Initialization:**

For all $i \in \{1 \dots n\}$, for all $X \in N$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Algorithm:

- ▶ For $l = 1 \dots (n-1)$
 - ▶ For i = 1 ... (n l)
 - Set j = i + l
 - ightharpoonup For all $X \in N$, calculate

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

and

$$bp(i,j,X) = \arg\max_{\substack{X \to YZ \in R, \\ s \in \{i,\dots(i-1)\}}} (q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

What's the run time Complexity?

CKY Parsing

A worked example

Sample Grammar

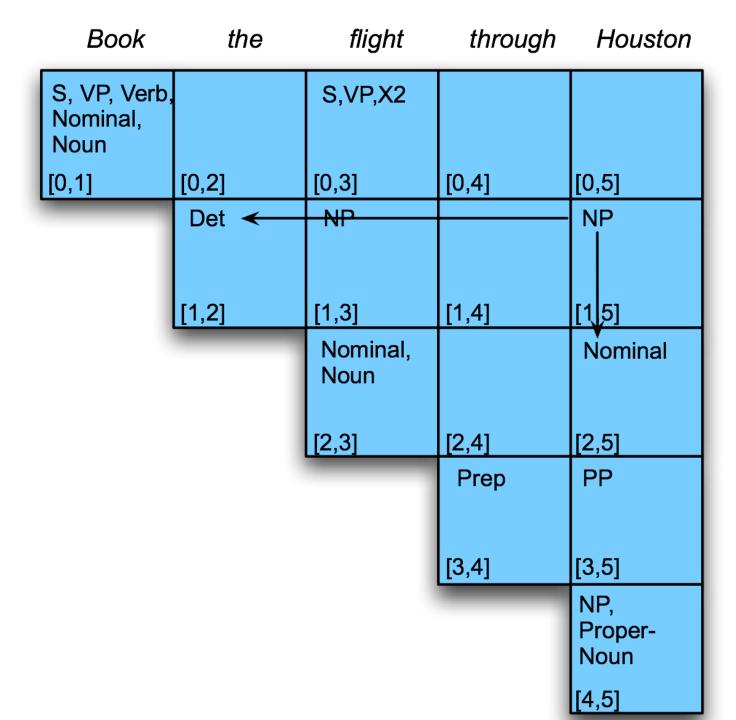
Grammar	Lexicon
$S \rightarrow NP VP$	$Det \rightarrow that \mid this \mid a$
$S \rightarrow Aux NP VP$	$Noun \rightarrow book \mid flight \mid meal \mid money$
$S \rightarrow VP$	$Verb \rightarrow book \mid include \mid prefer$
$NP \rightarrow Pronoun$	$Pronoun \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	<i>Proper-Noun</i> → <i>Houston</i> <i>NWA</i>
$NP \rightarrow Det Nominal$	$Aux \rightarrow does$
$Nominal \rightarrow Noun$	$Preposition \rightarrow from \mid to \mid on \mid near \mid through$
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
$PP \rightarrow Preposition NP$	

CNF Conversion

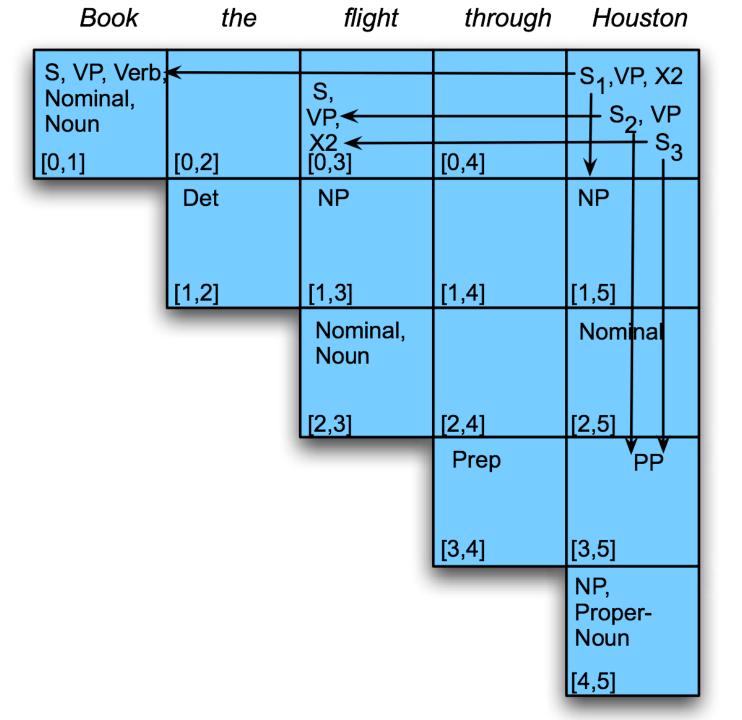
\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$XI \rightarrow Aux NP$
$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	$S \rightarrow X2 PP$
	$S \rightarrow Verb PP$
	$S \rightarrow VPPP$
$NP \rightarrow Pronoun$	$NP \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$NP \rightarrow TWA \mid Houston$
$NP \rightarrow Det\ Nominal$	$NP \rightarrow Det Nominal$
$Nominal \rightarrow Noun$	$Nominal \rightarrow book \mid flight \mid meal \mid money$
Nominal → Nominal Noun	Nominal → Nominal Noun
$Nominal \rightarrow Nominal PP$	$Nominal \rightarrow Nominal PP$
$VP \rightarrow Verb$	$VP \rightarrow book \mid include \mid prefer$
$VP \rightarrow Verb NP$	$VP \rightarrow Verb NP$
$VP \rightarrow Verb NP PP$	$VP \rightarrow X2 PP$
	$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$	$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$	$VP \rightarrow VP PP$
$PP \rightarrow Preposition NP$	$PP \rightarrow Preposition NP$

CKY Parsing: table filling illustrated

Boo	ok the	flight	through	Houston						
S, VP, V Nomina Noun	Verb al,	S,VP,X2		S,VP,X2						
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]	_	_				
_	Det	NP		NP						
	[1,2]	[1,3]	[1,4]	[1,5]						
		Nominal, Noun		Nominal		l	Щ			
		[2,3]	[2,4]	[2,5]				1		
			Prep	PP						
			[3,4]	[3,5]					П	
				NP, Proper- Noun					ı	
				[4,5]						

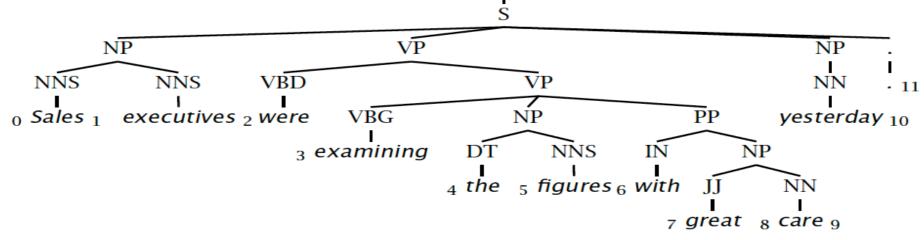

\mathscr{L}_1 in CNF	
$S \rightarrow NP VP$	
$S \rightarrow X1 VP$	
$X1 \rightarrow Aux NP$	
$S \rightarrow book \mid include \mid prefer$	
$S \rightarrow Verb NP$	
$S \rightarrow X2 PP$	
$S \rightarrow Verb PP$	
$S \rightarrow VP PP$	
$NP \rightarrow I \mid she \mid me$	
NP → TWA Houston	
NP → Det Nominal	
$Nominal \rightarrow book \mid flight \mid meal \mid model$	ney
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow book \mid include \mid prefer$	
$VP \rightarrow Verb NP$	
$VP \rightarrow X2 PP$	
$X2 \rightarrow Verb NP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
$PP \rightarrow Preposition NP$	

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		NP
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, Noun		
		[2,3]	[2,4]	[2,5]
			Prep ←	— PP
			[3,4]	[3,5] 🗸
				NP, Proper- Noun
				[4,5]

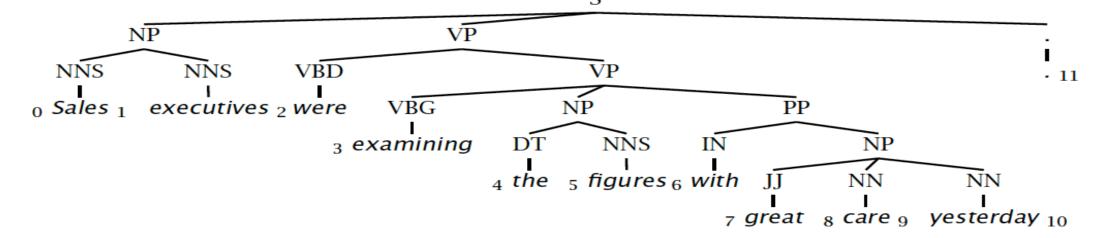

\mathscr{L}_1 in CNF
$S \rightarrow NP VP$
$S \rightarrow X1 VP$
$X1 \rightarrow Aux NP$
$S o book \mid include \mid prefer$
$S \rightarrow Verb NP$
$S \rightarrow X2 PP$
$S \rightarrow Verb PP$
$S \rightarrow VPPP$
$NP \rightarrow I \mid she \mid me$
$NP \rightarrow TWA \mid Houston$
$NP \rightarrow Det Nominal$
$Nominal \rightarrow book \mid flight \mid meal \mid money$
Nominal → Nominal Noun
$Nominal \rightarrow Nominal PP$
$VP \rightarrow book \mid include \mid prefer$
$VP \rightarrow Verb NP$
$VP \rightarrow X2 PP$
$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$
$PP \rightarrow Preposition NP$

Book	the	flight	through	Houston
S, VP, Verb, Nominal, Noun		S,VP,X2		
[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
	Det	NP		NP
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, ← Noun		-Nominal
		[2,3]	[2,4]	[2,5]
			Prep	PP
			[3,4]	[3,5]
				NP, Proper- Noun
				[4,5]

\mathscr{L}_1 in CNF
$S \rightarrow NP VP$
$S \rightarrow X1 VP$
$X1 \rightarrow Aux NP$
$S o book \mid include \mid prefer$
$S \rightarrow Verb NP$
$S \rightarrow X2 PP$
$S \rightarrow Verb PP$
$S \rightarrow VPPP$
$NP \rightarrow I \mid she \mid me$
$NP \rightarrow TWA \mid Houston$
$NP \rightarrow Det Nominal$
$Nominal \rightarrow book \mid flight \mid meal \mid money$
$Nominal \rightarrow Nominal Noun$
$Nominal \rightarrow Nominal PP$
$VP \rightarrow book \mid include \mid prefer$
$VP \rightarrow Verb NP$
$VP \rightarrow X2 PP$
$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$
PP → Preposition NP


\mathscr{L}_1 in CNF
$S \rightarrow NP VP$
$S \rightarrow X1 VP$
$X1 \rightarrow Aux NP$
$S \rightarrow book \mid include \mid prefer$
$S \rightarrow Verb NP$
$S \rightarrow X2 PP$
$S \rightarrow Verb PP$
$S \rightarrow VP PP$
$NP \rightarrow I \mid she \mid me$
$NP \rightarrow TWA \mid Houston$
$NP \rightarrow Det Nominal$
$Nominal \rightarrow book \mid flight \mid meal \mid money$
$Nominal \rightarrow Nominal Noun$
$Nominal \rightarrow Nominal PP$
$VP \rightarrow book \mid include \mid prefer$
$VP \rightarrow Verb NP$
$VP \rightarrow X2 PP$
$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$
$PP \rightarrow Preposition NP$

Constituency Parser Evaluation


Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%

Summary

- ► PCFGs augments CFGs by including a probability for each rule in the grammar.
- ► The probability for a parse tree is the product of probabilities for the rules in the tree
- ► To build a PCFG-parsed parser:
 - 1. Learn a PCFG from a treebank
 - 2. Given a test data sentence, use the CKY algorithm to compute the highest probability tree for the sentence under the PCFG

How good are PCFGs?

- Penn WSJ parsing accuracy: about 73% LP/LR F1
- Robust but not so accurate
 - Usually admit everything, but with low probability
 - A PCFG gives some idea of the plausibility of a parse
 - But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in the simple case it performs worse than a trigram model
- The problem seems to be that PCFGs lack the lexicalization of a trigram model