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Overview

I Probabilistic Context-Free Grammars (PCFGs)

I The CKY Algorithm for parsing with PCFGs



A Probabilistic Context-Free Grammar (PCFG)

S ) NP VP 1.0
VP ) Vi 0.4
VP ) Vt NP 0.4
VP ) VP PP 0.2
NP ) DT NN 0.3
NP ) NP PP 0.7
PP ) P NP 1.0

Vi ) sleeps 1.0
Vt ) saw 1.0
NN ) man 0.7
NN ) woman 0.2
NN ) telescope 0.1
DT ) the 1.0
IN ) with 0.5
IN ) in 0.5

I Probability of a tree t with rules

↵1 ! �1,↵2 ! �2, . . . ,↵n ! �n

is p(t) =
Qn

i=1 q(↵i ! �i) where q(↵ ! �) is the probability
for rule ↵ ! �.



DERIVATION RULES USED PROBABILITY
S

S ! NP VP
1.0

NP VP
NP ! DT NN

0.3

DT NN VP
DT ! the

1.0

the NN VP
NN ! dog

0.1

the dog VP
VP ! Vi

0.4

the dog Vi
Vi ! laughs

0.5

the dog laughs



Properties of PCFGs

I Assigns a probability to each left-most derivation, or parse-tree,
allowed by the underlying CFG

I Say we have a sentence s, set of derivations for that sentence is
T (s). Then a PCFG assigns a probability p(t) to each member of
T (s). i.e., we now have a ranking in order of probability.

I The most likely parse tree for a sentence s is

arg max

t2T (s)
p(t)
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Data for Parsing Experiments: Treebanks

I Penn WSJ Treebank = 50,000 sentences with associated trees

I Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:
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Canadian Utilities had 1988 revenue of C$ 1.16 billion ,

mainly from its natural gas and electric utility businesses in

Alberta , where the company serves about 800,000

customers .



Deriving a PCFG from a Treebank

I Given a set of example trees (a treebank), the underlying
CFG can simply be all rules seen in the corpus

I Maximum Likelihood estimates:

qML(↵ ! �) =
Count(↵ ! �)

Count(↵)

where the counts are taken from a training set of example
trees.

I If the training data is generated by a PCFG, then as the
training data size goes to infinity, the maximum-likelihood
PCFG will converge to the same distribution as the “true”
PCFG.



Parsing with a PCFG

I Given a PCFG and a sentence s, define T (s) to be the set of
trees with s as the yield.

I Given a PCFG and a sentence s, how do we find

arg max

t2T (s)
p(t)



Chomsky Normal Form

A context free grammar G = (N,⌃, R, S) in Chomsky
Normal Form is as follows

I N is a set of non-terminal symbols

I
⌃ is a set of terminal symbols

I R is a set of rules which take one of two forms:
I

X ! Y1Y2 for X 2 N , and Y1, Y2 2 N

I
X ! Y for X 2 N , and Y 2 ⌃

I S 2 N is a distinguished start symbol



A Dynamic Programming Algorithm
I Given a PCFG and a sentence s, how do we find

max

t2T (s)
p(t)

I Notation:

n = number of words in the sentence

wi = i’th word in the sentence

N = the set of non-terminals in the grammar

S = the start symbol in the grammar

I Define a dynamic programming table

⇡[i, j,X] = maximum probability of a constituent with non-terminal X

spanning words i . . . j inclusive

I Our goal is to calculate maxt2T (s) p(t) = ⇡[1, n, S]



A Dynamic Programming Algorithm

I Base case definition: for all i = 1 . . . n, for X 2 N

⇡[i, i, X] = q(X ! wi)

(note: define q(X ! wi) = 0 if X ! wi is not in the
grammar)

I Recursive definition: for all i = 1 . . . n, j = (i+ 1) . . . n,
X 2 N ,

⇡(i, j,X) = max

X!Y Z2R,

s2{i...(j�1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y )⇥ ⇡(s+ 1, j, Z))



The Full Dynamic Programming Algorithm
Input: a sentence s = x1 . . . xn, a PCFG G = (N,⌃, S,R, q).
Initialization:
For all i 2 {1 . . . n}, for all X 2 N ,

⇡(i, i,X) =

⇢
q(X ! xi) if X ! xi 2 R

0 otherwise

Algorithm:

I For l = 1 . . . (n� 1)

I For i = 1 . . . (n� l)

I Set j = i+ l

I For all X 2 N , calculate

⇡(i, j,X) = max

X!Y Z2R,

s2{i...(j�1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y )⇥ ⇡(s+ 1, j, Z))

and

bp(i, j,X) = arg max

X!Y Z2R,

s2{i...(j�1)}

(q(X ! Y Z)⇥ ⇡(i, s, Y )⇥ ⇡(s+ 1, j, Z))

Output: Return ⇡(1, n, S) = maxt2T (s) p(t), and backpointers bp

which allow recovery of argmaxt2T (s) p(t).

What’s	the	run	time	Complexity?



CKY	Parsing
A	worked	example



Sample	Grammar



CNF	Conversion



CKY	Parsing:	table	filling	illustrated











Constituency	Parser	
Evaluation



Evaluating	constituency	parsing



Evaluating	constituency	parsing

Gold	standard	brackets:	
S-(0:11), NP-(0:2),	VP-(2:9),	VP-(3:9),	NP-(4:6),	PP-(6-9),	NP-(7,9),	NP-(9:10)

Candidate	brackets:	
S-(0:11),	NP-(0:2),	VP-(2:10),	VP-(3:10),	NP-(4:6),	PP-(6-10),	NP-(7,10)

Labeled	Precision	 3/7	=	42.9%
Labeled	Recall	 3/8	=	37.5%
LP/LR	F1 40.0%
Tagging	Accuracy 11/11	=	100.0%



Summary

I PCFGs augments CFGs by including a probability for each
rule in the grammar.

I The probability for a parse tree is the product of probabilities
for the rules in the tree

I To build a PCFG-parsed parser:

1. Learn a PCFG from a treebank
2. Given a test data sentence, use the CKY algorithm to

compute the highest probability tree for the sentence under
the PCFG



How good are PCFGs?

• Penn WSJ parsing accuracy: about 73% LP/LR F1

• Robust but not so accurate
• Usually admit everything, but with low probability
• A PCFG gives some idea of the plausibility of a parse
• But not so good because the independence assumptions are too 

strong

• Give a probabilistic language model 
• But in the simple case it performs worse than a trigram model

• The problem seems to be that PCFGs lack the 
lexicalization of a trigram model


