
Tagging Stack Overflow
Questions
A multi-class problem

The Problem

17m+
Questions on Stack
Overflow

54k+
Tags on Stack Overflow

Challenges Deep-Dive

Number of tags

Over 54k tags

When the number of tags
is increased, the odds of
a proper selection are
decreased.

Types of tags

Similar tag vocabulary

Many programming
languages contain
similar words or phrases

Filtering Text

Data in html format

The data was in an html
format and included
non-alphanumeric
characters

In addition, challenge
throughout to find words
most related to tag

Solutions

01

02

03

04
Develop

Test

Refine

Analyze Results

Development Cycle
How to walk through solutions

The Algorithms
Algorithms

FilteringScoring

Tf(class) - Tf(total) TFIDF POS N-Grams

Adjectives Verbs Bi-GramsAdjectives

Naive Bias
Baseline for the rest of testing

Simple Naive Bias to get a
baseline for future test

21

● Filler words often determine
guessed tag

Filtering stop words flushing
out important words

54

● Increased accuracy
● Higher look at important words

in tagging

POS Tagging
Filtering Method

Filtering out text so that only
nouns are analyzed

74

● Nouns are good indication
of overall subject

Filtering out text so that only
adjectives are analyzed

47

● Adjectives across different
programming languages can
be very similar

Filtering out text so that only
verbs are analyzed

55

● Verbs across different possible
tags are not very distinguished

Bi-Grams
Filtering Method

Use Naive Bias scoring on Bi-grams in
questions

62

● Bi-grams produce more unique words
● Bi-grams are more informative on the

type of tag overall

Scoring Algorithms

Take the term frequency per
class and subtract by term
frequency in total test docs

2

● Terms are not as unique as
expected across tags

● Filler words still determining
tag

Term frequency times
inverse document frequency

71

● Heavily scored infrequent
terms

Scoring and filtering (POS + tfidf)

Applying tfidf to only the nouns in a
question

70

● No overall improvement
● Increase training size
● Tags very similar

Filler words can completely throw off an NLP algorithm, while
proper filtering can give surprising improvements

Scoring words by their uniqueness to the tag can help improve
tagging accuracy but comes with challenges

Filter out by tri-grams
Bi-gram + Tfidf
POS with noun phrases

Questions?

Assessing Toxicity in
Wikipedia Comments
Jonathan Innis & Gabriel Britain

Disclaimer: Some comments in this presentation may be offensive to certain viewers. The
comments in this presentation do not reflect the opinions of the creators/presenters and
are used purely for academic purposes.

Purpose

● Identifying toxicity can prevent users from abusing communication
platforms

● Much more efficient than review by human moderators
● Most comments are posted at early hours of the morning (3am) and will

be uncaught by human moderators for hours

https://www.wired.com/2017/08/internet-troll-map
/

Dataset
Source

Frameworks

Data
Inspection

Common Toxic Word Inspection

Class Distribution

Comment Length Inspection

1
2
3

Class
Distribution

Common Toxic Words

Comment Character Lengths

Random Assignment (based on class frequencies)

Precision Recall F1-Score Support

Toxic 0.10 0.43 0.16 5038

Severely Toxic 0.01 0.06 0.02 500

Obscene 0.05 0.23 0.08 2810

Threat 0.00 0.02 0.01 152

Insult 0.05 0.23 0.08 2591

Identity Hate 0.01 0.04 0.01 449

Micro Avg 0.07 0.30 0.11 11540

Macro Avg 0.04 0.17 0.06 11540

Weighted Avg 0.07 0.30 0.11 11540

Baseline

Models
Support Vector Machines

Naive Bayes Classifier

Random Forest Classifier

Recurrent Neural Network

1
2
3
4

Naive Bayes Classifier

● “Bag of Words” model
makes sense for toxic
comment classification

● Precision, Recall, & F1
strong improvements over
baseline

Precision Recall F1-Score Support

Toxic 0.83 0.59 0.69 5042

Severely Toxic 0.31 0.79 0.44 557

Obscene 0.78 0.79 0.79 2761

Threat 0.05 0.78 0.09 163

Insult 0.65 0.68 0.66 2623

Identity Hate 0.19 0.58 0.29 481

Micro Avg 0.53 0.67 0.59 11627

Macro Avg 0.47 0.70 0.49 11627

Weighted Avg 0.71 0.67 0.67 11627

Feature Analysis

toxic:
 2123145146
 kundad
 kunstruktive
 kunt
 kupla
 kurang
 yammer
 follarte
 fuckyourself
 crackhead

severe_toxic:
 stomes
 stikin
 caspa
 anastal1111you
 ancest
 ancestryearly
 ancestryerigate
 ada_at
 cartuchos
 homelan

obscene:
 achivements
 achmed
 achsehole
 kcik
 sexmist
 britch
 britbarb
 katzrin
 zigabo
 follarte

threat:
 m45terbate
 ma5terb8
 ma5terbate
 master-bate
 masterb8
 masterbat*
 masterbat3
 teeeccccctooooniiiiiicccccc
 hawkinghttp
 zigabo

insult:
 faggots129
 islantic
 snigbrook
 furfag
 fortuijn
 66185192207
 libtard
 onanizing
 crackhead
 suberbia

identity_hate:
 gomnna
 closerlookonsyria
 nawmean
 goddammed
 clubz
 goains
 nebracka
 negrate
 uos
 zigabo

● Naive Bayes found certain
features (unigrams, bigrams,
and trigrams) that are most
useful to the model

Support Vector Machines

● Word embeddings to produce
embeddings for each sentence

● Leveraged GloVe embeddings
● Leveraging custom

embeddings could produce
better results with greater
resources and greater time

Precision Recall F1-Score Support

Toxic 0.96 0.06 0.12 6090

Severely Toxic 0.00 0.00 0.00 367

Obscene 0.95 0.09 0.16 3691

Threat 0.00 0.00 0.00 211

Insult 0.67 0.01 0.03 3427

Identity Hate 0.00 0.00 0.00 712

Micro Avg 0.93 0.05 0.10 14498

Macro Avg 0.43 0.03 0.05 14498

Weighted Avg 0.80 0.05 0.10 14498

Random Forest Classifier
Precision Recall F1-Score Support

Toxic 0.57 0.76 0.65 6090

Severely Toxic 0.23 0.08 0.12 367

Obscene 0.58 0.68 0.63 3691

Threat 0.33 0.05 0.09 211

Insult 0.56 0.52 0.54 3427

Identity Hate 0.57 0.12 0.20 712

Micro Avg 0.57 0.62 0.59 14498

Macro Avg 0.47 0.37 0.37 14498

Weighted Avg 0.56 0.62 0.57 14498

● Resistant to class imbalance
● Decent results that suffered in

the macr average performing
poorly in the smaller classes

Recurrent Neural
Network (RNN)

Precision Recall F1-Score Support

Toxic 0.57 0.85 0.68 6090

Severely Toxic 0.34 0.48 0.40 367

Obscene 0.60 0.80 0.68 3691

Threat 0.00 0.00 0.00 211

Insult 0.52 0.72 0.61 3427

Identity Hate 0.67 0.22 0.34 712

Micro Avg 0.56 0.75 0.64 14498

Macro Avg 0.45 0.51 0.45 14498

Weighted Avg 0.56 0.75 0.63 14498

● LSTMs shown to effectively
handle long sequence

● Captures sentence structure

RNN
Architecture

[1] Mart´ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Man´e, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vi´egas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Ga¨el Varoquaux. API design for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122, 2013.

[3] Fran¸cois Chollet et al. Keras. https://keras.io, 2015.

[4] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):90–95, 2007.

[5] Wes McKinney. Data structures for statistical computing in python. In St´efan van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 51 – 56, 2010.

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

[7] Ellery Wulczyn, Nithum Thain, and Lucas Dixon. Ex machina: Personal attacks seen at scale. In Proceedings of the 26th International Conference on World
Wide Web, WWW ’17, pages 1391–1399, Republic and Canton of Geneva, Switzerland, 2017. International World Wide Web Conferences Steering Committee.

Attributions

AGGRO
Declarative Programming in Natural Language

Ryan Beltran
Joseph Gerules

Description & Examples
● Aggro answers questions that are phrased in standard english.
● Examples:

○ A year is wild if and only if 2 divides the year evenly. The year is 2018. Is the year
a wild one? -TRUE

○ A number n is prime if there exists no number m in the range of 1 to n such that
m divides n evenly. Is 73 prime? - TRUE

○ "If and only if there is rain then there is water. There is not rain. Is there water?" -
FALSE

The Five Phases of Aggro
1. Perform Stemming and Text Normalization
2. Perform Lexical Analysis and Tokenization
3. Generate Abstract Syntax Tree
4. Analyze and correlate ambiguous noun phrases
5. Generate, execute, and display Prolog

Stage 1 - Preprocessing
● Utilize Python’s natural language toolkit, NLTK, library for:

○ POS tagging
○ Stemming
○ Remove stop words
○ Lowercasing
○ Tokenize based on POS tagging

Input:
A year is wild if and only if 2 divides the year evenly. The year is 2018. Is the year a wild one?
Output:
a year is wild if and onli if 2 divides the year evenli . the year is 2018. is the year a wild one ?

Stage 2 - Dynamic Tokenization
● Use Lex to parse the now preprocessed input
● Categorize & catch words to assign labels to them

○ Reserved words like “is” or “equals” get tagged as ‘EQUALS’

Input:
a year is wild
Output:
LexToken(A,'a',1,0)
LexToken(UNWORD,'year',1,2)
LexToken(EQUALS,'is',1,7)
LexToken(UNWORD,'wild',1,10) #UNWORD is short for uniqueword

Stage 3 - Abstract Syntax Tree Generation
● Use yacc to parse the lexemes

○ Words or phrases turn to labeled nodes
○ Rules decide labels and connection order

a year is wild if and onli if 2 divides the year evenli .
Node: __program__ [17]
| Node: __rule__ [16]
| | Node: __iff then__ [15]
| | | Node: __if__ [13]
| | | | Node: __is__ [12]
| | | | | Node: __modulo__ [9]
| | | | | | Phrase: { alias:, bound:False } [8]
| | | | | | | Leaf: year [7]
| | | | | | Node: __numeric const__ [6]
| | | | | | | Leaf: 2 [5]
| | | | | Node: __numeric const__ [11]
| | | | | | Leaf: 0 [10]
| | | Node: __then__ [14]
| | | | Node: __is__ [4]
| | | | | Phrase: { alias:, bound:False } [1]
| | | | | | Leaf: year [0]
| | | | | Phrase: { alias:, bound:False } [3]
| | | | | | Leaf: wild [2]

● Considered Approaches:
○ GREMLIN: Levenshtein Optimal Fuzzy

Grammars
○ Maximum Entropy Classification:

Trained rule based classifier

Stage 4 - Phrase Analysis
● Seeks to connect correlated phrases
● Tasks:

○ Correlate related phrases in an alias table
○ Properly split adjacent noun phrases
○ Label phrases as free or bound

● Phrase correlation based on two part metric:
○ Levenshtein similarity metric
○ Bayesian probability metric

● Split phrases to maximize total similarity
● How do we handle the word “it”?

Stage 5 - Code Generation & Execution
● Use the AST’s labels & node structure to write generic Prolog functions.

○ Add id’s to each label to ensure uniqueness of generically named functions
○ Push all generated rules into the query statement to create a scope

● Use SWIPL to call SWI Prolog from Python.

water is wet . is water wet ?
is_10(A, A). // water is wet - Question form
is_4(A, A). // water is wet - Rule Form

query_11() :- is_4(Phrase_0, Phrase_1), is_10(Phrase_0, Phrase_1). /*11*/ // Adding both rules creates a scope

query_11() is:
true

Future Development
● Produce more grammar rules for a more robust system.

○ This would allow for more edge cases to be handled
○ Different styles of questions could be added

● Integrate pronoun and ambiguous word binding more thoroughly.
○ Look for nearby nouns.

● Make the outputted code more readable
○ Formatting
○ Implement using attributed objects instead of rules

● Fuzzy grammars to handle oddly worded input
● Improved phrase splitting

○ Is the grey cat very large?
■ Is the grey | cat very large or Is the grey cat | very large or Is the grey cat very | large

● Improved handling of free variables
○ The year y is a leap year if it is divisible by 4.

■ Y isn’t a specific year. It is an unbounded free variable.

Math Question Answering
(SemEval Task 10)

Kevin Sittser

The Problem

● Success metric: Percentage of problems solved

My Approach

● Ignore diagrams

● Equation solver!

● Dimensional analysis??

● Write a parser??

● Ignore wordy problems

● SymPy

● Algorithms??

Program Structure

● Question parser: Look for equations

● Equation parser: Convert to SymPy-readable (if possible)

● Solver: Equations, expressions → Result!

● Find closest valid answer

● (If can’t solve problem, output “C” (or “5”))

Complications

● Training?

● SymPy solve() output

● SymPy can’t handle everything

● So many equation formats

Results

● 20.82% correct answers!

● But a random guesser solves 19.38%

● Not very good

● Only target problems: 22.70% (vs. 19.03%) → a little better

Potential Improvements

● Training program?

● Write my own labels?

● Make sure all equations are LaTeX

● Accept more operation types (SymPy research)

● Syntactical analysis??

● Long, long process

Questions?

	8
	9
	11
	12

