
Tagging Stack Overflow 
Questions
A multi-class problem



The Problem

17m+
Questions on Stack 
Overflow  

54k+
Tags on Stack Overflow



Challenges Deep-Dive

Number of tags

Over 54k tags

When the number of tags 
is increased, the odds of 
a proper selection are 
decreased.

Types of tags

Similar tag vocabulary

Many programming 
languages contain 
similar words or phrases 

Filtering Text

Data in html format

The data was in an html 
format and included 
non-alphanumeric 
characters

In addition, challenge 
throughout to find words 
most related to tag



Solutions
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Develop 

Test

Refine

Analyze Results

Development Cycle
How to walk through solutions



The Algorithms
Algorithms

FilteringScoring

Tf(class) - Tf(total) TFIDF POS N-Grams

Adjectives Verbs Bi-GramsAdjectives



Naive Bias
Baseline for the rest of testing

Simple Naive Bias to get a 
baseline for future test

21

● Filler words often determine  
guessed tag

Filtering stop words flushing 
out important words

54

● Increased accuracy
● Higher look at important words 

in tagging 



POS Tagging
Filtering Method

Filtering out text so that only 
nouns are analyzed 

74

● Nouns are good indication 
of overall subject

Filtering out text so that only 
adjectives are analyzed 

47

● Adjectives across different 
programming languages can 
be very similar

Filtering out text so that only 
verbs are analyzed

55

● Verbs across different possible 
tags are not very distinguished



Bi-Grams
Filtering Method

Use Naive Bias scoring on Bi-grams in 
questions

62

● Bi-grams produce more unique words
● Bi-grams are more informative on the 

type of tag overall



Scoring Algorithms

Take the term frequency per 
class and subtract by term 
frequency in total test docs

2

● Terms are not as unique as 
expected across tags

● Filler words still determining 
tag

Term frequency times 
inverse document frequency

71

● Heavily scored infrequent 
terms



Scoring and filtering (POS + tfidf)

Applying tfidf to only the nouns in a 
question

70

● No overall improvement
● Increase training size 
● Tags very similar



Filler words can completely throw off an NLP algorithm, while 
proper filtering can give surprising improvements

Scoring words by their uniqueness to the tag can help improve 
tagging accuracy but comes with challenges

Filter out by tri-grams
Bi-gram + Tfidf
POS with noun phrases 



Questions?



Assessing Toxicity in 
Wikipedia Comments
Jonathan Innis & Gabriel Britain

Disclaimer: Some comments in this presentation may be offensive to certain viewers. The 
comments in this presentation do not reflect the opinions of the creators/presenters and 
are used purely for academic purposes.



Purpose

● Identifying toxicity can prevent users from abusing communication 
platforms

● Much more efficient than review by human moderators
● Most comments are posted at early hours of the morning (3am) and will 

be uncaught by human moderators for hours





https://www.wired.com/2017/08/internet-troll-map
/



Dataset 
Source





Frameworks



Data 
Inspection

Common Toxic Word Inspection

Class Distribution

Comment Length Inspection

1
2
3



Class 
Distribution



Common Toxic Words



Comment Character Lengths



Random Assignment (based on class frequencies)

Precision Recall F1-Score Support

Toxic 0.10 0.43 0.16 5038

Severely Toxic 0.01 0.06 0.02 500

Obscene 0.05 0.23 0.08 2810

Threat 0.00 0.02 0.01 152

Insult 0.05 0.23 0.08 2591

Identity Hate 0.01 0.04 0.01 449

Micro Avg 0.07 0.30 0.11 11540

Macro Avg 0.04 0.17 0.06 11540

Weighted Avg 0.07 0.30 0.11 11540

Baseline



Models
Support Vector Machines

Naive Bayes Classifier

Random Forest Classifier

Recurrent Neural Network

1
2
3
4



Naive Bayes Classifier

● “Bag of Words” model 
makes sense for toxic 
comment classification

● Precision, Recall, & F1 
strong improvements over 
baseline

Precision Recall F1-Score Support

Toxic 0.83 0.59 0.69 5042

Severely Toxic 0.31 0.79 0.44 557

Obscene 0.78 0.79 0.79 2761

Threat 0.05 0.78 0.09 163

Insult 0.65 0.68 0.66 2623

Identity Hate 0.19 0.58 0.29 481

Micro Avg 0.53 0.67 0.59 11627

Macro Avg 0.47 0.70 0.49 11627

Weighted Avg 0.71 0.67 0.67 11627



Feature Analysis

toxic:
    2123145146
    kundad
    kunstruktive
    kunt
    kupla
    kurang
    yammer
    follarte
    fuckyourself
    crackhead

severe_toxic:
    stomes
    stikin
    caspa
    anastal1111you
    ancest
    ancestryearly
    ancestryerigate
    ada_at
    cartuchos
    homelan

obscene:
    achivements
    achmed
    achsehole
    kcik
    sexmist
    britch
    britbarb
    katzrin
    zigabo
    follarte

threat:
    m45terbate
    ma5terb8
    ma5terbate
    master-bate
    masterb8
    masterbat*
    masterbat3
    teeeccccctooooniiiiiicccccc
    hawkinghttp
    zigabo

insult:
    faggots129
    islantic
    snigbrook
    furfag
    fortuijn
    66185192207
    libtard
    onanizing
    crackhead
    suberbia

identity_hate:
    gomnna
    closerlookonsyria
    nawmean
    goddammed
    clubz
    goains
    nebracka
    negrate
    uos
    zigabo

● Naive Bayes found certain 
features (unigrams, bigrams, 
and trigrams) that are most 
useful to the model



Support Vector Machines

● Word embeddings to produce 
embeddings for each sentence

● Leveraged GloVe embeddings
● Leveraging custom 

embeddings could produce 
better results with greater 
resources and greater time

Precision Recall F1-Score Support

Toxic 0.96 0.06 0.12 6090

Severely Toxic 0.00 0.00 0.00 367

Obscene 0.95 0.09 0.16 3691

Threat 0.00 0.00 0.00 211

Insult 0.67 0.01 0.03 3427

Identity Hate 0.00 0.00 0.00 712

Micro Avg 0.93 0.05 0.10 14498

Macro Avg 0.43 0.03 0.05 14498

Weighted Avg 0.80 0.05 0.10 14498



Random Forest Classifier
Precision Recall F1-Score Support

Toxic 0.57 0.76 0.65 6090

Severely Toxic 0.23 0.08 0.12 367

Obscene 0.58 0.68 0.63 3691

Threat 0.33 0.05 0.09 211

Insult 0.56 0.52 0.54 3427

Identity Hate 0.57 0.12 0.20 712

Micro Avg 0.57 0.62 0.59 14498

Macro Avg 0.47 0.37 0.37 14498

Weighted Avg 0.56 0.62 0.57 14498

● Resistant to class imbalance
● Decent results that suffered in 

the macr average performing 
poorly in the smaller classes



Recurrent Neural 
Network (RNN)

Precision Recall F1-Score Support

Toxic 0.57 0.85 0.68 6090

Severely Toxic 0.34 0.48 0.40 367

Obscene 0.60 0.80 0.68 3691

Threat 0.00 0.00 0.00 211

Insult 0.52 0.72 0.61 3427

Identity Hate 0.67 0.22 0.34 712

Micro Avg 0.56 0.75 0.64 14498

Macro Avg 0.45 0.51 0.45 14498

Weighted Avg 0.56 0.75 0.63 14498

● LSTMs shown to effectively 
handle long sequence

● Captures sentence structure



RNN 
Architecture
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AGGRO
Declarative Programming in Natural Language

Ryan Beltran 
Joseph Gerules



Description & Examples
● Aggro answers questions that are phrased in standard english.
● Examples:

○ A year is wild if and only if 2 divides the year evenly. The year is 2018. Is the year 
a wild one? -TRUE

○ A number n is prime if there exists no number m in the range of 1 to n such that 
m divides n evenly. Is 73 prime?  - TRUE

○ "If and only if there is rain then there is water. There is not rain. Is there water?" - 
FALSE



The Five Phases of Aggro
1. Perform Stemming and Text Normalization
2. Perform Lexical Analysis and Tokenization
3. Generate Abstract Syntax Tree
4. Analyze and correlate ambiguous noun phrases
5. Generate, execute, and display Prolog



Stage 1 - Preprocessing 
● Utilize Python’s natural language toolkit, NLTK, library for:

○ POS tagging
○ Stemming
○ Remove stop words
○ Lowercasing
○ Tokenize based on POS tagging

Input:
A year is wild if and only if 2 divides the year evenly. The year is 2018. Is the year a wild one?
Output:
a year is wild if and onli if 2 divides the year evenli . the year is 2018. is the year a wild one ?



Stage 2 - Dynamic Tokenization
● Use Lex to parse the now preprocessed input
● Categorize & catch words to assign labels to them

○ Reserved words like “is” or “equals” get tagged as ‘EQUALS’

Input:
a year is wild
Output:
LexToken(A,'a',1,0)
LexToken(UNWORD,'year',1,2)
LexToken(EQUALS,'is',1,7)
LexToken(UNWORD,'wild',1,10) #UNWORD is short for uniqueword



Stage 3 - Abstract Syntax Tree Generation
● Use yacc to parse the lexemes

○ Words or phrases turn to labeled nodes
○ Rules decide labels and connection order

a year is wild if and onli if 2 divides the year evenli . 
Node: __program__ [17]
|  Node: __rule__ [16]
|  |  Node: __iff then__ [15]
|  |  |  Node: __if__ [13]
|  |  |  |  Node: __is__ [12]
|  |  |  |  |  Node: __modulo__ [9]
|  |  |  |  |  |  Phrase: { alias:, bound:False } [8]
|  |  |  |  |  |  |  Leaf: year [7]
|  |  |  |  |  |  Node: __numeric const__ [6]
|  |  |  |  |  |  |  Leaf: 2 [5]
|  |  |  |  |  Node: __numeric const__ [11]
|  |  |  |  |  |  Leaf: 0 [10]
|  |  |  Node: __then__ [14]
|  |  |  |  Node: __is__ [4]
|  |  |  |  |  Phrase: { alias:, bound:False } [1]
|  |  |  |  |  |  Leaf: year [0]
|  |  |  |  |  Phrase: { alias:, bound:False } [3]
|  |  |  |  |  |  Leaf: wild [2]

● Considered Approaches:
○ GREMLIN: Levenshtein Optimal Fuzzy 

Grammars
○ Maximum Entropy Classification: 

Trained rule based classifier



Stage 4 - Phrase Analysis
● Seeks to connect correlated phrases
● Tasks:

○ Correlate related phrases in an alias table
○ Properly split adjacent noun phrases
○ Label phrases as free or bound

● Phrase correlation based on two part metric:
○ Levenshtein similarity metric
○ Bayesian probability metric

● Split phrases to maximize total similarity
● How do we handle the word “it”?



Stage 5 - Code Generation & Execution
● Use the AST’s labels & node structure to write generic Prolog functions.

○ Add id’s to each label to ensure uniqueness of generically named functions
○ Push all generated rules into the query statement to create a scope

● Use SWIPL to call SWI Prolog from Python.

water is wet . is water wet ?
is_10( A, A ).  // water is wet - Question form
is_4( A, A ).  // water is wet - Rule Form

query_11(  ) :- is_4( Phrase_0, Phrase_1 ), is_10( Phrase_0, Phrase_1 ). /*11*/ // Adding both rules creates a scope

query_11(  )  is:
true



Future Development
● Produce more grammar rules for a more robust system.

○ This would allow for more edge cases to be handled
○ Different styles of questions could be added

● Integrate pronoun and ambiguous word binding more thoroughly.
○ Look for nearby nouns.

● Make the outputted code more readable
○ Formatting
○ Implement using attributed objects instead of rules

● Fuzzy grammars to handle oddly worded input
● Improved phrase splitting

○ Is the grey cat very large? 
■ Is the grey | cat very large  or   Is the grey cat | very large  or   Is the grey cat very | large

● Improved handling of free variables
○ The year y is a leap year if it is divisible by 4.

■ Y isn’t a specific year. It is an unbounded free variable.



Math Question Answering
(SemEval Task 10)

Kevin Sittser



The Problem

● Success metric: Percentage of problems solved



My Approach

● Ignore diagrams

● Equation solver!

● Dimensional analysis??

● Write a parser??

● Ignore wordy problems

● SymPy

● Algorithms??



Program Structure

● Question parser: Look for equations

● Equation parser: Convert to SymPy-readable (if possible)

● Solver: Equations, expressions → Result!

● Find closest valid answer

● (If can’t solve problem, output “C” (or “5”))



Complications

● Training?

● SymPy solve() output

● SymPy can’t handle everything

● So many equation formats



Results

● 20.82% correct answers!

● But a random guesser solves 19.38%

● Not very good

● Only target problems: 22.70% (vs. 19.03%) → a little better



Potential Improvements

● Training program?

● Write my own labels?

● Make sure all equations are LaTeX

● Accept more operation types (SymPy research)

● Syntactical analysis??

● Long, long process



Questions?
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