Mid-term Reviews

Preprocessing,
language models
Sequence models,
Syntactic Parsing

Preprocessing

- What is a Lemma? What is a wordform?
- What is a word type? What is a token?
-What is tokenization?
- What is lemmatization?
- What is stemming?

How many words?

- I do uh main- mainly business data processing
- Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
- Lemma: same stem, part of speech, rough word sense
- cat and cats = same lemma
- Wordform: the full inflected surface form
- cat and cats = different wordforms

How many words?

they lay back on the San Francisco grass and looked at the stars and their

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.
- How many?
- 15 tokens (or 14)
- 13 types (or 12) (or 11?)

Issues in Tokenization

- Finland's capital \rightarrow Finland Finlands Finland's ?
- what're, I'm, isn't \rightarrow What are, I am, is not
- Hewlett-Packard \rightarrow Hewlett Packard ?
- state-of-the-art \rightarrow state of the art ?
- Lowercase \rightarrow lower-case lowercase lower case ?
- San Francisco \rightarrow one token or two?
- m.p.h., PhD. \rightarrow ??

Lemmatization

- Reduce inflections or variant forms to base form
- am, are, is \rightarrow be
- car, cars, car's, cars' \rightarrow car

Context dependent. for instance:
in our last meeting (noun, meeting).
We're meeting (verb, meet) tomorrow.

- the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization: have to find correct dictionary headword form

Stemming

context independent

- Reduce terms to their stems in information retrieval
- Stemming is crude chopping of affixes
- language dependent
- e.g., automate(s), automatic, automation all reduced to automat.

```
for example compressed
and compression are both
accepted as equivalent to
compress.
```

for exampl compress and compress ar both accept as equival to compress

Naïve Bayes

- How to train a naïve bayes model? How to estimate prior probabilities and conditional probabilities?
- How to apply laplace smoothing?

Bayes' Rule Applied to Documents and

 Classes- For a document d and a class c

$$
P(c \mid d)=\frac{P(d \mid c) P(c)}{P(d)}
$$

Learning the Multinomial Naïve Bayes Model

- First attempt: maximum likelihood estimates - simply use the frequencies in the data

$$
\begin{array}{r}
\hat{P}\left(c_{j}\right)=\frac{\operatorname{doccount}\left(C=c_{j}\right)}{N_{d o c}} \\
\hat{P}\left(w_{i} \mid c_{j}\right)=\frac{\operatorname{count}\left(w_{i}, c_{j}\right)}{\sum_{w \in V} \operatorname{count}\left(w, c_{j}\right)}
\end{array}
$$

Laplace (add-1) smoothing: unknown words

Add one extra word to the vocabulary, the "unknown word" w_{u}

$$
\begin{aligned}
\hat{P}\left(w_{u} \mid c\right) & =\frac{\operatorname{count}\left(w_{u}, c\right)+1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V+1|} \\
& =\frac{1}{\left(\sum_{w \in V} \operatorname{count}(w, c)\right)+|V+1|}
\end{aligned}
$$

Maxent and Perceptron

- What are the differences between a generative model and a discriminate model?
- What are features in a discriminate model?
-What's the relation between maxent and logistic regression?
- What's the general form of maxent?
-What's the form of a perceptron classifier?

Joint vs. Conditional Models

- We have some data $\{(d, c)\}$ of paired observations d and hidden classes c.
- Joint (generative) models place probabilities over both observed data and the hidden stuff (gene-rate the observed data from hid $P(c, d)$
- All the classic StatNLP models:
- n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models

Joint vs. Conditional Models

- Discriminative (conditional) models take the data as given, probability over hidden structure given the data:
$P(c \mid d)$
- Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
- Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)

Features

- In NLP uses, usually a feature specifies

1. an indicator function - a yes/no boolean matching function - of properties of the input and
2. a particular class

$$
f_{i}(c, d) \equiv\left[\Phi(d) \wedge c=c_{j}\right] \quad[\text { Value is } 0 \text { or } 1]
$$

- Each feature picks out a data subset and suggests a label for it

Feature-Based Linear Classifiers

- Exponential (log-linear, maxent, logistic, Gibbs) models:
- Make a probabilistic model from the linear combination $\Sigma \lambda_{i} f_{i}(c, d)$

$$
\begin{aligned}
& P(c \mid d, \lambda)=\frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d) \longleftarrow \text { Makes votes positive }}{\square} \\
& \sum \exp \sum \lambda_{i} f_{i}\left(c^{\prime}, d\right) \longleftarrow \text { Normalizes votes } \\
& \text { - } \mathrm{P}(\text { LOCATION } \mid \text { inquébec }) \bar{\equiv} e^{i .8} e^{-0.6} /\left(e^{1.8} e^{-0.6}+e^{0.3}+e^{0}\right)=0.586 \\
& \text { - } \mathrm{P}(\text { DRUG } \mid \text { in Québec })=e^{0.3} /\left(e^{1.8} e^{-0.6}+e^{0.3}+e^{0}\right)=0.238 \\
& \text { - } \mathrm{P}(\text { PERSON } \mid \text { in Québec })=e^{0} /\left(e^{1.8} e^{-0.6}+e^{0.3}+e^{0}\right)=0.176
\end{aligned}
$$

- The weights are the parameters of the probability model, combined via a "soft max" function

Perceptron Algorithm

- Algorithm is Very similar to logistic regression
- Not exactly computing gradients

Initalize weight vector $w=0$
Loop for K iterations
Loop For all training examples $x^{\prime} i$
if $\operatorname{sign}\left(w^{*} x_{-} i\right)!=y_{-} i$
w += (y_i - sign(w * x_i)) * x_i

Language Modeling

- How to calculate the probability of a sentence using a language model?
- What are the main Smoothing Algorithms for language models?
- Extrinsic v.s Intrinsic Evaluation
- Intrinsic Evaluation Metric of language models

Bigram estimates of sentence probabilities

$\mathrm{P}(\langle\mathrm{s}\rangle \mid$ want english food $\langle/ \mathrm{s}\rangle$) $=$ $\mathrm{P}(\mathrm{I} \mid<\mathrm{s}>)$
$\times \mathrm{P}($ want $\mid I)$
$\times \mathrm{P}($ english \mid want $)$
$\times \mathrm{P}($ food \mid english $)$
$\times \mathrm{P}(</ \mathrm{s}>\mid$ food $)$
$=.000031$

An example

$P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}$
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

Backoff and Interpolation

- Sometimes it helps to use less context
- Condition on less context for contexts you haven't learned much about
- Backoff:
- use trigram if you have good evidence,
- otherwise bigram, otherwise unigram
- Interpolation:
- mix unigram, bigram, trigram
- Interpolation works better

Advanced smoothing algorithms

- Intuition used by many smoothing algorithms
- Good-Turing
- Kneser-Ney
- Use the count of things we've seen
- to help estimate the count of things we've never seen

Kneser-Ney Smoothing I (smart backoff)

- Better estimate for probabilities of lower-order unigrams!
- Shannon game: I can't see without my reading

- "Francisco" is more common than "glasses"
- ... but "Francisco" always follows "San"
- Instead of $\mathrm{P}(\mathrm{w})$: "How likely is w "
- $P_{\text {continuation }}(w):$ "How likely is w to appear as a novel continuation?
- For each word, count the number of unique bigram types it completes
- Every bigram type was a novel continuation the first time it was seen

$$
P_{\text {CONTINUATION }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

Extrinsic evaluation of N -gram models

- Best evaluation for comparing models A and B
- Put each model in a task
- spelling corrector, speech recognizer, MT system
- Run the task, get an accuracy for A and for B
- How many misspelled words corrected properly
- How many words translated correctly
- Compare accuracy for A and B

Perplexity

The best language model is one that best predicts an unseen test set

- Gives the highest P(sentence)

Perplexity is the inverse probability of

$$
P P(W)=P\left(w_{1} w_{2} \ldots w_{N}\right)^{-\frac{1}{N}}
$$ the test set, normalized by the number of words:

Chain rule:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)}}
$$

For bigrams:

$$
\operatorname{PP}(W)=\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P\left(w_{i} \mid w_{i-1}\right)}}
$$

Minimizing perplexity is the same as maximizing probability

Sequence Tagging

- What is sequence tagging? what are common sequence tagging problems in NLP?
- What is the form of Trigram HMM?
- What's the run time complexity of the viterbi algorithm for Trigram HMM?

Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/ N on/P Wall/ N Street/ N ,/, as/ P their/POSS CEO/ N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.
$\mathrm{N}=$ Noun
$\mathrm{V} \quad=$ Verb
P $\quad=$ Preposition
Adv = Adverb
Adj = Adjective

Named Entity Extraction as Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA
$\mathrm{NA}=$ No entity
SC $=$ Start Company
CC $=$ Continue Company
SL $\quad=$ Start Location
CL $\quad=$ Continue Location

Why the Name?

$$
\begin{aligned}
p\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)= & \underbrace{q\left(\operatorname{STOP} \mid y_{n-1}, y_{n}\right) \prod_{j=1}^{n} q\left(y_{j} \mid y_{j-2}, y_{j-1}\right)}_{\text {Markov Chain }} \\
& \times \underbrace{\prod_{j=1}^{n} e\left(x_{j} \mid y_{j}\right)}_{x_{j} \text { 's are observed }}
\end{aligned}
$$

The Viterbi Algorithm with Backpointers

Input: a sentence $x_{1} \ldots x_{n}$, parameters $q(s \mid u, v)$ and $e(x \mid s)$.
Initialization: Set $\pi\left(0,{ }^{*},{ }^{*}\right)=1$
Definition: $\mathcal{S}_{-1}=\mathcal{S}_{0}=\{*\}, \mathcal{S}_{k}=\mathcal{S}$ for $k \in\{1 \ldots n\}$
Algorithm:

- For $k=1 \ldots n$,
- For $u \in \mathcal{S}_{k-1}, v \in \mathcal{S}_{k}$,

$$
\begin{aligned}
\pi(k, u, v) & =\max _{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right) \\
b p(k, u, v) & =\arg \max _{w \in \mathcal{S}_{k-2}}\left(\pi(k-1, w, u) \times q(v \mid w, u) \times e\left(x_{k} \mid v\right)\right)
\end{aligned}
$$

- Set $\left(y_{n-1}, y_{n}\right)=\arg \max _{(u, v)}(\pi(n, u, v) \times q(\mathrm{STOP} \mid u, v))$
- For $k=(n-2) \ldots 1, y_{k}=b p\left(k+2, y_{k+1}, y_{k+2}\right)$
- Return the tag sequence $y_{1} \ldots y_{n}$

The Viterbi Algorithm: Running Time

- $O\left(n|\mathcal{S}|^{3}\right)$ time to calculate $q(s \mid u, v) \times e\left(x_{k} \mid s\right)$ for all k, s, u, v.
- $n|\mathcal{S}|^{2}$ entries in π to be filled in.
- $O(|\mathcal{S}|)$ time to fill in one entry
- $\Rightarrow O\left(n|\mathcal{S}|^{3}\right)$ time in total

Syntactic Parsing

- What's a PCFG?
- What's the probability of a parse tree under a PCFG?
- What's the Chomsky normal form of CFG?
- What's the run time complexity of the CKY algorithm?

A Probabilistic Context-Free Grammar (PCFG)

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow sleeps	1.0
Vt	\Rightarrow saw	1.0
$\mathrm{NN} \Rightarrow$ man	0.7	
NN	\Rightarrow woman	0.2
NN	\Rightarrow telescope	0.1
$\mathrm{DT} \Rightarrow$ the	1.0	
$\mathrm{IN} \Rightarrow$ with	0.5	
$\mathrm{IN} \Rightarrow$ in	0.5	

- Probability of a tree t with rules

$$
\alpha_{1} \rightarrow \beta_{1}, \alpha_{2} \rightarrow \beta_{2}, \ldots, \alpha_{n} \rightarrow \beta_{n}
$$

is $p(t)=\prod_{i=1}^{n} q\left(\alpha_{i} \rightarrow \beta_{i}\right)$ where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.

Chomsky Normal Form

A context free grammar $G=(N, \Sigma, R, S)$ in Chomsky
Normal Form is as follows

- N is a set of non-terminal symbols
- Σ is a set of terminal symbols
- R is a set of rules which take one of two forms:
- $X \rightarrow Y_{1} Y_{2}$ for $X \in N$, and $Y_{1}, Y_{2} \in N$
- $X \rightarrow Y$ for $X \in N$, and $Y \in \Sigma$
- $S \in N$ is a distinguished start symbol

The Full Dynamic Programming Algorithm

Input: a sentence $s=x_{1} \ldots x_{n}$, a PCFG $G=(N, \Sigma, S, R, q)$.

Initialization:

For all $i \in\{1 \ldots n\}$, for all $X \in N$,

$$
\pi(i, i, X)= \begin{cases}q\left(X \rightarrow x_{i}\right) & \text { if } X \rightarrow x_{i} \in R \\ 0 & \text { otherwise }\end{cases}
$$

Algorithm:

- For $l=1 \ldots(n-1) \quad$ What's the run time Complexity?
- For $i=1 \ldots(n-l)$
- Set $j=i+l$
- For all $X \in N$, calculate

$$
\pi(i, j, X)=\max _{\substack{X \rightarrow Y Z \in R, s \in\{\cdots \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

and

$$
b p(i, j, X)=\arg \max _{\substack{X \rightarrow Y \notin R \\ s \in\{i \ldots(j-1)\}}}(q(X \rightarrow Y Z) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
$$

Dependency Parsing

- Can you draw a dependency parse tree for a simple sentence?
- What is projectivity?

Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of lexical items linked by binary asymmetric relations ("arrows") called dependencies

The arrow connects a head (governor, superior, regent) with a dependent (modifier, inferior, subordinate)

Usually, dependencies form a tree (connected, acyclic, single-head)

Projectivity

- Dependencies from a CFG tree using heads, must be projective
- There must not be any crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words.
- But dependency theory normally does allow non-projective structures to account for displaced constituents
- You can't easily get the semantics of certain constructions right without these nonprojective dependencies

Who did Bill buy the coffee from yesterday ?

