Word Meaning and Similarity

Word Similarity:
Distributional Similarity (I)

Problems with thesaurus-based meaning

- We don't have a thesaurus for every language
- Even if we do, they have problems with recall
- Many words are missing
- Most (if not all) phrases are missing
- Some connections between senses are missing
- Thesauri work less well for verbs, adjectives
- Adjectives and verbs have less structured hyponymy relations

Distributional models of meaning

- Also called vector-space models of meaning
- Offer much higher recall than hand-built thesauri
- Although they tend to have lower precision
- Zellig Harris (1954): "oculist and eye-doctor ... occur in almost the same environments.... If A and B have almost identical environments we say that they are synonyms.
- Firth (1957): "You shall know a word by the company it keeps!"

Intuition of distributional word similarity

- Nida example:

```
A bottle of tesguino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.
```

- From context words humans can guess tesgüino means
- an alcoholic beverage like beer
- Intuition for algorithm:
- Two words are similar if they have similar word contexts.

Reminder: Term-document matrix

- Each cell: count of term t in a document $d: \mathrm{tf}_{t, d}$:
- Each document is a count vector in \mathbb{N}^{v} : a column below

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

Reminder: Term-document matrix

- Two documents are similar if their vectors are similar

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

The words in a term-document matrix

- Each word is a count vector in \mathbb{N}^{D} : a row below

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

The words in a term-document matrix

- Two words are similar if their vectors are similar

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

The Term-Context matrix

- Instead of using entire documents, use smaller contexts
- Paragraph
- Window of 10 words
- A word is now defined by a vector over counts of context words

Sample contexts: $\mathbf{2 0}$ words (Brown corpus)

- equal amount of sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of clove and nutmeg,
- on board for their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened to that of
- of a recursive type well suited to programming on the digital computer. In finding the optimal R-stage policy from that of
- substantially affect commerce, for the purpose of gathering data and information necessary for the
10 study authorized in the first section of this

Term-context matrix for word similarity

- Two words are similar in meaning if their context vectors are similar

| apricot | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| pineapple | 0 | 0 | 0 | 1 | 0 | 1 |
| digital | 0 | 2 | 1 | 0 | 1 | 0 |
| information | 0 | 1 | 6 | 0 | 4 | 0 |

Should we use raw counts?

- For the term-document matrix
- We used tf-idf instead of raw term counts
- For the term-context matrix
- Positive Pointwise Mutual Information (PPMI) is common

Pointwise Mutual Information

- Pointwise mutual information:
- Do events x and y co-occur more than if they were independent?

$$
\operatorname{PMI}(X, Y)=\log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

- PMI between two words: (Church \& Hanks 1989)
- Do words x and y co-occur more than if they were independent?

$$
\operatorname{PMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}
$$

- Positive PMI between two words (Niwa \& Nitta 1994)
- Replace all PMI values less than 0 with zero

Computing PPMI on a term-context matrix

- Matrix F with W rows (words) and C columns (contexts)
- f_{ij} is \# of times w_{i} occurs in context c_{j}
apricot
pineapple digital
information

aardvark	computer	data	pinch	result	sugar
0	0	0	1	0	1
0	0	0	1	0	1
0	2	1	0	1	0
0	1	6	0	4	0

$$
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}} \quad p_{i^{*}}=\frac{\sum_{j=1}^{C} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}} \quad p_{* j}=\frac{\sum_{i=1}^{W} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

$$
p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{*_{j}}} \quad \text { ppmi } i_{i j}=\left\{\begin{array}{cc}
p m i_{i j} & \text { if } p m i_{i j}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Count(w,context)

$$
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}} \begin{aligned}
& \text { apricot } \\
& \begin{array}{l}
\text { pineapple } \\
\text { digital } \\
\text { information }
\end{array}
\end{aligned}
$$

$\mathrm{p}(\mathrm{w}=$ information, $\mathrm{c}=$ data $)=6 / 19=.32$
$p(w=$ information $)=11 / 19=.58$ $p(c=$ data $)=7 / 19=.37$
computer data pinch result sugar

0	0	1	0	1
0	0	1	0	1
2	1	0	1	0
1	6	0	4	0

0.16
0.37
0.11
0.26
0.11

\[

\]

- \quad pmi(information,data) $=\log _{2}(.32 /(.37 * .58))=.57$

PPMI(w,context)

	computer	data	pinch	result	sugar
apricot	-	-	2.25	-	2.25
pineapple	-	-	2.25	-	2.25
digital	1.66	0.00	-	0.00	-
information	0.00	0.57	-	0.47	-

Weighing PMI

- PMI is biased toward infrequent events
- Various weighting schemes help alleviate this
- See Turney and Pantel (2010)
- Add-one smoothing can also help

Add-2 Smoothed Count(w,context

	computer	data	pinch	result	sugar
apricot	2	2	3	2	3
pineapple	2	2	3	2	3
digital	4	3	2	3	2
information	3	8	2	6	2

$\mathbf{p (w , c o n t e x t)}$ [add-2]					
computer	data	pinch	result	sugar	
0.03	0.03	0.05	0.03	0.05	0.20
0.03	0.03	0.05	0.03	0.05	0.20
0.07	0.05	0.03	0.05	0.03	0.24
0.05	0.14	0.03	0.10	0.03	0.36
0.19	0.25	0.17	0.22	0.17	

Using syntax to define a word's context

- Zellig Harris (1968)
- "The meaning of entities, and the meaning of grammatical relations among them, is related to the restriction of combinations of these entities relative to other entities"
- Two words are similar if they have similar parse contexts
- Duty and responsibility (Chris Callison-Burch's example)

Modified by adjectives	
Objects of verbs	

additional, administrative, assumed, collective, congressional, constitutional ...
assert, assign, assume, attend to, avoid, become, breach ...

Co-occurrence vectors based on syntactic dependencies

Dekang Lin, 1998 "Automatic Retrieval and Clustering of Similar Words"

- The contexts C are different dependency relations
- Subject-of- "absorb"
- Prepositional-object of "inside"
- Counts for the word cell:

	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{6}} \\ & \frac{\pi}{6} \\ & \vdots \\ & \frac{1}{0} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 己 } \\ & \text { 0 } \\ & 0 \\ & 0 \\ & \frac{1}{0} \\ & 0 \end{aligned}$...	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & \frac{1}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{3} \\ & 0 \\ & \frac{1}{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$...	$\begin{aligned} & \text { 方 } \\ & \text { ت, } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{0} \\ & 0 \end{aligned}$. 0 0 0 0 0 0 0 0 0	nmod-of, architecture	...	$\begin{aligned} & \frac{y}{0} \\ & \stackrel{y}{0} \\ & 0 \\ & i \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{J}} \\ & 0 \\ & 0 \\ & \frac{1}{0} \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$...		$\begin{aligned} & \text { D} \\ & 0 \\ & 0 \\ & \text { Bे } \\ & \text { B } \end{aligned}$	
cell	1	1	1		16	30		3	8	1		6	11			2		3	2	2

PMI applied to dependency relations

Hindle, Don. 1990. Noun Classification from Predicate-Argument Structure. ACL

Object of "drink"	Count	PMI
tea	2	11.8
liquid	2	10.5
wine	2	9.3
anything	3	5.2
it	3	1.3

- "Drink it" more common than "drink wine"
- But "wine" is a better "drinkable" thing than "it"

Word Meaning and Similarity

Word Similarity:
Distributional Similarity (I)

Word Meaning and Similarity

Word Similarity: Distributional Similarity (II)

Reminder: cosine for computing similarity

$$
\begin{aligned}
& \text { Dot product } \\
& \cos (\vec{v}, \vec{w})=\frac{\vec{v} \bullet \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\vec{v}}{|\vec{v}|} \bullet \frac{\vec{w}}{|\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}
\end{aligned}
$$

v_{i} is the PPMI value for word v in context i w_{i} is the PPMI value for word w in context i.
$\operatorname{Cos}(v, \vec{w})$ is the cosine similarity of $v a \overrightarrow{d d} w$

Cosine as a similarity metric

- -1 : vectors point in opposite directions
- +1: vectors point in same directions
- 0: vectors are orthogonal

- Raw frequency or PPMI are nonnegative, so cosine range 0-1

		large	data	computer
	apricot	1	0	0
$\underline{\vec{v} \cdot \vec{w}}=\underline{\vec{v}} \cdot \underline{\vec{w}}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{}$	digital	0	1	2
\| $\|\vec{v}\|\|\vec{w}\| ~\|~\| \vec{v}\|~\| \vec{w} \mid ~ \sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}$	information	1	6	1

Which pair of words is more similar?
cosine(apricot, information) $=\sqrt{\sqrt{1+0+0} \sqrt{1+36+1}}=\frac{1}{\sqrt{38}}=.16$
cosine(digital,information) $=\quad \frac{0+6+2}{\sqrt{0+1+4} \sqrt{1+36+1}}=\frac{8}{\sqrt{38} \sqrt{5}}=.58$
cosine(apricot,digital) $=$

$$
\frac{0+0+0}{\sqrt{1+0+0} \sqrt{0+1+4}}=0
$$

Other possible similarity measures

$\operatorname{sim}_{\operatorname{cosine}}(\vec{v}, \vec{w})=\frac{\overrightarrow{\vec{v}} \cdot \overrightarrow{\vec{w}}}{|\overrightarrow{\vec{V}}| \vec{w} \mid}=\frac{\sum_{i=1}^{N} v_{i} \times w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}$
$\operatorname{sim}_{\operatorname{Jaccard}}(\vec{v}, \vec{w})=\frac{\sum_{i=1}^{N} \min \left(v_{i}, w_{i}\right)}{\sum_{i=1}^{N} \max \left(v_{i}, w_{i}\right)}$
$\operatorname{sim}_{\text {Dice }}(\vec{v}, \vec{w})$
$=\frac{2 \times \sum_{i=1}^{N} \min \left(v_{i}, w_{i}\right)}{\sum_{i=1}^{N}\left(v_{i}+w_{i}\right)}$
$\operatorname{sim}_{\mathrm{JS}}(\vec{v} \| \vec{w})$
$=D\left(\vec{v} \left\lvert\, \frac{\vec{v}+\vec{w}}{2}\right.\right)+D\left(\vec{w} \left\lvert\, \frac{\vec{v}+\vec{w}}{2}\right.\right)$
D: KL Divergence

Word Meaning and Similarity

Word Similarity: Distributional Similarity (II)

