Final Term Review

Semantics
Information Extraction

Semantics

- Concepts
- Word Similarities based on thesauri
- Word Vectors (Sparse, Dense)
- Semantic Role Labeling

Concepts

Word Meanings

- Homonymy (Bank: financial institution, river bank)
- Polysemy (Bank: financial institution, bank building)
- Metonymy (Bank or School: organization, building)

Word Relations

- Synonyms (big / large)
- Antonyms (big / small)
- Hyponym (car is a hyponym of vehical)
- Hypernym (vehical is a hyponym of car)
- Instance (College Station is a town)

Word Similarity based on Thesauri

- Path based, 1/pathlen
- Information Content, IC (LCS (c1, c2)), -logP(LCS (c1, c2)) (Resnik)
- Improved Information Content, considering both commonality and differences, 2logP(LCS (c1, c2)) / (logP(c1) + logP(c2)) (Dekang Lin)

Word Vectors

- Distributional vectors (sparse)
 - Term-document matrix -> term-term matrix
 - Frequency -> PPMI, log(p(w1,w2)/p(w1)*p(w2))
 - Similarity: Cosine of two word vectors
- Dense vectors
 - Singular Value Decomposition
 - Prediction-based
 - Brown clustering

Semantic Role Labeling

- Semantic roles (thematic roles): the abstract role that arguments of a predicate can take wrt the event represented by the predicate.
- Agent, theme, source, target ...
- Propbank, framenet

A simple modern algorithm

```
function SEMANTICROLELABEL(words) returns labeled tree
```

```
parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← EXTRACTFEATURES(node, predicate, parse)

CLASSIFYNODE(node, featurevector, parse)
```

Information Extraction

- Semantic Lexicon Induction
- Relation Extraction
- Coreference resolution
- Event Extraction

Semantic Lexicon Induction

- Syntactic Heuristics
- Co-occurrence based Bootstrapping
- Mutual bootstrapping

Syntactic Heuristics for Learning Semantic Labels

Conjunctions

Lists

Appositives

Predicate Nominals

Compound nouns

lions and tigers and bears

lions, tigers, bears

the horse, a stallion

the wolf is a mammal

tuna fish

Honda Sedan

[Riloff & Shepherd 97; Roark & Charniak 98; Phillips & Riloff 02; etc.]

Hyponym patterns do

dogs such as beagles and boxers dogs, including beagles and boxers

[Hearst 92; KnowItAII (U.Washington), Kozareva et al. 2008; etc.]

Bootstrapping Semantic Lexicons

Mutual Bootstrapping [Riloff & Jones 99]

How to build relation extractors

- 1. Hand-written patterns
- 2. Supervised machine learning
- 3. Semi-supervised and unsupervised
 - Bootstrapping (using seeds)
 - Distant supervision
 - Unsupervised learning from the web

Two different things...

- Anaphora
 - Text
 - World

- (Co)Reference
 - Text
 - World

Kinds of Models

- Mention Pair models
 - Treat coreference chains as a collection of pairwise links
 - Make independent pairwise decisions and reconcile them in some way (e.g. clustering or greedy partitioning)
- Mention ranking models
 - Explicitly rank all candidate antecedents for a mention
- Entity-Mention models
 - A cleaner, but less studied, approach
 - Posit single underlying entities
 - Each mention links to a discourse entity [Pasula et al. 03], [Luo et al. 04]

Patterns/Rules vs. Sequence Tagging

Two general approaches to IE:

Pattern-based systems use patterns or rules that are applied to text.

Sequence tagging models classify individual tokens as to whether or not they should be extracted.

AutoSlog-TS [Riloff 96] (Step 1)

[The World Trade Center], [an icon] of [New York City], was horrifically attacked on [an otherwise beautiful day] in [September 2001] by [Al Qaeda].

Extraction Patterns:

<subj> was attacked
icon of <np>
was attacked on <np>
was attacked in <np>

was attacked by <np>

AutoSlog-TS (Step 2)

Extraction Patterns:

<subj> was attacked
icon of <np>
was attacked on <np>
was attacked in <np>
was attacked by <np>

