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What Is Deep Learning?

• Learning higher level abstractions/representations from data.

• Motivation: how the brain represents and processes sensory

information in a hierarchical manner.

From LeCun’s Deep Learning Tutorial
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Brief Intro to Neural Networks
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Deep learning is based on neural networks.

• Weighted sum followed by nonlinear activation function.

• Weights adjusted using gradient descent (η = learning rate):

wij ← wij + η
∂E

∂wij
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Intro to Neural Network: Backpropagation
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Weightwji is updated as: wji ← wji + ηδjai, where

• ai : activity at input side of weightwji.

• Hidden to output weights (thick red weight). Tk is target value.

δk = (Tk − ak)σ′(netk)

• Deeper weights (green line in figure above).

δj =

[∑
k

wkjδk

]
σ′(netj)



Deep Learning

• Complex models with large number of parameters

– Hierarchical representations

– More parameters = more accurate on training data

– Simple learning rule for training (gradient-based).

• Lots of data

– Needed to get better generalization performance.

– High-dimensional input need exponentially many inputs

(curse of dimensionality).

• Lots of computing power: GPGPU, etc.

– Training large networks can be time consuming.
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Deep Learning, in the Context of AI/ML

From LeCun’s Deep Learning Tutorial6



The Rise of Deep Learning

Made popular in recent years

• Geoffrey Hinton et al. (2006).

• Andrew Ng & Jeff Dean (Google Brain team, 2012).

• Schmidhuber et al.’s deep neural networks (won many

competitions and in some cases showed super human

performance; 2011–). Recurrent neural networks using LSTM

(Long Short-Term Memory).

• Google Deep Mind: Atari 2600 games (2015), AlphaGo (2016).

• ICLR, International Conference on Learning Representations:

First meeting in 2013.
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Long History (in Hind Sight)

• Fukushima’s Neocognitron (1980).

• LeCun et al.’s Convolutional neural networks (1989).

• Schmidhuber’s work on stacked recurrent neural networks (1993).

Vanishing gradient problem.

• See Schmidhuber’s extended review: Schmidhuber, J. (2015).

Deep learning in neural networks: An overview. Neural Networks,

61, 85-117.
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History: Fukushima’s Neocognitron

• Appeared in journal Biological Cybernetics (1980).

• Multiple layers with local receptive fields.

• S cells (trainable) and C cells (fixed weight).

• Deformation-resistent recognition.
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History: LeCun’s Colvolutional Neural Nets

• Convolution kernel (weight sharing) + Subsampling

• Fully connected layers near the end.

• Became a main-stream method in deep learning.
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Motivating Deep Learning: Tensorflow Demo

• http://playground.tensorflow.org

• Demo to explore why deep nnet is powerful and how it is limited.
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Current Trends

• Deep belief networks (based on Boltzmann machine)

• Convolutional neural networks

• Deep Q-learning Network (extensions to reinforcement learning)

• Deep recurrent neural networks using (LSTM)

• Applications to diverse domains.

– Vision, speech, video, NLP, etc.

• Lots of open source tools available.
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Boltzmann Machine to Deep Belief Nets

• Haykin Chapter 11: Stochastic Methods rooted in statistical

mechanics.
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Boltzmann Machine

• Stochastic binary machine: +1 or -1.

• Fully connected symmetric connections: wij = wji.

• Visible vs. hidden neurons, clamped vs. free-running.

• Goal: Learn weights to model prob. dist of visible units.

• Unsupervised. Pattern completion.
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Boltzmann Machine: Energy

• Network state: x from random variable X.

• wij = wji andwii = 0.

• Energy (in analogy to thermodynamics):

E(x) = −
1

2

∑
i

∑
j,i 6=j

wjixixj
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Boltzmann Machine: Prob. of a State x

• Probability of a state x givenE(x) follows the Gibbs distribution:

P (X = x) =
1

Z
exp

(
−
E(x)

T

)
,

– Z: partition function (normalization factor – hard to compute)

Z =
∑
∀x

exp(−E(x)/T )

– T: temperature parameter.

– Low energy states are exponentially more probable.

• State x changed over time following the probability distribution

P (X = x).
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Boltzmann Learning Rule

• Learning based on correlation ρ+ji (clamped) and ρ−ji
(free-running).

∆wji = η
∂L(w)

∂wji
= η

(
ρ+ji − ρ

−
ji

)
where L(w) is the log likelihood of the pattern being any of the

training patterns, and η is the learning rate. This is gradient

ascent.
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Boltzmann Machine Summary

• Theoretically elegant.

• Very slow in practice (especially the unclamped phase).
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Logistic (or Directed) Belief Net

• Similar to Boltzmann Machine, but with directed, acyclic
connections.

P (Xj = xj |X1 = x1, ..., Xj−1 = xj−1) = P (Xj = xj |parents(Xj))

• Same learning rule:

∆wji = η
∂L(w)

∂wji

• With dense connetions, calculation of P becomes intractable.
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Deep Belief Net (1)

• Overcomes issues with Logistic Belief Net. Hinton et al. (2006)

• Based on Restricted Boltzmann Machine (RBM): visible and

hidden layers, with layer-to-layer full connection but no

within-layer connections.

• RBM Back-and-forth update: update hidden given visible, then

update visible given hidden, etc., then train w based on

∂L(w)

∂wji
= ρ

(0)
ji − ρ

(∞)
ji
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Deep Belief Net (2)

Deep Belief Net = Layer-by-layer training using RBM.

Hybrid architecture: Top layer = undirected, lower layers directed.

1. Train RBM based on input to form hidden representation.

2. Use hidden representation as input to train another RBM.

3. Repeat steps 2-3.

* Similar approach: Stacked denoising autoencoders.

Applications: NIST digit recognition, etc.
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Deep Convolutional Neural Networks (1)

• Krizhevsky et al. (2012)

• Applied to ImageNet competition (1.2 million images, 1,000

classes).

• Network: 60 million parameters and 650,000 neurons.

• Top-1 and top-5 error rates of 37.5% and 17.0%.

• Trained with backprop.
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Deep Convolutional Neural Networks (2)

• Learned kernels (first convolutional layer).

• Resembles mammalian RFs: oriented Gabor patterns, color

opponency (red-green, blue-yellow).
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Deep Convolutional Neural Networks (3)

• Left: Hits and misses and close calls.

• Right: Test (1st column) vs. training images with closest hidden

representation to the test data.
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Deep Q-Network (DQN)

Google Deep Mind (Mnih et al. Nature 2015).

• Latest application of deep learning to a reinforcement learning

domain (Q as inQ-learning).

• Applied to Atari 2600 video game playing.
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DQN Overview

• Input: video screen; Output: Q(s, a); Reward: game score.

• Q(s, a): action-value function

– Value of taking action a when in state s.
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DQN Overview

• Input preprocessing

• Experience replay (collect and replay state, action, reward, and

resulting state)

• Delayed (periodic) update ofQ.

• Moving target Q̂ value used to compute error (loss function L,

parameterized by weights θi).

– Gradient descent:
∂L

∂θi
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DQN Algorithm
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DQN Results

• Superhuman performance on over half of the games.
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DQN Hidden Layer Representation (t-SNE map)

• Similar perception, similar reward clustered.
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DQN Operation

• Value vs. game state; Game state vs. action value.



Deep Recurrent Neural Networks
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Feedforward Recurrent

• Feedforward: No memory of past input.

• Recurrent:

– Good: Past input affects present output.

– Bad: Cannot remember far into the past.
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RNN Training: Backprop in Time

• Can unfold recurrent loop: Make it into a feedforward net.

• Use the same backprop algorithm for training.

• Again, cannot remember too far into the past.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory

• LSTM to the rescue (Hochreiter and Schmidhuber, 2017).

• Built-in recurrent memory that can be written (Input gate), reset

(Forget gate), and outputted (Output gate).

From http:

//www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
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Long Short-Term Memory

• Long-term retention possible with LSTM.

From http:

//www.machinelearning.ru/wiki/images/6/6c/RNN_and_LSTM_16102015.pdf
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Long Short-Term Memory in Action

RNN Vanilla RNN Unit

LSTM Unit

• Unfold in time and use backprop as usual.

Fig from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Applications

• Applications: Sequence classification, Sequence translation.

From http://machinelearning.ru
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LSTM Applications

• Applications: Sequence prediction

From http://machinelearning.ru
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LSTM Applications

• Applications: Sequence classification, Sequence prediction,

Sequence translation.

From http://machinelearning.ru
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Deep Learning Applications: Vision

• ConvNet sweepting image recognition challenges.

From LeCun’s Deep Learning Tutorial

40



Deep Learning Applications: Speech

• Deep learning led to major improvement in speech recognition.

From LeCun’s Deep Learning Tutorial
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Deep Learning Applications: Speech

• ConvNet applied to speech recognition.

• Use spectrogram and treat it like a 2D image.

From LeCun’s Deep Learning Tutorial
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Deep Learing Applications: NLP

• Based on encoding/decoding and attention.

From https:

//research.googleblog.com/2016/09/a-neural-network-for-machine.html
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Deep Learing Applications: NLP

• Google’s LSTM-based machine translation.

Wu et al. arXiv:1609.08144 (2016).
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Limitations

• Discriminative vs. generative learning.

– Discriminative: P (class|data). Can easily be fooled with

adversarial input.

– Generative:

P (class, data) = P (class|data)P (data). Explicitly

models the data.

• Deep neural nets mostly use discriminative learning, so can be

fooled by adversarial input. Generative adversarial learning can

overcome this (Goodfellow et al. arXiv:1406.2661 (2014)).
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Deep Learning Tools

• Kaffe: UC Berkeley’s deep learning tool box

• TensorFlow (Google)

• Deep learning modules for Torch (Facebook)

• Microsoft CNTK (Computational Network Tool Kit)

• Other: Apache Mahout (MapReduce-based ML)
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Summary

• Deep belief network: Based on Boltzmann machine. Elegant

theory, good performance.

• Deep convolutional networks: High computational demand, over

the board great performance.

• Deep Q-Network: unique apporach to reinforcement learning.

End-to-end machine learning. Super-human performance.

• Deep recurrent neural networks: sequence learning. LSTM a

powerful mechanism.

• Diverse applications. Top performance.

• Flood of deep learning tools available.
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