
CSCE 314

Programming Languages 

!

JVM

Dr. Hyunyoung Lee


�1



Lee CSCE 314 TAMU

Java Virtual Machine and Java
• The Java Virtual Machine (JVM) is a stack-based abstract 

computing machine.


• JVM was designed to support Java -- Some concepts and 
vocabulary from Java carry to JVM


• A Java program is a collection of class definitions written in 
Java


• A Java compiler translates a class definition into a format 
JVM understands: class file.


• A class file contains JVM instructions (or bytecodes) and a 
symbol table, and some other information. When a JVM 
reads and executes these instructions, the effect is what 
the original Java program called for: the class file has the 
same semantics as the original Java program.

�2



Lee CSCE 314 TAMU

JVM and Java (cont.)
Although JVM was primarily designed for Java, it is theoretically 
possible to design a translator from any programming language into 
JVM’s world.


Role of Java Virtual Machine 


• Loads class files needed and executes bytecodes they contain in 
a running program


• Organizes memory into structured areas


Refer the most recent edition of the official definition of the JVM: 


   “The Java Virtual Machine Specification, Java SE 8 Edition”


   http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf


   by Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley
�3

http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf


Lee CSCE 314 TAMU

The JVM specification defines:
1. A set of instructions and a definition of the 

meanings of those instructions called bytecodes.


2. A binary format called the class file format, 
used to convey bytecodes and related class 
infrastructures in a platform-independent 
manner.


3. An algorithm for identifying programs that 
cannot compromise the integrity of the JVM. 
This algorithm is called verification.

�4



Lee CSCE 314 TAMU

A Stack-based Architecture
The JVM instruction set is designed around a stack-based 
architecture with special object-oriented instructions.


Bytecodes stored in a class file are stored in a binary format

• readable by a computer program but unintelligible to 

humans

• one needs special programs to display the class files in 

human readable forms

• Human readable forms usually are mnemonics

• the JVM specification suggests some mnemonics


Example:

    iconst_2  // push integer constant 2

    iconst_3  // push integer constant 3

    iadd       // add them together

�5



Lee CSCE 314 TAMU

Representation of Memory
Typical CPU instruction set views memory as array of bytes


• Construct object: allocate contiguous sequence of 
bytes


• Access a field: access bytes at a specific offset


• Call a function: jump to a location in memory where 
function resides


JVM allows no byte-level access


• Direct operations for allocating objects, invoking 
methods, accessing fields

�6



Lee CSCE 314 TAMU

Example JVM Bytecode

static int factorial(int n) 

{ int res; 

  for (res = 1; n > 0; n—) res = res * n; 

  return res; 

}

method static int factorial(int), 2 registers, 2 stack slots 

0: iconst_1 

1: istore_1 

2: iload_0 

3: ifle    16 

6: iload_1 

7: iload_0 

8: imul 

9: istore_1 

10: iinc   0, -1 

13: goto   2 

16: iload_1 

17: ireturn

!
// push the integer constant 1 

// store it in register 1 (the res variable) 

// push register 0 (the n parameter) 

// if negative or null, go to PC 16 

// push register 1 (res) 

// push register 0 (n) 

// multiply the two integers at top of stack 

// pop result and store it in register 1 

// decrement register 0 (n) by 1 

// go to PC 2 

// load register 1 (res) 

// return its value to caller

> javac Factorial.java	

> javap -c Factorial	

  will produce … 

Assume the following method in Factorial.java source code:



Lee CSCE 314 TAMU

Operation: Instruction Format: 

          mnemonic  (opcode) -- one byte

          operand1

          operand2

             . . .


Description: A longer description detailing constraints on the operand stack 
contents or constant pool entries, the operation performed, the type of the 
result, etc.


Linking Exceptions: If any linking exceptions may be thrown by the execution 
of this instruction, they are set off one to a line, in the order in which they 
can be thrown.


Runtime Exceptions: Ditto. Other than the linking and execution exceptions, if 
any, listed for an instruction, that instruction must not throw any runtime 
exception except for instances of VirtualMachineError or its subclasses.


Notes: Comments not strictly part of the specification of an instruction are 
set aside as notes.

Bytecode Format

�8



Lee CSCE 314 TAMU

The Main Loop of a JVM Interpreter

do {


    atomically calculate pc and fetch opcode at pc;


    if (operands) fetch operands;


    execute the action for the opcode;


} while (there is more to do);


�9



Lee CSCE 314 TAMU

Class Loaders
• Data in class file format do not have to be stored in a file. 

They can be stored in a database, across the network, as 
part of Java archive file (JAR), or in variety of other ways.


• Essential component of using class files is the class 
ClassLoader, part of the Java platform. Many different 
subclasses of ClassLoaders are available, which load from 
databases, across the network, from JAR files, and so on. 
Java-supporting web browsers have a subclass of 
ClassLoader that can load class file over the Internet.


• If you store your information in some nonstandard format 
(such as compressed) or in a nonstandard place (such as a 
database), you can write your own subclass of ClassLoader.

�10



Lee CSCE 314 TAMU

The Verifier
• To ensure that certain parts of the machine are kept 

safe from tampering, the JVM has a verification 
algorithm to check every class.


• Programs can try to subvert the security of the JVM in 
a variety of ways:


• They might try to overflow the stack, hoping to 
corrupt memory they are not allowed to access.


• They might try to cast an object inappropriately, 
hoping to obtain pointers to forbidden memory.


• The verification algorithm ensures that this does not 
happen by tracing through the code to check that 
objects are always used according to their proper types.

�11



Lee CSCE 314 TAMU

Internal Architecture of JVM

�12



Lee CSCE 314 TAMU

Runtime Data Areas in JVM
• Method area: contains class information, code and 

constants


• Heap: memory for class instances and arrays. This is 
where objects live.


• Java stack (JVM stack): stores “activation records” 
or “stack frames” - a chunk of computer memory 
that contains the data needed for the activation of 
a routine


• PC registers – program counters for each thread


• Native method stacks
�13



Lee CSCE 314 TAMU

Runtime Data Areas
Method Area

• Contains class information

• One for each JVM instance

• Shared by all threads in JVM

• One thread access at a time


Heap

• Contains class instance or array (objects)

• One for each JVM instance

• Facilitates garbage collection

• Expands and contracts as program progresses

�14

method area

class	
data

class	
data

class	
data class	

data

class	
data

class	
data

heap

object

object

object

object

object

object

object
object

object



Lee CSCE 314 TAMU

Objects Representation in Heap

�15

ptr into heap
an object reference

ptr to class data
instance data
instance data
instance data
instance data

the heap

the method area

class

data



Lee CSCE 314 TAMU

Runtime Data Areas: JVM Stack
• Each thread creates separate JVM stack

• Contains frames: current thread’s state

• Pushing and popping of frames

�16



Lee CSCE 314 TAMU

• Local Variables


• Organized in an array


• Accessed via array indices


• Operand Stack


• Organized in an array


• Accessed via pushing and popping


• Always on top of the stack frame


• Work space for operations


• Frame Data


• Constant Pool Resolution: Dynamic Binding


• Normal Method Return


• No exception thrown


• Returns a value to the previous frame

… 
Incoming parameter 2 
Incoming parameter 1 

Frame data 

Local variables 

Operand stack 

Outgoing  
parameters 

Current frame 

Next frame 

Stack Frame

�17



Lee CSCE 314 TAMU

public class BankAccount {	
    private double balance;	
    public static int totalAccounts = 0;	
    public BankAccount() {	
        balance = 0;	
        totalAccounts++;	
    }	
    public void deposit( double amount ) {  balance += amount; }	
}	
public class Driver {	
    public static void main( String[] args ) {	
        BankAccount a = new BankAccount();	
        BankAccount b = new BankAccount();	
        b.deposit( 100 );	
    }	
}

See the animated ppt slides	
for how the Java activation	
records work with this	
example code

Bank Account Example

�18



Lee CSCE 314 TAMU

Principles
• All the Java binary class files that form a complete program 

do not have to be loaded when a program is started.


• Rather, they are loaded on demand, at the time they are 
needed by the program.


• For efficiency, the first time a class file is used, it is 
parsed and placed into method memory


• Each component of a class file is of a fixed size or the size 
is explicitly given immediately before the component 
contents.


• In this manner, the loader can parse the entire class file 
from beginning to end, with each of the component being 
easily recognized and delineated. The same principle 
applies recursively.

�19



Lee CSCE 314 TAMU

Class File Format
• A stream of 8-bit bytes: All 16-bit, 32-bit, and 64-bit quantities 

are constructed by reading in two, four, and eight consecutive 8-
bit bytes.


• Multibyte data items are always stored in big-endian order, 
where the high bytes come first.


• Format supported by java.io.DataInput, and java.io.DataOutput; 
java.io.DataInputStream, and java.io.DataOutputStream;


• For illustration, assume C/C++ like structures with items of types


• u1 : a single 8-bit byte quantity

• u2 : two 8-bit bytes quantity

• u4 : four 8-bit bytes quantity


• Successive items are stored in the class file sequentially, without 
padding or alignment.

�20



Lee CSCE 314 TAMU

Class File Format
struct ClassFile {

  u4       magic_number;

  u2       minor_version;

  u2       major_version;

  u2       constant_pool_count;

  cp_info constant_pool[constant_pool_count-1];

  u2       access_flags;

  u2       this_class;

  u2       super_class;

  u2       interfaces_count;

  u2       interfaces[interfaces_count];

  u2       fields_count;

  field_info        fields[fields_count];

  u2       methods_count;

  method_info     methods[methods_count];

  u2       attributes_count;

  attribute_info   attributes[attributes_count];

};

Class File

Class File Format

Magic Number

Version Information

Constant Pool Count

Constant Pool Information

Access Flags
This Class

Super Class
Interfaces Count

Interfaces

Fields Count

Field Information

Methods Count

Method Information

Attributes Count

Attribute Information

20 / 43

�21



Lee CSCE 314 TAMU

Class File Header
• Magic Number (magic_number): identifies this block of 

data as a binary class file. It has the value 0xCAFEBABE.  
A byte sequence, same for all JVM class files.


• Version Information determine the version of a class file.


• minor_version


• major_version


• Together, the minor and major version items. If 
major_version has value x and minor_version has value 
y, then the class file has version x.y, for example 1.6.

�22



Lee CSCE 314 TAMU

The Constant Pool
• constant_pool_count: The value of this item is 

equal to the number of entries in the 
constant_pool plus one. A constant_pool index is 
valid if and only if it is greater than zero and 
less than constant_pool_count.


• constant_pool[]: a table of structures 
representing various string constants, class and 
interface names, field names, and other constants 
that are referred to within a ClassFile structure 
and its substructures. The constant_pool is 
indexed from 1 to constant_pool_count-1.

�23



Lee CSCE 314 TAMU

Access Specifiers
access_flags: The value of this item is a mask 
of flags used to denote access permissions to 
and properties of this class or interface. The 
interpretation of each flag is as follows:

Class File

Access Specifiers

access_flags: The value of this item is a mask of flags used to denote
access permissions to and properties of this class or interface. The
interpretation of each flag is as follows:

Flag Name Value Interpretation
ACC_PUBLIC 0x0001 Declared public

ACC_FINAL 0x0010 Declared final

ACC_SUPER 0x0020 Treat superclass methods specially
ACC_INTERFACE 0x0200 Is an interface, not a class
ACC_ABSTRACT 0x0400 Declared abstract

23 / 43

�24



Lee CSCE 314 TAMU

Self Description
• this_class: The value of this item must be a valid index 

into the constant_pool table. The constant_pool entry 
at that index must be a CONSTANT_Class_info 
structure representing the class or interface defined by 
the class file.


• super_class: For a class this item must have value zero 
or must be a valid index into constant_pool:


• if zero, the class file represents the class Object.


• otherwise, the constant_pool entry at that index 
must be a CONSTANT_Class_info structure 
representing the direct superclass of the class 
defined by the class file.

�25



Lee CSCE 314 TAMU

Interfaces
• interfaces_count: The value of this item gives 

the number of direct superinterfaces for this 
class or interface type.


• interfaces[]: The value of this item must be a 
valid index into the constant_pool table. The 
entry at each interfaces[i] must be a 
CONSTANT_Class_info structure representing 
an interface that is a direct superinterface of 
this class or interface type, in the left-to-
right order given in the source program.

�26



Lee CSCE 314 TAMU

Fields
• fields_count: The value of this item is the number of 

field_info structures in the fields table. The 
field_info structures represent all fields, both class 
variables, and instance variables, declared by this 
class or interface type.


• fields[]: Each value in the fields table must be a 
field_info structure giving a complete description of 
a field in this class or interface. The fields table 
includes only those fields that are declared by this 
class or interface. It does not include items 
representing fields that are inherited from 
superclasses or superinterfaces.

�27



Lee CSCE 314 TAMU

Methods
• methods_count: The value of this item gives the 

number of method_info structures in the 
methods table.


• methods[]: Each value in this table must be a 
method_info structure giving a complete 
description of a method in this class or interface. 
If the method is not native or abstract, the JVM 
instructions implementing the method are also 
supplied. The methods table does not include 
items representing methods that are inherited 
from superclasses or superinterfaces.

�28



Lee CSCE 314 TAMU

Attributes
• attributes_counts: The value of this item 

gives the number of attributes in the 
attributes table of this class.


• attributes[]: Each value of the attributes 
table must be an attribute structure. A 
JVM implementation is required to silently 
ignore any or all attributes in the 
attributes table of the ClassFile structure 
that it does not recognize.

�29



Lee CSCE 314 TAMU

Verification Process
• One of the most distinctive features of the JVM


• Ensure that class files loaded in memory follow certain 
rules


• Guarantee that programs cannot gain access to fields and 
methods they are not allowed to access, and that they can’t 
otherwise trick the JVM into doing unsafe things


• Verification algorithm is applied to every class as it is loaded 
into the system, before instances are created or static 
properties are used


• Safely download Java applets from the Internet.


• Allows the JVM implementation to assume that the class 
has certain safety properties, therefore making certain 
optimizations possible.

�30



Lee CSCE 314 TAMU

Ideas Behind the Verifier
Given a class file, the verifier asks:

1. Is it a structurally valid class file? (refer slide 21)

2. Are all constant references correct?

3. Are the instructions valid?

4. Will the stack and local variables always contain 

values of the appropriate types?


5. Do the classes used really exist, and do they have 
the necessary methods and field?


Exact details are spelled out in the JVMS document

�31



Lee CSCE 314 TAMU

Are All Constant References Correct?
• Do Class and String constants have a reference to another 

constant that is an UTF8 constant?


• Do Fieldref, Methoref, and InterfaceMethodref constants have 
a class index that is a Class constant and a name-and-type 
index that is a NameAndType constant?


• Do NameAndType constants have a name index that points to a 
UTF8 and type index that points to a UTF8?


• Does this_class index point to a Class constant?


• Does the super_class index point to a Class constant?


• Do the name and descriptor fields of each field and each 
method entry point to a UTF8 constant?


• Are the type names referred to by NameAndType constants 
valid method or field descriptors?

�32



Lee CSCE 314 TAMU

Are All the Instructions Valid?
Once a class file is known to be structurally valid, the verifier 
tries to answer: 


• Does each instruction begin with a recognized opcode? 


• If the instruction takes a constant pool reference as an 
argument, does it point to an actual constant pool entry 
with the correct type?


• If the instruction uses a local variable, is the local variable 
range within the correct range? (determined by the .limit 
locals directive)


• If the instruction is a branch, does it point to the 
beginning of an instruction? (JVM branch instructions use 
byte offsets)

�33



Lee CSCE 314 TAMU

Will Each Instruction Always Find a Correctly Formed 
Stack and Local Variable Array?

• Ideals:


• You want the verifier to prove that your program does 
what you meant


• Failing that, you’d like the verifier to reject any programs 
that could do something illegal, like stack overflow or 
applying an instruction to a value with wrong type.


• Approximations:


• The ideals are too strong requirements: undecidability


• Will the right element always be on top of the stack?


• Each time an instruction at a particular location is 
executed, will the stack always be the same size?

�34



Lee CSCE 314 TAMU

Example 1: Summing array of integers
.method public static addit([I)V

.limit stack 2

.limit locals 3

  iconst_0   // −− initialize running total: variable 1

  istore_1

  iconst_0   // −− initialize loop counter: variable 2

  istore_2

loop:

  aload_0    // −− if length of array is greater

  arraylength  // −− than the loop counter then exit the loop

  iload_2

  if_icmpge end

body:

  aload_0    // push array a

  iload_2    // push loop counter i

  iaload      // push a[i]

  iload_1    // push the sum computed so far

  iadd       // add them

  istore_1   // store the result back into the running sum

  iinc 2 1    // increment loop counter by 1

  goto loop  // start over again

end:

return

�35



Lee CSCE 314 TAMU

Example 2: Code that doesn’t verify
// loop 5 times. Each time, push local var 0 onto the stack

  iconst_5  // initialize var 0 to 5

  istore0

loop:

  iinc 0 -1   // decrement counter

  iload_0    // push the result on the stack

  dup        // make a copy

  ifeq break // get out of the loop on var value 0

  goto loop  // otherwise keep going

break:

  // more instructions


code rejected:  Verifier cannot see that it would 
not cause a stack overflow

�36


