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World is Concurrent
Concurrent programs:


• more than one activities execute 
simultaneously (concurrently)


• no interference between activities, unless 
specially programmed to communicate


A big portion of software we use is concurrent


• OS: IO, user interaction, many processes, . . .


• Web browser, mail client, mail server, . . .


• Think about the Internet!
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Why should we care?
• Several application areas necessitate 

concurrent software


• Concurrency can help in software 
construction:


• organize programs into independent parts


• Concurrent programs can run faster on 
parallel machines


• Concurrent programs promote throughput 
computing on CMT/CMP machines
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Myths and Truths
• Myth: concurrent programming is difficult


• Truth: concurrent programming is very difficult

• In particular: state and concurrency mix poorly


• Truth #2: Concurrent programming can be easy - at least 
depending on the tools and programming languages used


• In pure languages (or the pure segments of those) with 
referentially transparent programs, no difficulty: concurrency 
can be (largely) ignored while reasoning about program 
behavior


• Declarative/pure languages are not the mainstream. Imperative 
languages with threads as their main model for concurrency 
dominates


• World is concurrent, many applications have to model it somehow.
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Language Support for Concurrency
How languages provide means to program concurrent 
programs varies:


• C, C++: concurrency features not part of the 
language, but rather provided in (standard) libraries


• In Java, concurrency features partially part of the 
language and partially defined in its standard 
libraries (Java concurrency API)


• In Erlang, Oz, threads, futures, etc. integral part 
of the language


Next: mechanics of Java’s low level concurrency 
feature - threads
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Threads
• Thread is an independently executed unit of a 

program


• The JVM takes care of scheduling threads, 
typically each active thread gets a small amount 
of processing time in its turn, with rapid 
switching between threads


• In other words: Programmer does not control how 
much of which thread gets executed when 
(preemptive scheduling)


• In a system with more than one processing units, 
threads may execute in parallel
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Threads vs. Processes
Process


1. self-contained execution 
environment


2. own memory space


3. one Java application, one 
process (not always true)

Thread


1. at least one per process


2. shares resources with other 
threads in the process, 
including memory, open files


3. every (Java) program starts 
with one thread (+ some 
system threads for GC etc.)


4. concurrency is attained by 
starting new threads from 
the main thread (recursively)
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Running Threads
public interface Runnable {

   void run();

}

public class MyRunnable implements Runnable {

   public void run() {

      // task here . . .

   }

}

Runnable r = new MyRunnable();

Thread t = new Thread(r);

t.start();
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Examples 
GreetingRunnable.java, PingPong.java

Key points of the examples:


• In presence of side-effects, different interleavings of tasks 
may produce different results


• A situation where the result of a computation may vary 
based on the order of the execution of tasks of the 
computation is called a race condition (or race hazard)

• A race hazard exists when two threads can potentially modify the 

same piece of data in an interleaved way that can corrupt data.


• One of the sources of difficulty of concurrent programming


• Absence of side-effects means that race conditions cannot 
occur (makes “purity” of a language a desirable property)
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Causal Order

Concurrent program:

• All execution states of a given thread are totally ordered

• Execution states of the concurrent program as a whole are partially 

ordered

Java’s concurrency features

Causal order

computational step

sequential execution

concurrent execution

thread 3

thread 2

thread 1

fork a thread
y

x

synchronize a dataflow variable

bind a dataflow variable

Concurrent program:
All execution states of a given thread totally ordered
Execution states of the concurrent program as a whole are partially
ordered

13 / 57
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Extending Thread
Task for a thread can be specified also in a subclass of Thread


public class MyThread extends Thread {

   public void run() { . . . // task here

   }

}

Thread t = new MyThread();

t.start();


Benefits of using Runnable instead:

• It does not identify a task (that can be executed in parallel) with 

a thread object

• Since Runnable is an interface, the class implements Runnable 

could extend another class

• Thread object typically bound with the OS’s thread

• Many runnables can be executed in a single thread for better 

efficiency, e.g., with thread pools
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Aside: Thread Pools
• Thread pools launch a fixed number of OS threads 

and keeps them alive


• Runnable objects executed in a thread pool executes 
in one of those threads (in the first idle one)


• Thread pools commonly used to improve efficiency of 
various server applications (web servers, data base 
engines, etc.)

GreetingRunnable r1 = new GreetingRunnable("Hi!"); 

GreetingRunnable r2 = new GreetingRunnable("Bye!"); 

ExecutorService pool = Executors.newFixedThreadPool(MAX_THREADS);

pool.execute(r1);

pool.execute(r2);
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Stopping Threads
• Threads stop when the run method returns


• They can also be stopped via interrupting them


E.g., new HTTP GET request on a web server, while several threads 
are still processing the previous request from the same client


• Call to the interrupt() method of a thread sets the interrupted flag 
of the thread (Examining the flag with Thread.interrupted() clears 
it)


• Thread itself decides how to (and whether it should) stop - typically 
stopping is preceded by a clean-up (releasing resources etc.)


• Convention: entire body of run method protected by try-catch


• Note: Thread.stop() is deprecated as too dangerous


• Example: InterruptRunnable.java
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Thread States
A thread can be in one of the following states:


• new: just created, not yet started


• runnable: after invoking start(). Not scheduled to run yet


• running: executing


• blocked: waiting for a resource, sleeping for some set 
period of time. When condition met, returns back to 
runnable state


• dead: after return of run method. Cannot be restarted.
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NEW

RUNNABLE
BLOCKED

TERMINATED

Thread t = new Thread()

TIMED_WAITING

WAITING

t.start()

return of run() 
method

waiting for monitor lock

Object.wait with no timeout
Thread.sleep()

condition is met
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Thread Safety
• Some software element is thread-safe if it is 

guaranteed to exhibit correct behavior while 
executed concurrently by more than one thread


• A definition geared towards OO, and the ideology of 
design of Java concurrency features:


• Fields of an object or class always maintain a 
valid state (class invariant), as observed by other 
objects and classes, even when used 
concurrently by multiple threads.


• Postconditions of methods are always satisfied 
for valid preconditions.
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Race Condition Example 
(BankAccount.java)

• Object account is shared among several threads


• First thread reads account’s balance; second thread 
preempts, and updates the balance; first thread 
updates the balance as well, but based on incorrect 
old value.


• deposit and withdraw methods’ postconditions are not 
guaranteed to hold (what are their postconditions?)

public void deposit(double amount) {

   balance = balance + amount;

   . . .

}
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Race Condition Example (Cont.)

• Removing the long sleeps will not help


• Pre-empting occurs at byte/native code 
level, and does not respect Java’s 
expression/statement boundaries


• Note: Local variables, function parameters, 
return values stored in thread’s own stack, 
only have to worry about instance 
variables and objects on the heap

�19



Lee CSCE 314 TAMU

Synchronization With Locks
• Lock object guards a shared resource


• Commonly a lock object is an instance variable 
of a class that needs to modify a shared 
resource:


public class BankAccount {

    public BankAccount() {

        balanceChangeLock = new ReentrantLock();

        . . .

    }

    . . .

    private Lock balanceChangeLock;

}
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Synchronization With Locks (Cont.)

  Code manipulating the shared resource guarded with a lock


public class BankAccount {

    public BankAccount() {

        balanceChangeLock = new ReentrantLock();  . . .

    }

    private Lock balanceChangeLock;

}

!

balanceChangeLock.lock();

// manipulate balance here

balanceChangeLock.unlock();

balanceChangeLock.lock();

try {

 // manipulate balance here

}

finally {

balanceChangeLock.unlock();

}

better
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Example
public void deposit(double amount) {

  balanceChangeLock.lock()

  try {

    System.out.println("Depositing " + amount);

    double nb = balance + amount; 

    System.out.println("New balance is " + nb); 

    balance = nb;

  } finally {

    balanceChangeLock.unlock();

  }

}

Above could be improved - critical sections should be 
as short as possible.
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Lock Ownership
• Thread owns the lock after calling lock(), if 

another thread does not own it already


• If lock owned by another thread, scheduler 
deactivates thread that tries to lock, and 
reactivates periodically to see if lock not owned 
anymore


• Ownership lasts until unlock() called


• “Reentrant” lock means the thread owning a lock 
can lock again (e.g., calling another method using 
the same lock to protect its critical section)
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Per Method Synchronization
• Java ties locks and synchronization: object locks and 

synchronized methods

• The granularity may not always be desirable. Example:


public class BankAccount {

   public synchronized void deposit(double amount) {

      System.out.println("Depositing " + amount);

      double nb = balance + amount;

      System.out.println("New balance is " + nb);

      balance = nb;

   }

   public synchronized void withdraw(double amount) { . . . }

}


• Synchronized methods automatically wraps the body into

lock; try {body} finally { unlock }
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Deadlock 
• Our bank account allows overdraft. Attempts to remedy:


if (account.getBalance() >= amount) account.withdraw(amount);

• Does not work, thread may be preempted between test of 

balance and withdrawing

• Next attempt


public void withdraw(double amount) {

   balanceChangeLock.lock();

   try {

      while (balance < amount) {} // wait balance to grow

      double nb = balance - amount;

      balance = nb; 

   } finally {

      balanceChangeLock.unlock();

   }

}

Waiting, however, 
prevents other threads of 
updating balance

P1 P2

R1

R2
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Deadlock 
A situation where two or more processes are 
unable to proceed because each is waiting for 
one of the others to do something.


!

!

!

“When two trains approach each other at a crossing, both shall come to a full 
stop and neither shall start up again until the other has gone.” -- Statute passed 
by the Kansas (USA) State Legislature, early in the 20th century

P1 P2

R1

R2
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Condition Objects
Condition object allows a temporary release of a lock


public class BankAccount {

  public BankAccount() {

    balance = 0;

    balanceChangeLock = new ReentrantLock(); 

    sufficientFundsCondition = balanceChangeLock.newCondition();

  }

  public void withdraw(double amount) {

    balanceChangeLock.lock()

    try {

      while (balance < amount) sufficientFundsCondition.await();

       . . . 

    } finally { balanceChangeLock.unlock(); }

  }

  private Lock balanceChangeLock;

  private Condition sufficientFundsCondition;

}


Current thread unblocked by a call to signalAll(), a notification to all 
threads blocked with a particular condition object

Current thread blocks, other 
threads can proceed
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signalAll
public void deposit(double amount) {

  balanceChangeLock.lock();

  try {

    . . .

    sufficientFundsCondition.signalAll();

  } finally { balanceChangeLock.unlock(); }

}


• Notification with signalAll means: something has 
changed, it is worthwhile to check if it can 
proceed


• signalAll must be called while owning the lock 
bound to the condition object
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Memory Consistency Errors

Processors have various levels of caches: 
different processors may have a different view 
of memory at a given time


This may lead to memory consistency errors

  int x = 0; // shared between threads A and B

  x++;       // A does this

  System.out.println(x); // Afterwards, B observes x 


                       // x can be either 0 or 1
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Sequential Consistency
A multiprocessor system is sequentially consistent if the result of any 
execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each individual 
processor appear in this sequence in the order specified by its program.


Java (or C++) memory model does not guarantee sequential consistency


Program order only respected within a thread


Special rules by “Event A happens-before event B” relation are the 
guarantees of ordering of events between threads:


• Action A followed by action B in the same thread,


• actions before start of a thread happen before actions in the thread,


• unlock/lock,


• write of volatile field happens-before subsequent reads
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Summary So Far
• Concurrent programming is very difficult when mutable state is 

in place


• A ton of idioms, “best practices”, but still many problems


• Does not easily scale beyond a few collaborating threads


• In particular, lock-based programs do not compose

E.g., assume a container class that has thread-safe insert and delete. It is not 
possible to write a thread-safe “delete item x from container c1 and add it to 
container c2” (see Harris et al.: “Composable Memory Transactions”)


• We do not yet know how to best program concurrent programs


• Several alternative approaches to lock-based concurrency exist


• Next: brief look at non-blocking concurrency and software 
transactional memory
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Atomicity
• An atomic action takes place in one step, no intermediate 

state can be observed.


• We know (now) that e.g. i++ not guaranteed to be atomic. 


• There are some atomic actions


• Reads and writes of references (and of a few other primitive 
types, such as ints, chars)


• Reads and writes of volatile variables (in Java 5 or later, volatile reads 
and writes establish a happens-before relationship, much like acquiring and releasing a mutex)


• Atomicity eliminates errors from unexpected thread 
interleavings but still prone to memory consistency errors
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Example: Synchronized Counter
public class SynchronizedCounter {

   public final class Counter {

      public synchronized int getValue() { return value; }

      public synchronized void increment() { ++value; }

      private int value = 0;

   }

}

If count is an instance of SynchronizedCounter, then making these 
methods synchronized has two effects:


1. It is not possible for two invocations of synchronized methods 
on the same object to interleave.


2. When a synchronized method exits, it automatically establishes a 
happens-before relationship with any subsequent invocation of a 
synchronized method for the same object. This guarantees that 
changes to the state of the object are visible to all threads.
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Example: Non-blocking Counter
import java.util.concurrent.atomic.AtomicInteger;

public class NonblockingCounter {

   private AtomicInteger value;

   public int getValue() { return value.get(); }

   public void increment() {

      int v;

      do { v = value.get(); }

      while (!value.compareAndSet(v, v + 1));

   }

}

value.compareAndSet() updates value to new value (v+1) 
atomically if current value is v, otherwise fails with no 
change in value.
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Atomic Operation
Using atomic operations instead of locks lead to 
an approach of transactions:

1. read a value;


2. speculatively perform a computation;


3. try to atomically update (“commit the transaction”) 
a shared data;


4. if update fails, start over (go to step 1.) and redo 
computation (repeat until success)


nonblocking algorithms are “optimistic”
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Atomic “compare-&-swap”
• Modern processors support atomic “compare-and-swap” (CAS) like 

instructions for updating shared data


• Java concurrency API’s compareAndSet etc. atomicity support builds on 
these primitive instructions.


• Non-blocking approach (“lock-free”) has potential performance 
benefits


• Synchronization at finer level of granularity reduces contention (also 
fast because of direct hardware support)


• Typically not much contention, so few retries are needed


• Retry can be faster than blocking a thread (immediate retry 
without thread scheduling)


• Writing lock-free algorithms requires (a lot of) expertise -- typically 
encapsulated in libraries of lock-free data structures and algorithms.
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Nonblocking Stack
public class ConcurrentStack<E> {

  AtomicReference<Node<E>> head = new AtomicReference<Node<E>>();

  static class Node<E> {

    final E item; Node<E> next;

    public Node(E item) { this.item = item; }

  }

  public void push(E item) {

    Node<E> newHead = new Node<E>(item);

    Node<E> oldHead;

    do {  oldHead = head.get();

           newHead.next = oldHead;

    } while (!head.compareAndSet(

           oldHead, newHead));

  }

  public E pop() {

     Node<E> oldHead;

     Node<E> newHead;

     do { oldHead = head.get();

           if (oldHead == null)

              return null;

           newHead = oldHead.next;

     } while (!head.compareAndSet(

                     oldHead, newHead));

     return oldHead.item;

   }

 } // end of ConcurrentStack

[Example by Tim Peierls and Brian Goetz]�37



Lee CSCE 314 TAMU

Nonblocking Algorithms and Data Structures

• More complex data structures, linked lists, hash 
tables trees, etc. require much more complex 
nonblocking implementations


• This is because more than one value must be 
updated, but direct support for atomic updates of 
only one value


• Requires fancy techniques, like a thread 
encountering a partial transaction, chipping in to help


• Design of a lock free algorithm or a data structure 
can be a serious research project, not typically part 
of everyday programming
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Software Transactional Memory
• The key mechanism of Software Transactional 

Memory is executing an arbitrary (almost) block of 
code in a transaction

• A sequence of memory operations that execute atomically 

and in isolation


• At commit time, transaction log is compared with 
memory, and if view consistent, transaction 
succeeds, otherwise it is rolled back (and usually 
retried).


• Implementation is by keeping a thread-local 
transaction log of each read and write
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Language Support for TM
Goal: programmer specifies what, system figures 
out how:


  lock(l); dostuff; unlock(l) ⇒ atomic { dostuff; }


• HPC languages (Fortress, X10, Chapel) all 
propose atomic


• Research extensions to many languages: Java, 
C#, Haskell, ...


• Many STM libraries: Java, C#, C++
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Compiling Transactions
atomic {

   a.x = t1;

   a.y = t2;

   if (a.z != 0) {

      a.x = 0;

      a.z = t3;

   }

}


tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z != 0) {

    tmWr(&a.x, 0)

    tmWr(&a.z, t3)

}

tmTxnCommit()
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Example Using Locks and TM
double nb = 0;

balanceChangeLock.lock();

try {

  nb = balance + amount;

  balance = nb;

  sufficientFundsCondition.signalAll();

} finally {

  balanceChangeLock.unlock();

}

double nb = 0;

atomic {

  nb = balance + amount;

  balance = nb;

}
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Composing Critical Sections
class Bank {

  Accounts accounts;

  . . .

  void transfer(String name1, String name2, int amount) {

     synchronized(accounts) {   // Lock all accounts

        try {

           accounts.put(name1, accounts.get(name1)-amount);

           accounts.put(name2, accounts.get(name2)+amount);

        } 

        catch (Exception1) { . . . }

        catch (Exception2) { . . . }

     }

}


• Manually decide what needs to be undone after each kind of exception

• Side-effects might be visible in other threads before undone
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Composing Transactions
class Bank {

  Accounts accounts;

  . . .

  void transfer(String name1, String name2, int amount) {

    atomic {

      accounts.put(name1, accounts.get(name1)-amount);

      accounts.put(name2, accounts.get(name2)+amount);

    }

  }

  . . .

}
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Another Example: HashMap (thread-unsafe)
public Object get(Object key) {

   int idx = hash(key);  // Compute hash

   HashEntry e = buckets[idx]; // to find bucket

   while (e != null) {    // Find element in bucket

       if (equals(key, e.key))

           return e.value;

       e = e.next;

   }

   return null;

}
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HashMap (thread-safe)

public Object get(Object key) {

  synchronized (mutex) // mutex guards all accesses to map m

  {  return m.get(key);  }

}

!

Added a synchronization layer

Poor scalability, entire map is locked at once
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HashMap (scalable thread-safe with atomic)

public Object get(Object key) {

  atomic // system guarantees atomicity

  {  return m.get(key);  }

}

!

Added a transaction

Good scalability
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STM
• STM guarantees that there are no deadlocks (due to 

locking, at least)


• Potential for simplifying the reasoning for mutable state 
concurrency


• Active research area, e.g, on how to


• achieve composability


• deal with actions that cannot be backed out from 
(requires guarantees from type system or capable static 
analysis to reject dangerous transactions)


atomic { if (n>k) then launch_missiles();  . . . }


• achieve good performance
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Summary
• Java’s concurrency support has been changing


• Atomic primitives only added in SDK 5


• Reflects the status quo: better programming models are 
being researched and developed, no fully satisfactory 
solution


• Gradually gaining better understanding, e.g, of 
transactions (e.g., Moore and Grossman, “High-Level 
Small-Step Operational Semantics for Transactions,” 
POPL2008)


• Expect more changes in the future. Even if transactions 
wrt. memory will be solved, how about wrt. external 
interaction through disk or other storage
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