
CSCE 314

Programming Languages

!

Concurrency in Java

Dr. Hyunyoung Lee

�1

Lee CSCE 314 TAMU

World is Concurrent
Concurrent programs:

• more than one activities execute
simultaneously (concurrently)

• no interference between activities, unless
specially programmed to communicate

A big portion of software we use is concurrent

• OS: IO, user interaction, many processes, . . .

• Web browser, mail client, mail server, . . .

• Think about the Internet!
�2

Lee CSCE 314 TAMU

Why should we care?
• Several application areas necessitate

concurrent software

• Concurrency can help in software
construction:

• organize programs into independent parts

• Concurrent programs can run faster on
parallel machines

• Concurrent programs promote throughput
computing on CMT/CMP machines

�3

Lee CSCE 314 TAMU

Myths and Truths
• Myth: concurrent programming is difficult

• Truth: concurrent programming is very difficult

• In particular: state and concurrency mix poorly

• Truth #2: Concurrent programming can be easy - at least
depending on the tools and programming languages used

• In pure languages (or the pure segments of those) with
referentially transparent programs, no difficulty: concurrency
can be (largely) ignored while reasoning about program
behavior

• Declarative/pure languages are not the mainstream. Imperative
languages with threads as their main model for concurrency
dominates

• World is concurrent, many applications have to model it somehow.
�4

Lee CSCE 314 TAMU

Language Support for Concurrency
How languages provide means to program concurrent
programs varies:

• C, C++: concurrency features not part of the
language, but rather provided in (standard) libraries

• In Java, concurrency features partially part of the
language and partially defined in its standard
libraries (Java concurrency API)

• In Erlang, Oz, threads, futures, etc. integral part
of the language

Next: mechanics of Java’s low level concurrency
feature - threads

�5

Lee CSCE 314 TAMU

Threads
• Thread is an independently executed unit of a

program

• The JVM takes care of scheduling threads,
typically each active thread gets a small amount
of processing time in its turn, with rapid
switching between threads

• In other words: Programmer does not control how
much of which thread gets executed when
(preemptive scheduling)

• In a system with more than one processing units,
threads may execute in parallel

�6

Lee CSCE 314 TAMU

Threads vs. Processes
Process

1. self-contained execution
environment

2. own memory space

3. one Java application, one
process (not always true)

Thread

1. at least one per process

2. shares resources with other
threads in the process,
including memory, open files

3. every (Java) program starts
with one thread (+ some
system threads for GC etc.)

4. concurrency is attained by
starting new threads from
the main thread (recursively)

�7

Lee CSCE 314 TAMU

Running Threads
public interface Runnable {

 void run();

}

public class MyRunnable implements Runnable {

 public void run() {

 // task here . . .

 }

}

Runnable r = new MyRunnable();

Thread t = new Thread(r);

t.start();

�8

Lee CSCE 314 TAMU

Examples
GreetingRunnable.java, PingPong.java

Key points of the examples:

• In presence of side-effects, different interleavings of tasks
may produce different results

• A situation where the result of a computation may vary
based on the order of the execution of tasks of the
computation is called a race condition (or race hazard)

• A race hazard exists when two threads can potentially modify the

same piece of data in an interleaved way that can corrupt data.

• One of the sources of difficulty of concurrent programming

• Absence of side-effects means that race conditions cannot
occur (makes “purity” of a language a desirable property)

�9

Lee CSCE 314 TAMU

Causal Order

Concurrent program:

• All execution states of a given thread are totally ordered

• Execution states of the concurrent program as a whole are partially

ordered

Java’s concurrency features

Causal order

computational step

sequential execution

concurrent execution

thread 3

thread 2

thread 1

fork a thread
y

x

synchronize a dataflow variable

bind a dataflow variable

Concurrent program:
All execution states of a given thread totally ordered
Execution states of the concurrent program as a whole are partially
ordered

13 / 57
�10

Lee CSCE 314 TAMU

Extending Thread
Task for a thread can be specified also in a subclass of Thread

public class MyThread extends Thread {

 public void run() { . . . // task here

 }

}

Thread t = new MyThread();

t.start();

Benefits of using Runnable instead:

• It does not identify a task (that can be executed in parallel) with

a thread object

• Since Runnable is an interface, the class implements Runnable

could extend another class

• Thread object typically bound with the OS’s thread

• Many runnables can be executed in a single thread for better

efficiency, e.g., with thread pools
�11

Lee CSCE 314 TAMU

Aside: Thread Pools
• Thread pools launch a fixed number of OS threads

and keeps them alive

• Runnable objects executed in a thread pool executes
in one of those threads (in the first idle one)

• Thread pools commonly used to improve efficiency of
various server applications (web servers, data base
engines, etc.)

GreetingRunnable r1 = new GreetingRunnable("Hi!");

GreetingRunnable r2 = new GreetingRunnable("Bye!");

ExecutorService pool = Executors.newFixedThreadPool(MAX_THREADS);

pool.execute(r1);

pool.execute(r2);

�12

Lee CSCE 314 TAMU

Stopping Threads
• Threads stop when the run method returns

• They can also be stopped via interrupting them

E.g., new HTTP GET request on a web server, while several threads
are still processing the previous request from the same client

• Call to the interrupt() method of a thread sets the interrupted flag
of the thread (Examining the flag with Thread.interrupted() clears
it)

• Thread itself decides how to (and whether it should) stop - typically
stopping is preceded by a clean-up (releasing resources etc.)

• Convention: entire body of run method protected by try-catch

• Note: Thread.stop() is deprecated as too dangerous

• Example: InterruptRunnable.java
�13

Lee CSCE 314 TAMU

Thread States
A thread can be in one of the following states:

• new: just created, not yet started

• runnable: after invoking start(). Not scheduled to run yet

• running: executing

• blocked: waiting for a resource, sleeping for some set
period of time. When condition met, returns back to
runnable state

• dead: after return of run method. Cannot be restarted.

�14

Lee CSCE 314 TAMU

NEW

RUNNABLE
BLOCKED

TERMINATED

Thread t = new Thread()

TIMED_WAITING

WAITING

t.start()

return of run()
method

waiting for monitor lock

Object.wait with no timeout
Thread.sleep()

condition is met

�15

Synchronization

�16

Lee CSCE 314 TAMU

Thread Safety
• Some software element is thread-safe if it is

guaranteed to exhibit correct behavior while
executed concurrently by more than one thread

• A definition geared towards OO, and the ideology of
design of Java concurrency features:

• Fields of an object or class always maintain a
valid state (class invariant), as observed by other
objects and classes, even when used
concurrently by multiple threads.

• Postconditions of methods are always satisfied
for valid preconditions.

�17

Lee CSCE 314 TAMU

Race Condition Example
(BankAccount.java)

• Object account is shared among several threads

• First thread reads account’s balance; second thread
preempts, and updates the balance; first thread
updates the balance as well, but based on incorrect
old value.

• deposit and withdraw methods’ postconditions are not
guaranteed to hold (what are their postconditions?)

public void deposit(double amount) {

 balance = balance + amount;

 . . .

}

�18

Lee CSCE 314 TAMU

Race Condition Example (Cont.)

• Removing the long sleeps will not help

• Pre-empting occurs at byte/native code
level, and does not respect Java’s
expression/statement boundaries

• Note: Local variables, function parameters,
return values stored in thread’s own stack,
only have to worry about instance
variables and objects on the heap

�19

Lee CSCE 314 TAMU

Synchronization With Locks
• Lock object guards a shared resource

• Commonly a lock object is an instance variable
of a class that needs to modify a shared
resource:

public class BankAccount {

 public BankAccount() {

 balanceChangeLock = new ReentrantLock();

 . . .

 }

 . . .

 private Lock balanceChangeLock;

}

�20

Lee CSCE 314 TAMU

Synchronization With Locks (Cont.)

 Code manipulating the shared resource guarded with a lock

public class BankAccount {

 public BankAccount() {

 balanceChangeLock = new ReentrantLock(); . . .

 }

 private Lock balanceChangeLock;

}

!

balanceChangeLock.lock();

// manipulate balance here

balanceChangeLock.unlock();

balanceChangeLock.lock();

try {

 // manipulate balance here

}

finally {

balanceChangeLock.unlock();

}

better

�21

Lee CSCE 314 TAMU

Example
public void deposit(double amount) {

 balanceChangeLock.lock()

 try {

 System.out.println("Depositing " + amount);

 double nb = balance + amount;

 System.out.println("New balance is " + nb);

 balance = nb;

 } finally {

 balanceChangeLock.unlock();

 }

}

Above could be improved - critical sections should be
as short as possible.

�22

Lee CSCE 314 TAMU

Lock Ownership
• Thread owns the lock after calling lock(), if

another thread does not own it already

• If lock owned by another thread, scheduler
deactivates thread that tries to lock, and
reactivates periodically to see if lock not owned
anymore

• Ownership lasts until unlock() called

• “Reentrant” lock means the thread owning a lock
can lock again (e.g., calling another method using
the same lock to protect its critical section)

�23

Lee CSCE 314 TAMU

Per Method Synchronization
• Java ties locks and synchronization: object locks and

synchronized methods

• The granularity may not always be desirable. Example:

public class BankAccount {

 public synchronized void deposit(double amount) {

 System.out.println("Depositing " + amount);

 double nb = balance + amount;

 System.out.println("New balance is " + nb);

 balance = nb;

 }

 public synchronized void withdraw(double amount) { . . . }

}

• Synchronized methods automatically wraps the body into

lock; try {body} finally { unlock }

�24

Lee CSCE 314 TAMU

Deadlock
• Our bank account allows overdraft. Attempts to remedy:

if (account.getBalance() >= amount) account.withdraw(amount);

• Does not work, thread may be preempted between test of

balance and withdrawing

• Next attempt

public void withdraw(double amount) {

 balanceChangeLock.lock();

 try {

 while (balance < amount) {} // wait balance to grow

 double nb = balance - amount;

 balance = nb;

 } finally {

 balanceChangeLock.unlock();

 }

}

Waiting, however,
prevents other threads of
updating balance

P1 P2

R1

R2

�25

Lee CSCE 314 TAMU

Deadlock
A situation where two or more processes are
unable to proceed because each is waiting for
one of the others to do something.

!

!

!

“When two trains approach each other at a crossing, both shall come to a full
stop and neither shall start up again until the other has gone.” -- Statute passed
by the Kansas (USA) State Legislature, early in the 20th century

P1 P2

R1

R2

�26

Lee CSCE 314 TAMU

Condition Objects
Condition object allows a temporary release of a lock

public class BankAccount {

 public BankAccount() {

 balance = 0;

 balanceChangeLock = new ReentrantLock();

 sufficientFundsCondition = balanceChangeLock.newCondition();

 }

 public void withdraw(double amount) {

 balanceChangeLock.lock()

 try {

 while (balance < amount) sufficientFundsCondition.await();

 . . .

 } finally { balanceChangeLock.unlock(); }

 }

 private Lock balanceChangeLock;

 private Condition sufficientFundsCondition;

}

Current thread unblocked by a call to signalAll(), a notification to all
threads blocked with a particular condition object

Current thread blocks, other
threads can proceed

�27

Lee CSCE 314 TAMU

signalAll
public void deposit(double amount) {

 balanceChangeLock.lock();

 try {

 . . .

 sufficientFundsCondition.signalAll();

 } finally { balanceChangeLock.unlock(); }

}

• Notification with signalAll means: something has
changed, it is worthwhile to check if it can
proceed

• signalAll must be called while owning the lock
bound to the condition object

�28

Lee CSCE 314 TAMU

Memory Consistency Errors

Processors have various levels of caches:
different processors may have a different view
of memory at a given time

This may lead to memory consistency errors

 int x = 0; // shared between threads A and B

 x++; // A does this

 System.out.println(x); // Afterwards, B observes x

 // x can be either 0 or 1

�29

Lee CSCE 314 TAMU

Sequential Consistency
A multiprocessor system is sequentially consistent if the result of any
execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

Java (or C++) memory model does not guarantee sequential consistency

Program order only respected within a thread

Special rules by “Event A happens-before event B” relation are the
guarantees of ordering of events between threads:

• Action A followed by action B in the same thread,

• actions before start of a thread happen before actions in the thread,

• unlock/lock,

• write of volatile field happens-before subsequent reads

�30

Lee CSCE 314 TAMU

Summary So Far
• Concurrent programming is very difficult when mutable state is

in place

• A ton of idioms, “best practices”, but still many problems

• Does not easily scale beyond a few collaborating threads

• In particular, lock-based programs do not compose

E.g., assume a container class that has thread-safe insert and delete. It is not
possible to write a thread-safe “delete item x from container c1 and add it to
container c2” (see Harris et al.: “Composable Memory Transactions”)

• We do not yet know how to best program concurrent programs

• Several alternative approaches to lock-based concurrency exist

• Next: brief look at non-blocking concurrency and software
transactional memory

�31

Lee CSCE 314 TAMU

Atomicity
• An atomic action takes place in one step, no intermediate

state can be observed.

• We know (now) that e.g. i++ not guaranteed to be atomic.

• There are some atomic actions

• Reads and writes of references (and of a few other primitive
types, such as ints, chars)

• Reads and writes of volatile variables (in Java 5 or later, volatile reads
and writes establish a happens-before relationship, much like acquiring and releasing a mutex)

• Atomicity eliminates errors from unexpected thread
interleavings but still prone to memory consistency errors

�32

http://en.wikipedia.org/wiki/Happened-before

Lee CSCE 314 TAMU

Example: Synchronized Counter
public class SynchronizedCounter {

 public final class Counter {

 public synchronized int getValue() { return value; }

 public synchronized void increment() { ++value; }

 private int value = 0;

 }

}

If count is an instance of SynchronizedCounter, then making these
methods synchronized has two effects:

1. It is not possible for two invocations of synchronized methods
on the same object to interleave.

2. When a synchronized method exits, it automatically establishes a
happens-before relationship with any subsequent invocation of a
synchronized method for the same object. This guarantees that
changes to the state of the object are visible to all threads.

�33

Lee CSCE 314 TAMU

Example: Non-blocking Counter
import java.util.concurrent.atomic.AtomicInteger;

public class NonblockingCounter {

 private AtomicInteger value;

 public int getValue() { return value.get(); }

 public void increment() {

 int v;

 do { v = value.get(); }

 while (!value.compareAndSet(v, v + 1));

 }

}

value.compareAndSet() updates value to new value (v+1)
atomically if current value is v, otherwise fails with no
change in value.

�34

Lee CSCE 314 TAMU

Atomic Operation
Using atomic operations instead of locks lead to
an approach of transactions:

1. read a value;

2. speculatively perform a computation;

3. try to atomically update (“commit the transaction”)
a shared data;

4. if update fails, start over (go to step 1.) and redo
computation (repeat until success)

nonblocking algorithms are “optimistic”
�35

Lee CSCE 314 TAMU

Atomic “compare-&-swap”
• Modern processors support atomic “compare-and-swap” (CAS) like

instructions for updating shared data

• Java concurrency API’s compareAndSet etc. atomicity support builds on
these primitive instructions.

• Non-blocking approach (“lock-free”) has potential performance
benefits

• Synchronization at finer level of granularity reduces contention (also
fast because of direct hardware support)

• Typically not much contention, so few retries are needed

• Retry can be faster than blocking a thread (immediate retry
without thread scheduling)

• Writing lock-free algorithms requires (a lot of) expertise -- typically
encapsulated in libraries of lock-free data structures and algorithms.

�36

Lee CSCE 314 TAMU

Nonblocking Stack
public class ConcurrentStack<E> {

 AtomicReference<Node<E>> head = new AtomicReference<Node<E>>();

 static class Node<E> {

 final E item; Node<E> next;

 public Node(E item) { this.item = item; }

 }

 public void push(E item) {

 Node<E> newHead = new Node<E>(item);

 Node<E> oldHead;

 do { oldHead = head.get();

 newHead.next = oldHead;

 } while (!head.compareAndSet(

 oldHead, newHead));

 }

 public E pop() {

 Node<E> oldHead;

 Node<E> newHead;

 do { oldHead = head.get();

 if (oldHead == null)

 return null;

 newHead = oldHead.next;

 } while (!head.compareAndSet(

 oldHead, newHead));

 return oldHead.item;

 }

 } // end of ConcurrentStack

[Example by Tim Peierls and Brian Goetz]�37

Lee CSCE 314 TAMU

Nonblocking Algorithms and Data Structures

• More complex data structures, linked lists, hash
tables trees, etc. require much more complex
nonblocking implementations

• This is because more than one value must be
updated, but direct support for atomic updates of
only one value

• Requires fancy techniques, like a thread
encountering a partial transaction, chipping in to help

• Design of a lock free algorithm or a data structure
can be a serious research project, not typically part
of everyday programming

�38

Lee CSCE 314 TAMU

Software Transactional Memory
• The key mechanism of Software Transactional

Memory is executing an arbitrary (almost) block of
code in a transaction

• A sequence of memory operations that execute atomically

and in isolation

• At commit time, transaction log is compared with
memory, and if view consistent, transaction
succeeds, otherwise it is rolled back (and usually
retried).

• Implementation is by keeping a thread-local
transaction log of each read and write

�39

Lee CSCE 314 TAMU

Language Support for TM
Goal: programmer specifies what, system figures
out how:

 lock(l); dostuff; unlock(l) ⇒ atomic { dostuff; }

• HPC languages (Fortress, X10, Chapel) all
propose atomic

• Research extensions to many languages: Java,
C#, Haskell, ...

• Many STM libraries: Java, C#, C++
�40

Lee CSCE 314 TAMU

Compiling Transactions
atomic {

 a.x = t1;

 a.y = t2;

 if (a.z != 0) {

 a.x = 0;

 a.z = t3;

 }

}

tmTxnBegin()

tmWr(&a.x, t1)

tmWr(&a.y, t2)

if (tmRd(&a.z != 0) {

 tmWr(&a.x, 0)

 tmWr(&a.z, t3)

}

tmTxnCommit()

�41

Lee CSCE 314 TAMU

Example Using Locks and TM
double nb = 0;

balanceChangeLock.lock();

try {

 nb = balance + amount;

 balance = nb;

 sufficientFundsCondition.signalAll();

} finally {

 balanceChangeLock.unlock();

}

double nb = 0;

atomic {

 nb = balance + amount;

 balance = nb;

}

�42

Lee CSCE 314 TAMU

Composing Critical Sections
class Bank {

 Accounts accounts;

 . . .

 void transfer(String name1, String name2, int amount) {

 synchronized(accounts) { // Lock all accounts

 try {

 accounts.put(name1, accounts.get(name1)-amount);

 accounts.put(name2, accounts.get(name2)+amount);

 }

 catch (Exception1) { . . . }

 catch (Exception2) { . . . }

 }

}

• Manually decide what needs to be undone after each kind of exception

• Side-effects might be visible in other threads before undone

�43

Lee CSCE 314 TAMU

Composing Transactions
class Bank {

 Accounts accounts;

 . . .

 void transfer(String name1, String name2, int amount) {

 atomic {

 accounts.put(name1, accounts.get(name1)-amount);

 accounts.put(name2, accounts.get(name2)+amount);

 }

 }

 . . .

}

�44

Lee CSCE 314 TAMU

Another Example: HashMap (thread-unsafe)
public Object get(Object key) {

 int idx = hash(key); // Compute hash

 HashEntry e = buckets[idx]; // to find bucket

 while (e != null) { // Find element in bucket

 if (equals(key, e.key))

 return e.value;

 e = e.next;

 }

 return null;

}

�45

Lee CSCE 314 TAMU

HashMap (thread-safe)

public Object get(Object key) {

 synchronized (mutex) // mutex guards all accesses to map m

 { return m.get(key); }

}

!

Added a synchronization layer

Poor scalability, entire map is locked at once

�46

Lee CSCE 314 TAMU

HashMap (scalable thread-safe with atomic)

public Object get(Object key) {

 atomic // system guarantees atomicity

 { return m.get(key); }

}

!

Added a transaction

Good scalability

�47

Lee CSCE 314 TAMU

STM
• STM guarantees that there are no deadlocks (due to

locking, at least)

• Potential for simplifying the reasoning for mutable state
concurrency

• Active research area, e.g, on how to

• achieve composability

• deal with actions that cannot be backed out from
(requires guarantees from type system or capable static
analysis to reject dangerous transactions)

atomic { if (n>k) then launch_missiles(); . . . }

• achieve good performance

�48

Lee CSCE 314 TAMU

Summary
• Java’s concurrency support has been changing

• Atomic primitives only added in SDK 5

• Reflects the status quo: better programming models are
being researched and developed, no fully satisfactory
solution

• Gradually gaining better understanding, e.g, of
transactions (e.g., Moore and Grossman, “High-Level
Small-Step Operational Semantics for Transactions,”
POPL2008)

• Expect more changes in the future. Even if transactions
wrt. memory will be solved, how about wrt. external
interaction through disk or other storage

�49

