
Lee CSCE 314 TAMU

1

CSCE 314
Programming Languages

Functors, Applicatives, and Monads

Dr. Hyunyoung Lee



Lee CSCE 314 TAMU

2

A common programming pattern can be abstracted 
out as a definition.

For example:

Motivation – Generic Functions

inc :: [Int] -> [Int]

inc []     = []

inc (n:ns) = n+1 : inc ns

sqr :: [Int] -> [Int]

sqr []     = []

sqr (n:ns) = n^2 : sqr ns

Both 
functions 
are defined 
in the same 
manner!



Lee CSCE 314 TAMU

3

Using map

inc :: [Int] -> [Int]

inc []     = []

inc (n:ns) = n+1 : inc ns

sqr :: [Int] -> [Int]

sqr []     = []

sqr (n:ns) = n^2 : sqr ns

map :: (a -> b) -> [a] -> [b]

map f []     = []

map f (n:ns) = f n : map f ns

inc = map (+1)

sqr = map (^2)



Lee CSCE 314 TAMU

4

Class of types that support mapping of 
function. For example, lists and trees.

Functors

class Functor f where

fmap :: (a -> b) -> f a -> f b

fmap takes a function of type (a->b) and a structure of 
type (f a), applies the function to each element of the 
structure, and returns a structure of type (f b). 
Functor instance example 1: the list structure []
instance Functor [] where

-- fmap :: (a -> b) -> [a] -> [b]

fmap = map

(f a) is a data 
structure that 
contains elements 
of type a



Lee CSCE 314 TAMU

5

Functor instance example 2: the Maybe type

Now, you can do
> fmap (+1) Nothing

Nothing

> fmap not (Just True)

Just False

data Maybe a = Nothing | Just a

instance Functor Maybe where

-- fmap :: (a -> b) -> Maybe a -> Maybe b

fmap _ Nothing  = Nothing

fmap g (Just x) = Just (g x) 



Lee CSCE 314 TAMU

6

Functor instance example: 
the Maybe type (Cont.)

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html



Lee CSCE 314 TAMU

7

Functor instance example 3: the Tree type

Now, you can do
> fmap (+1) (Node (Leaf 1) (Leaf 2))

Node (Leaf 2) (Leaf 3)

> fmap (even) (Node (Leaf 1) (Leaf 2))

Node (Leaf False) (Leaf True)

data Tree a = Leaf a | Node (Tree a) (Tree a)

deriving Show 

instance Functor Tree where

-- fmap :: (a -> b) -> Tree a -> Tree b

fmap g (Leaf x)   = Leaf (g x)

fmap g (Node l r) = Node (fmap g l) (fmap g r) 



Lee CSCE 314 TAMU

8

1. fmap id      = id

2. fmap (g . h) = fmap g . fmap h

Functor laws

1. fmap preserves the identity function

2. fmap also preserves the function composition, 
where g has type b -> c and h has type a -> b

3. The functor laws ensure that fmap does 
perform a mapping operation, without altering 
the natural property of the data structure.



Lee CSCE 314 TAMU

9

1. fmap can be used to process the elements 
of any structure that is functorial.

2. Allows us to define generic functions that 
can be used with any functor.

Benefits of Functors

Example: increment (inc) function can be used with any 
functor with Int type elements

inc :: Functor f => f Int -> f Int

inc = fmap (+1)

> inc (Just 1)

Just 2

> inc [1,2,3]

[2,3,4]

> inc (Node (Leaf 1) (Leaf 2))

Node (Leaf 2) (Leaf 3)



Lee CSCE 314 TAMU

10

Functors abstract the idea of mapping a function 
over each element of a structure.  

Want to be more flexible?

class Functor f where

fmap :: (a -> b) -> f a -> f b

The first argument of fmap is a function that takes one 
argument, but we want more flexibility!  We want to be able 
to use functions that take any number of arguments.  

class Functor f => Applicative f where

pure  :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Only one argument 
function!



Lee CSCE 314 TAMU

11

Applicative

The function pure takes a value of any type as its 
argument and returns a structure of type f a, that is, an 
applicative functor that contains the value.

The operator <*> is a generalization of function application 
for which the argument function, the argument value, and 
the result value are all contained in f structure.

<*> associates to the left: ( (pure g <*> x) <*> y) <*> z

fmap g x = pure g <*> x = g <$> x

class (Functor f) => Applicative f where

pure  :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b



Lee CSCE 314 TAMU

12

Applicative functor instance example 1: Maybe

> pure (+1) <*> Nothing
Nothing
> pure (+) <*> Just 2 <*> Just 3
Just 5
> mult3 x y z = x*y*z
> pure mult3 <*> Just 1 <*> Just 2 <*> Just 4
Just 8

data Maybe a = Nothing | Just a

instance Applicative Maybe where
-- pure :: a -> Maybe a

pure = Just
-- (<*>) :: Maybe (a->b) -> Maybe a -> Maybe b

Nothing  <*> _  = Nothing

(Just g) <*> mx = fmap g mx



Lee CSCE 314 TAMU

13

Applicative functor instance example: Maybe (Cont.)

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html



Lee CSCE 314 TAMU

14

Applicative functor instance example 2: list type []

> pure (+1) <*> [1,2,3]
[2,3,4]
> pure (+) <*> [1,3] <*> [2,5]
[3,6,5,8]
> pure (:) <*> "ab" <*> ["cd","ef"]
["acd","aef","bcd","bef"]

instance Applicative [] where
-- pure :: a -> [a]

pure x = [x]
-- (<*>) :: [a -> b] -> [a] -> [b]

gs <*> xs  = [ g x | g <- gs, x <- xs ]
pure transforms a value into a singleton list.
<*> takes a list of functions and a list of arguments, and 
applies each function to each argument in turn, returning 
all the results in a list.



Lee CSCE 314 TAMU

15

Applicative functor instance example: [] (Cont.)

Picture source:
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

> [(*2), (+3)] <*> [1,2,3]
[2,4,6,4,5,6]



Lee CSCE 314 TAMU

16

pure id <*> x   = x

pure (g x)      = pure g <*> pure x

x <*> pure y    = pure (\g -> g y) <*> x

x <*> (y <*> z) = (pure (.) <*> x <*> y) <*> z

Applicative laws

1. pure preserves the identity function
2. pure also preserves function application
3. When an effectful function is applied to a pure 

argument, the order in which the two components 
are evaluated does not matter.

4. The operator <*> is associative (modulo types 
that are involved).



Lee CSCE 314 TAMU

17

Monads

§ Roughly, a monad is a strategy for combining 
computations into more complex computations.

§ Another pattern of effectful programming (applying 
pure functions to (side-)effectful arguments)

§ (>>=) is called “bind” operator.
§ Note: return may be removed from the Monad class in the   future, 

and become a library function instead.

class (Applicative m) => Monad m where

return  :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

return = pure



Lee CSCE 314 TAMU

18

Monad instance example 1: Maybe
data Maybe a = Nothing | Just a

instance Monad Maybe where
-- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing  >>= _ = Nothing

(Just x) >>= f = f x

> (Just 10) >>= div2

Just 5
> (Just 10) >>= div2 >>= div2
Nothing
> (Just 10) >>= div2 >>= div2 >>= div2
Nothing

div2 x = if even x then Just (x `div` 2) else Nothing



Lee CSCE 314 TAMU

19

Monad instance example 2: list type []
instance Monad [] where

-- (>>=) :: [a] -> (a -> [b]) -> [b]

xs >>= f = [y | x <- xs, y <- f x]

> pairs [1,2] [3,4]
[(1,3),(1,4),(2,3),(2,4)]

pairs :: [a] -> [b] -> [(a,b)]

pairs xs ys = do x <- xs

y <- ys

return (x,y)

pairs xs ys = xs >>= \x ->

ys >>= \y ->

return (x,y)



Lee CSCE 314 TAMU

20

return x >>= f    =  f x –- left identity

mx >>= return     =  mx  -- right identity

(mx >>= f) >>= g  =  mx >>= (\x -> (f x >>= g))

Monad laws

1. If we return a value and then feed it into a 
monadic function, this should give the same 
result as simply applying the function to the 
value.

2. If we feed the result of a monadic computation 
into the function return, this should give the 
same result as simply performing the 
computation.

3. >>= is associative


