
Lee CSCE 314 TAMU

1

CSCE 314

Programming Languages

Interactive Programs:

I/O and Monads

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Introduction

To date, we have seen how Haskell can be used to
write batch programs that take all their inputs at
the start and give all their outputs at the end.

batch

program

inputs
 outputs

Lee CSCE 314 TAMU

3

However, we would also like to use Haskell to write
interactive programs that read from the keyboard
and write to the screen, as they are running.

interactive

program

inputs
 outputs

keyboard

screen

Lee CSCE 314 TAMU

4

The Problem: Haskell functions are
pure mathematical functions

However, reading from the keyboard and writing
to the screen are side effects:

Haskell programs have no side effects.

referential transparency: called with the
same arguments, a function always
returns the same value

Interactive programs have side effects.

Lee CSCE 314 TAMU

5

The Solution - The IO Type

Interactive programs can be viewed as a pure
function whose domain and codomain are the
current state of the world:

type IO = World -> World

However, an interactive program may return a
result value in addition to performing side
effects:
 type IO a = World -> (a, World)

What if we need an interactive program that takes an
argument of type b?

Use currying:

b -> World -> (a, World)

Lee CSCE 314 TAMU

6

The Solution (Cont.)

Now, interactive programs (impure actions) can
be defined using the IO type:

IO a
The type of actions that
return a value of type a

For example:

IO Char
The type of actions that

return a character

IO ()
The type of actions that return the

empty tuple (a dummy value);
purely side-effecting actions

Lee CSCE 314 TAMU

7

Basic Actions (defined in the standard library)

getChar :: IO Char

1.  The action getChar reads a character from the
keyboard, echoes it to the screen, and returns
the character as its result value:

2.  The action putChar c writes the character c
to the screen, and returns no result value:

putChar :: Char -> IO ()

3.  The action return v simply returns the value v,
without performing any interaction:

return :: a -> IO a

Lee CSCE 314 TAMU

8

Sequencing

A sequence of actions can be combined as a single composite
action using the >>= or >> (binding) operators.

Compare it with:

(>>=) :: IO a -> (a -> IO b) -> IO b

(action1 >>= action2) world0 =

 let (a, world1) = action1 world0

 (b, world2) = action2 a world1

 in (b, world2)

(>>) :: IO a -> IO b -> IO b

(action1 >> action2) world0 =

 let (a, world1) = action1 world0

 (b, world2) = action2 world1

 in (b, world2)

Apply action1 to
world0, get a new
action (action2 v),
and apply that to

the modified
world

Lee CSCE 314 TAMU

9

Derived Primitives

getLine :: IO String
getLine = getChar >>= \x ->

 if x == ‘\n’ then return []

 else (getLine >>= \xs -> return (x:xs))

❚  Reading a string from the keyboard:

putStr :: String → IO ()
putStr [] = return ()

putStr (x:xs) = putChar x >> putStr xs

❚  Writing a string to the screen:

❚  Writing a string and moving to a new line:

putStrLn :: String → IO ()
putStrLn xs = putStr xs >> putChar '\n'

Lee CSCE 314 TAMU

10

Derived Primitives (do Notation)

getLine :: IO String
getLine = do x <- getChar

 if x == ‘\n’ then return []

 else do xs <- getLine

 return (x:xs)

❚  Reading a string from the keyboard:

putStr :: String → IO ()
putStr [] = return ()

putStr (x:xs) = do putChar x

 putStr xs

❚  Writing a string to the screen:

❚  Writing a string and
moving to a new line:
 putStrLn :: String → IO ()

putStrLn xs = do putStr xs

 putChar '\n'

Lee CSCE 314 TAMU

11

Building More Complex IO Actions

We can now define an action that prompts for a
string to be entered and displays its length:

strlen :: IO ()

strlen = putStr "Enter a string: ” >>

 getLine >>= \xs ->

 putStr "The string has ” >>

 putStr (show (length xs)) >>

 putStrLn " characters."

Lee CSCE 314 TAMU

12

Building More Complex IO Actions (do)

Using the do natation:

strlen :: IO ()

strlen = do putStr “Enter a string: ”

 xs <- getLine

 putStr “The string has ”

 putStr (show (length xs))

 putStrLn “ characters.”

Lee CSCE 314 TAMU

13

IO Monad As An Abstract Data Type

Consider:

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char

putChar :: Char -> IO ()

openFile :: [Char] -> IOMode -> IO Handle

•  All primitive IO operations return an IO action

•  IO monad is sticky: all functions that take an IO

argument, return an IO action

•  return offers a way in to an IO action, but no function

offers a way out (you can bind a variable to the IO
result by use of “<-”)

Lee CSCE 314 TAMU

14

The Type of main

A complete Haskell program is a single IO action.
For example:

main :: IO ()

main = getLine >>= \cs ->

 putLine (reverse cs)

Typically, IO “contaminates” a small part of the
program (outermost part), and a larger portion of
a Haskell program does not perform any IO. For
example, in the above definition of main, reverse is
a non-IO function.

Lee CSCE 314 TAMU

15

Monad (Roughly)

•  Monad is a strategy for combining computations
into more complex computations

•  No language support, besides higher-order
functions, is necessary

•  But Haskell provides the do notation

•  Monads play a central role in the I/O system

•  Understanding the I/O monad will improve

your code and extend your capabilities

Lee CSCE 314 TAMU

16

Monad Example: Maybe

Reminder:

•  Maybe is a type constructor and Nothing and Just are

data constructors

•  The polymorphic type Maybe a is the type of all
computations that may return a value or Nothing –
properties of the Maybe container

•  For example, let f be a partial function of type a -> b,
then we can define f with type:

 f :: a -> Maybe b -- returns Just b or Nothing

data Maybe a = Nothing | Just a

Lee CSCE 314 TAMU

17

Example Using Maybe
Consider the following function querying a database,
signaling failure with Nothing

Now, consider the task of performing a sequence of
queries:

doQuery :: Query -> DB -> Maybe Record

r :: Maybe Record

r = case doQuery q1 db of

 Nothing -> Nothing

 Just r1 -> case doQuery (q2 r1) db of

 Nothing -> Nothing

 Just r2 -> case doQuery (q3 r2) db of

 Nothing -> Nothing

 Just r3 -> . . .

Lee CSCE 314 TAMU

18

Capture the pattern into a combinator

This allows the following rewrite to doQuery

thenMB :: Maybe a -> (a -> Maybe b) -> Maybe b

mB `thenMB` f = case mB of

 Nothing -> Nothing

 Just a -> f a

r :: Maybe Record

r = doQuery q1 db `thenMB` \r1 ->

 doQuery (q2 r1) db `thenMB` \r2 ->

 doQuery (q3 r2) db `thenMB` . . .

Lee CSCE 314 TAMU

19

Another Example: The List Monad
The common Haskell type constructor, [] (for building
lists), is also a monad that encapsulates a strategy for
combining computations that can return 0, 1, or multiple
values:

The type of (>>=):

 (>>=) :: [a] -> (a -> [b]) -> [b]

The binding operation creates a new list containing the
results of applying the function to all of the values in the
original list.

 concatMap :: (a -> [b]) -> [a] -> [b]

instance Monad [] where

 m >>= f = concatMap f m

 return x = [x]

Lee CSCE 314 TAMU

20

Combinators controlling parameter
passing and computational flow

Many uses for the kind of programming we just saw

•  Data Structures: lists, trees, sets

•  Computational Flow: Maybe, Error Reporting, non-

determinism

•  Value Passing: state transformer, environment

variables, output generation

•  Interaction with external state: IO, GUI

programming

•  Other: parsing combinators, concurrency, mutable

data structures

There are instances of Monad for all of the above situations

Lee CSCE 314 TAMU

21

Monad Definition
Monad is a triple (M, return, >>=) consisting of a
type constructor M and two polymorphic
functions:

return :: a -> M a

(>>=) :: M a -> (a -> M b) -> M b

which satisfy the monad laws (note, checking
these is up to the programmer):

return x >>= f == f x -- left identity

m >>= return == m -- right identity

(m >>= f) >>= g ==

 m >>= (\x -> f x >>= g) -- associativity

Lee CSCE 314 TAMU

22

What is the practical meaning of the monad laws?
Let us rewrite the laws in do-notation:

Left identity:

do { x’ <- return x;
 f x’ == do { f x }
 }

Right identity:

do { x <- m;
 return x == do { m }
 }

Associativity:

do { y <- do { x <- m; == do { x <- m;
 f x y <- f x;
 } g y
 g y }
 }

Lee CSCE 314 TAMU

23

The Monad Type Class

•  >> is a shorthand for >>= ignoring the result of first action

•  Any type with compatible combinators can be made to be

an instance of this class. For example:

class Monad m where

 >>= :: m a -> (a -> m b) -> m b

 >> :: m a -> m b -> m b

 return :: a -> m a

 m >> k = m >>= _ -> k

data Maybe a = Just a | Nothing

thenMB :: Maybe a -> (a -> Maybe b) -> Maybe b

instance Monad Maybe where

 (>>=) = thenMB

 return a = Just a

Lee CSCE 314 TAMU

24

Utilizing the Monad Type Class

•  The type class gives a common interface for all monads

•  Thus, we can define functions operating on all monads.

•  For example, execute each monadic computation in a list:

class Monad m where

 >>= :: m a -> (a -> m b) -> m b

 >> :: m a -> m b -> m b

 return :: a -> m a

 m >> k = m >>= _ -> k

sequence :: Monad m => [m a] -> m [a]

sequence [] = return []

sequence (c:cs) = c >>= \x ->

 sequence cs >>= \xs ->

 return (x:xs)

Lee CSCE 314 TAMU

25

Running a Monad
•  Most monadic computations (such as IO actions)

are functions of some sorts

•  Combining computations with bind creates ever
more complex computations, where some state/
world/. . . is threaded from one computation to
another, but essentially a complex computation
is still a function of some sorts

•  A monadic computation is “performed” by
applying this function

Lee CSCE 314 TAMU

26

Monad Summary
Converting a program into a monadic form means:

•  A function of type a -> b is converted to a function of

type a -> M b

•  M then captures whatever needs to be captured,

environment, state, . . .

•  and can be changed easily

Going into, staying in, and getting out?

•  Roughly, return gets a value into a monad

•  Bind keeps us in the monad and allows to perform

computations within

•  There’s nothing to get us out! -- This is crucial in the IO

monad for not “leaking” side effects to otherwise purely
functional program

Lee CSCE 314 TAMU

27

Hangman

Consider the following version of hangman:

1.  One player secretly types in a word.

2.  The other player tries to deduce the word,
by entering a sequence of guesses.

3.  For each guess, the computer indicates
which letters in the secret word occur in
the guess.

4.  The game ends when the guess is correct.

Lee CSCE 314 TAMU

28

hangman :: IO ()

hangman =

 do putStrLn "Think of a word: "

 word ← sgetLine

 putStrLn "Try to guess it:"

 guess word

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

Hangman (Cont.)

Lee CSCE 314 TAMU

29

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

sgetLine :: IO String

sgetLine = do x ← getCh

 if x == '\n' then

 do putChar x

 return []

 else

 do putChar '-'

 xs ← sgetLine

 return (x:xs)

Hangman (Cont.)

Lee CSCE 314 TAMU

30

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False

 c ← getChar

 hSetEcho stdin True

 return c

The action getCh reads a single character from
the keyboard, without echoing it to the screen:

Hangman (Cont.)

Lee CSCE 314 TAMU

31

The function guess is the main loop, which requests
and processes guesses until the game ends.

guess :: String → IO ()

guess word =

 do putStr "> "

 xs ← getLine

 if xs == word then

 putStrLn "You got it!"

 else

 do putStrLn (diff word xs)

 guess word

Hangman (Cont.)

Lee CSCE 314 TAMU

32

The function diff indicates which characters in one
string occur in a second string:

For example:

> diff "haskell" "pascal"

"-as--ll"

diff :: String → String → String

diff xs ys =

 [if elem x ys then x else '-' | x ← xs]

Hangman (Cont.)

