
Lee CSCE 314 TAMU

1

CSCE 314

Programming Languages

Interactive Programming: I/O

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Introduction

To date, we have seen how Haskell can be used to
write batch programs that take all their inputs at
the start and give all their outputs at the end
(e.g., a compiler).

batch

program

inputs
 outputs

Lee CSCE 314 TAMU

3

However, we would also like to use Haskell to write
interactive programs that read from the keyboard
and write to the screen, as they are running (e.g.,
an interpreter).

interactive

program

inputs
 outputs

keyboard

screen

Lee CSCE 314 TAMU

4

The Problem: Haskell functions are
pure mathematical functions

However, reading from the keyboard and writing
to the screen are side effects:

Haskell programs have no side effects.

referential transparency: called with the
same arguments, a function always
returns the same value

Interactive programs have side effects.

Lee CSCE 314 TAMU

5

The Solution - The IO Type

Interactive programs can be viewed as a pure
function whose domain and codomain are the
current state of the world:

type IO = World -> World

However, an interactive program may return a result
value in addition to performing side effects:

type IO a = World -> (a, World)

What if we need an interactive program that takes an
argument of type b? b -> IO a

b -> World -> (a, World)

Lee CSCE 314 TAMU

6

The Solution (Cont.)

Now, interactive programs (impure actions) can
be defined using the IO type:

IO a
The type of actions that
return a value of type a

For example:

IO Char
The type of actions that

return a character

IO ()
The type of actions that return the

empty tuple (a dummy value);
purely side-effecting actions

Lee CSCE 314 TAMU

7

Basic Actions (built into the GHC system)

getChar :: IO Char

1.  The action getChar reads a character from the
keyboard, echoes it to the screen, and returns
the character as its result value:

2.  The action putChar c writes the character c
to the screen, and returns no result value:

putChar :: Char -> IO ()

3.  The action return v simply returns the value v,
without performing any interaction with the user:

return :: a -> IO a

Lee CSCE 314 TAMU

8

Sequencing – do notation

A sequence of IO actions can be combined into a single
composite action using the do notation:

The layout
rule applies

 do v1 <- a1

 v2 <- a2

 a3

 . . .

 vn <- an

 return (f v1 v2 ... vn)

First perform action a1 and
call its result value v1, …,

and finally, apply the
function f to combine all the
results into a single value,
and return it as the result
value from the expression as

a whole.

Called “generator”
because ai generates
value for vi

If the value vi is
not used, simply
write ai

Lee CSCE 314 TAMU

9

Sequencing Example

Deafine an action (act1) that reads three characters,
discards the second, and returns the first and third as
a pair.

act1 :: IO (Char,Char)

act1 = do x <- getChar

 getChar

 y <- getChar

 return (x,y)

The character read by the
second getChar is not used

Lee CSCE 314 TAMU

10

Derived Primitives

getLine :: IO String
getLine = do x <- getChar

 if x == ‘\n’ then return []

 else do xs <- getLine

 return (x:xs)

❚  Reading a string from the keyboard:

putStr :: String -> IO ()
putStr [] = return ()

putStr (x:xs) = do putChar x

 putStr xs

❚  Writing a string to the screen:

❚  Writing a string and
moving to a new line:
 putStrLn :: String -> IO ()

putStrLn xs = do putStr xs

 putChar '\n'

Lee CSCE 314 TAMU

11

Building More Complex IO Actions

We can now define an action that prompts for a
string to be entered and displays its length:

strlen :: IO ()

strlen = do putStr “Enter a string: ”

 xs <- getLine

 putStr “The string has ”

 putStr (show (length xs))

 putStrLn “ characters.”

> strlen

Enter a string: Haskell Rocks!

The string has 14 characters.

Now, try:

Lee CSCE 314 TAMU

12

The Type of main

A complete Haskell program is a single IO action.
For example:

main :: IO ()

main = getLine >>= \cs ->

 putLine (reverse cs)

Typically, IO “contaminates” a small part of the
program (outermost part), and a larger portion of
a Haskell program does not perform any IO. For
example, in the above definition of main, reverse is
a non-IO function.

Lee CSCE 314 TAMU

13

Hangman

Consider the following version of hangman:

1.  One player secretly types in a word.

2.  The other player tries to deduce the word,
by entering a sequence of guesses.

3.  For each guess, the computer indicates
which letters in the secret word occur in
the guess.

4.  The game ends when the guess is correct.

Lee CSCE 314 TAMU

14

hangman :: IO ()

hangman =

 do putStrLn "Think of a word: "

 word <- sgetLine

 putStrLn "Try to guess it:"

 guess word

We adopt a top down approach to implementing
hangman in Haskell, starting as follows:

Hangman (Cont.)

Lee CSCE 314 TAMU

15

The action sgetLine reads a line of text from the
keyboard, echoing each character as a dash:

sgetLine :: IO String

sgetLine = do x <- getCh

 if x == '\n' then

 do putChar x

 return []

 else

 do putChar '-'

 xs <- sgetLine

 return (x:xs)

Hangman (Cont.)

Lee CSCE 314 TAMU

16

import System.IO

getCh :: IO Char

getCh = do hSetEcho stdin False –- echo off

 c <- getChar

 hSetEcho stdin True -- echo on

 return c

The action getCh reads a single character from
the keyboard, without echoing it to the screen:

Hangman (Cont.)

Lee CSCE 314 TAMU

17

The function guess is the main loop, which requests
and processes guesses until the game ends.

guess :: String -> IO ()

guess word =

 do putStr "> "

 xs <- getLine

 if xs == word then

 putStrLn "You got it!"

 else

 do putStrLn (diff word xs)

 guess word

Hangman (Cont.)

Lee CSCE 314 TAMU

18

The function diff indicates which characters in
one string occur in the second string:

For example:

> diff "haskell" "pascal"

"-as--ll"

diff :: String -> String -> String

diff xs ys =

 [if elem x ys then x else '-' | x <- xs]

Hangman (Cont.)

