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Names


•  Names refer to different kinds of entities in 
programs, such as variables, functions, classes, 
templates, modules, . . . . 


•  Names can be reserved or user-defined 


•  Names can be bound statically or dynamically


•  Name bindings have a scope: the program area 
where they are visible
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Variables

•  Essentially, variables are bindings of a name to 

a memory address. 

•  They also have a type, value, and lifetime

•  Bindings can be


•  dynamic (occur at run time), or 

•  static (occur prior to run time)


•  What are the scopes of names here, when are 
variables bound to types and values, and what 
are their lifetimes?


const int d = 400; 
void f() { double d = 100;  
           { double d = 200; std::cout << d;}   
           std::cout << d;  
         }  
double g() { return d+1;} 
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Scope

•  Scope is a property of a name binding

•  The scope of a name binding are the parts of a 

program (collection of statements, declarations, 
or expressions) that can access that binding


•  Static/lexical scoping

•  Binding’s scope is determined by the lexical 

structure of the program (and is thus known 
statically)


•  The norm in most of today’s languages

•  Efficient lookup: memory location of each 

variable known at compile-time

•  Scopes can be nested – inner bindings hide 

the outer ones
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Lexical Scoping

namespace std { ... } 
 
namespace N {  
  void f(int x) {};  
  class B { 
    void f (bool b) { 
      if (b) 
      { 
        bool b = false; // confusing but OK    
        std::cout << b; 
      } 
    } 
  }; 
} 
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Dynamic Scoping

•  Some versions of LISP have dynamic scoping

•  Variable’s binding is taken from the most recent 

declaration encountered in the execution path of the 
program


•  Macro expansion of the C preprocessor gives another 
example of dynamic scoping


•  Makes reasoning difficult. For example,


void add_two(int *x) { 
  const int a = 2; 
  x = ADD_A(x); 
} 

#define ADD_A(x) x + a 
  
void add_one(int *x) { 
  const int a = 1; 
  x = ADD_A(x); 
} 
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l- and r-values

Depending on the context, a variable can denote 
the address (l-value), or the value (r-value)


int x;  

x = x + 1; 

Some languages distinguish between the syntax 
denoting the value and the address, e.g., in ML


x := !x + 1 

From type checking perspective, l- or r-
valueness is part of the type of an expression
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Lifetime

•  Time when a variable has memory allocated for it

•  Scope and lifetime of a variable often go hand in hand

•  A variable can be hidden, but still alive


•  A variable can be in scope, but not alive


void f (bool b) { 
  if (b) { 

    bool b = false; // hides the parameter b 

    std::cout << b; 

  } 

} 

A* a = new A(); 
A& aref = *a; 

delete a; 

std::cout << aref; // aref is not alive, but in scope 
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Types and Type Systems

•  Types are collections of values (with operations that can 

apply to them)

•  At the machine level, values are just sequences of bits 

•  Is this 0100 0000 0101 1000 0000 0000 0000 0000


•  floating point number 3.375? 

•  integer 1079508992? 

•  two short integers 16472 and 0? 

•  four ASCII characters @ X NUL NUL?


•  Programming at machine-level (assembly) requires that 
programmer keeps track of what are the types of each 
piece of data


•  Type errors (attempting an operation on a data type for 
which the operation is not defined) hard to avoid 


•  Goal of type systems is to enable detection of type 
errors – reject meaningless programs
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Languages with some type system, but unsound


•  C, C++, Eiffel

•  Reject most meaningless programs:


  int i = 1; char* p = i; 
•  but allow some:


•  and deem the behavior undefined – just let the 
machine run and do whatever


union { 
  char* p; 
  int i; 
} my_union; 
void foo() { 
  my_union.i = 1; 
  char* p = my_union.p; 
   . . . 
} 
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Sound Type System: Java, Haskell

•  Reject some meaningless programs at compile-

time:

  Int i = “Erroneous”; 

•  Add checks at run-time so that no program 
behavior is undefined

interface Stack 
{ void push(Object elem); 
  Object pop(); 
} 
class MyStack { . . . } 
 
Stack s = new MyStack(); 
s.push(1); 
s.push(”whoAreYou…”); 
Int i = (Int) s.pop(); // throws an exception 
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Dynamic (but Sound) Type System

•  Scheme, Javascript


•  Reject no syntactically correct programs at 
compile-time, types are enforced at run-time:




  (car (cons 1 2)) ; ok 
  (car 5)          ; error at run-time 

•  Straightforward to define the set of safe 
programs and to detect unsafe ones
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Type Systems

Common errors -- examples of operations that are 
outlawed by type systems:

•  Add an integer to a function

•  Assign to a constant

•  Call a non-existing function

•  Access a private field




Type systems can help:

•  in early error detection

•  in code maintenance

•  in enforcing abstractions

•  in documentation

•  in efficiency
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Type Systems Terminology

Static vs. dynamic typing




•  Whether type checking is done at compile time 
or at run time




Strong vs. weak typing




•  Sometimes means no type errors at run time 
vs. possibly type errors at run time (type 
safety)


•  Sometimes means no coersions vs. coersions 
(implicit type conversion)


•  Sometimes even means static vs. dynamic
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Type Systems Terminology (Cont.)


Type inference



•  Whether programmers are required to manually 

state the types of expressions used in their 
program or the types can be determined based 
on how the expr.s are used




•  E.g., C requires that every variable be declared 

with a type; Haskell infers types based on a 
global analysis
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Type Checking in Language Implementation

Type checking in language processing

Source
program

✏✏

Optimizer

✏✏

Lexer // Parser // Type
checker

//

✏✏

99

Code
generator

machine code //

bytecode

##

Machine
✏✏

I/O

OO

Interpreter
99

I/Oyy

Virtual
machine

JIT

;;

ee I/O

%%

Jaakko Järvi (TAMU) Programming Languages CSCE-314 October 25, 2012 30 / 43



Lee CSCE 314 TAMU 

17 

Type Checking

•  Reminder: CF grammars can capture a superset of 

meaningful programs

•  Type checking makes this set smaller (usually to a subset 

of meaningful programs)

•  What kind of safety properties CF grammars cannot 

express?

•  Variables are always declared prior to their use

•  Variable declarations unique

•  As CF grammars cannot tie a variable to its definition, 

must parse expressions “untyped,” and type-check 
later


•  Type checker ascribes a type to each expression in a 
program, and checks that each expression and 
declaration is well-formed
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Typing Relation

•  By “expression t is of type T”, it means that we can see 

(without having to evaluate t) that when t is evaluated, 
the result is some value t’ of type T


•  All of the following mean the same

•  “t is of type T”, “t has type T”, “type of t is T”,

•  “t belongs to type T”

•  Notation:  t : T  or  t ∈ T  or  t :: T (in Haskell)


          more commonly, Γ ⊢ t : T

          where Γ is the context, or typing environment




•  What are the types of expression x+y below?

   float f(float x, float y) { return x+y; } 
   int g(int x, int y) { return x+y; } 
   x : float, y : float  ⊢  x+y : float 
   x : int, y : int  ⊢  x+y : int 
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Type Checker As a Function


Type checker is a function that takes a program as 
its input (as an AST) and returns true or false, or a 
new AST, where each sub-expression is annotated 
with a type, function overloads resolved, etc.



Examples of different forms of type checking 
functions:

    checkStmt :: Env -> Stmt -> ( Bool, Env )

    checkExpr :: Env -> Expr -> Type




Lee CSCE 314 TAMU 

20 

Defining a Type System with Informal 
Rules – Example Type Rules


•  All referenced variables must be declared


•  All declared variables must have unique 
names




•  The + operation must be called with two 

expressions of type int, and the resulting 
type is int 
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Defining a Type System with Informal Rules 
– Example Type Check Statement

•  Skip is always well-formed


•  An assignment is well-formed if

•  its target variable is declared,

•  its source expression is well-formed, and

•  the declared type of the target variable is the same 

as the type of the source expression


•  A conditional is well-formed if its test expression 
has type bool, and both then and else branches 
are well-formed statements
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Defining a Type System with Informal Rules 
– Example Type Check Statement (Cont.)

•  A while loop is well-formed if its test 

expression has type bool, and its body is a 
well-formed statement


•  A block is well-formed if all of its statements 
are well-formed


•  A variable declaration is well-formed if the 
variable has not already been defined in the 
same scope, and if the type of the initializer 
expression is the same as the type of the 
variable
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Defining a Type System Using Formal 
Language

Common way to specify type systems is using 
natural deduction style rules – “inference rules”




A1   . . .   An

-------------


 B




Example:

        A ∧ B           A => B   A

       --------         -----------

           B                   B




(Do they look/sound familiar?)
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Type Rules – Example

A conditional is well-formed if its test 
expression has type bool, and both then and 
else branches are well-formed statements




Γ ⊢ e : bool   Γ ⊢ s1 : ok   Γ ⊢ s2 : ok

---------------------------------------


Γ ⊢ if e s1 s2 : ok



