
Lee CSCE 314 TAMU

1

CSCE 314

Programming Languages

Name Scope and Type System

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

Names

•  Names refer to different kinds of entities in
programs, such as variables, functions, classes,
templates, modules,

•  Names can be reserved or user-defined

•  Names can be bound statically or dynamically

•  Name bindings have a scope: the program area
where they are visible

Lee CSCE 314 TAMU

3

Variables

•  Essentially, variables are bindings of a name to

a memory address.

•  They also have a type, value, and lifetime

•  Bindings can be

•  dynamic (occur at run time), or

•  static (occur prior to run time)

•  What are the scopes of names here, when are
variables bound to types and values, and what
are their lifetimes?

const int d = 400;
void f() { double d = 100;
 { double d = 200; std::cout << d;}
 std::cout << d;
 }
double g() { return d+1;}

Lee CSCE 314 TAMU

4

Scope

•  Scope is a property of a name binding

•  The scope of a name binding are the parts of a

program (collection of statements, declarations,
or expressions) that can access that binding

•  Static/lexical scoping

•  Binding’s scope is determined by the lexical

structure of the program (and is thus known
statically)

•  The norm in most of today’s languages

•  Efficient lookup: memory location of each

variable known at compile-time

•  Scopes can be nested – inner bindings hide

the outer ones

Lee CSCE 314 TAMU

5

Lexical Scoping

namespace std { ... }

namespace N {
 void f(int x) {};
 class B {
 void f (bool b) {
 if (b)
 {
 bool b = false; // confusing but OK
 std::cout << b;
 }
 }
 };
}

Lee CSCE 314 TAMU

6

Dynamic Scoping

•  Some versions of LISP have dynamic scoping

•  Variable’s binding is taken from the most recent

declaration encountered in the execution path of the
program

•  Macro expansion of the C preprocessor gives another
example of dynamic scoping

•  Makes reasoning difficult. For example,

void add_two(int *x) {
 const int a = 2;
 x = ADD_A(x);
}

#define ADD_A(x) x + a

void add_one(int *x) {
 const int a = 1;
 x = ADD_A(x);
}

Lee CSCE 314 TAMU

7

l- and r-values

Depending on the context, a variable can denote
the address (l-value), or the value (r-value)

int x;

x = x + 1;

Some languages distinguish between the syntax
denoting the value and the address, e.g., in ML

x := !x + 1

From type checking perspective, l- or r-
valueness is part of the type of an expression

Lee CSCE 314 TAMU

8

Lifetime

•  Time when a variable has memory allocated for it

•  Scope and lifetime of a variable often go hand in hand

•  A variable can be hidden, but still alive

•  A variable can be in scope, but not alive

void f (bool b) {
 if (b) {

 bool b = false; // hides the parameter b

 std::cout << b;

 }

}

A* a = new A();
A& aref = *a;

delete a;

std::cout << aref; // aref is not alive, but in scope

Lee CSCE 314 TAMU

9

Types and Type Systems

•  Types are collections of values (with operations that can

apply to them)

•  At the machine level, values are just sequences of bits

•  Is this 0100 0000 0101 1000 0000 0000 0000 0000

•  floating point number 3.375?

•  integer 1079508992?

•  two short integers 16472 and 0?

•  four ASCII characters @ X NUL NUL?

•  Programming at machine-level (assembly) requires that
programmer keeps track of what are the types of each
piece of data

•  Type errors (attempting an operation on a data type for
which the operation is not defined) hard to avoid

•  Goal of type systems is to enable detection of type
errors – reject meaningless programs

Lee CSCE 314 TAMU

10

Languages with some type system, but unsound

•  C, C++, Eiffel

•  Reject most meaningless programs:

 int i = 1; char* p = i;
•  but allow some:

•  and deem the behavior undefined – just let the
machine run and do whatever

union {
 char* p;
 int i;
} my_union;
void foo() {
 my_union.i = 1;
 char* p = my_union.p;
 . . .
}

Lee CSCE 314 TAMU

11

Sound Type System: Java, Haskell

•  Reject some meaningless programs at compile-

time:

 Int i = “Erroneous”;

•  Add checks at run-time so that no program
behavior is undefined

interface Stack
{ void push(Object elem);
 Object pop();
}
class MyStack { . . . }

Stack s = new MyStack();
s.push(1);
s.push(”whoAreYou…”);
Int i = (Int) s.pop(); // throws an exception

Lee CSCE 314 TAMU

12

Dynamic (but Sound) Type System

•  Scheme, Javascript

•  Reject no syntactically correct programs at
compile-time, types are enforced at run-time:

 (car (cons 1 2)) ; ok
 (car 5) ; error at run-time

•  Straightforward to define the set of safe
programs and to detect unsafe ones

Lee CSCE 314 TAMU

13

Type Systems

Common errors -- examples of operations that are
outlawed by type systems:

•  Add an integer to a function

•  Assign to a constant

•  Call a non-existing function

•  Access a private field

Type systems can help:

•  in early error detection

•  in code maintenance

•  in enforcing abstractions

•  in documentation

•  in efficiency

Lee CSCE 314 TAMU

14

Type Systems Terminology

Static vs. dynamic typing

•  Whether type checking is done at compile time
or at run time

Strong vs. weak typing

•  Sometimes means no type errors at run time
vs. possibly type errors at run time (type
safety)

•  Sometimes means no coersions vs. coersions
(implicit type conversion)

•  Sometimes even means static vs. dynamic

Lee CSCE 314 TAMU

15

Type Systems Terminology (Cont.)

Type inference

•  Whether programmers are required to manually

state the types of expressions used in their
program or the types can be determined based
on how the expr.s are used

•  E.g., C requires that every variable be declared

with a type; Haskell infers types based on a
global analysis

Lee CSCE 314 TAMU

16

Type Checking in Language Implementation

Type checking in language processing

Source
program

✏✏

Optimizer

✏✏

Lexer // Parser // Type
checker

//

✏✏

99

Code
generator

machine code //

bytecode

##

Machine
✏✏

I/O

OO

Interpreter
99

I/Oyy

Virtual
machine

JIT

;;

ee I/O

%%

Jaakko Järvi (TAMU) Programming Languages CSCE-314 October 25, 2012 30 / 43

Lee CSCE 314 TAMU

17

Type Checking

•  Reminder: CF grammars can capture a superset of

meaningful programs

•  Type checking makes this set smaller (usually to a subset

of meaningful programs)

•  What kind of safety properties CF grammars cannot

express?

•  Variables are always declared prior to their use

•  Variable declarations unique

•  As CF grammars cannot tie a variable to its definition,

must parse expressions “untyped,” and type-check
later

•  Type checker ascribes a type to each expression in a
program, and checks that each expression and
declaration is well-formed

Lee CSCE 314 TAMU

18

Typing Relation

•  By “expression t is of type T”, it means that we can see

(without having to evaluate t) that when t is evaluated,
the result is some value t’ of type T

•  All of the following mean the same

•  “t is of type T”, “t has type T”, “type of t is T”,

•  “t belongs to type T”

•  Notation: t : T or t ∈ T or t :: T (in Haskell)

 more commonly, Γ ⊢ t : T

 where Γ is the context, or typing environment

•  What are the types of expression x+y below?

 float f(float x, float y) { return x+y; }
 int g(int x, int y) { return x+y; }
 x : float, y : float ⊢ x+y : float
 x : int, y : int ⊢ x+y : int

Lee CSCE 314 TAMU

19

Type Checker As a Function

Type checker is a function that takes a program as
its input (as an AST) and returns true or false, or a
new AST, where each sub-expression is annotated
with a type, function overloads resolved, etc.

Examples of different forms of type checking
functions:

 checkStmt :: Env -> Stmt -> (Bool, Env)

 checkExpr :: Env -> Expr -> Type

Lee CSCE 314 TAMU

20

Defining a Type System with Informal
Rules – Example Type Rules

•  All referenced variables must be declared

•  All declared variables must have unique
names

•  The + operation must be called with two

expressions of type int, and the resulting
type is int

Lee CSCE 314 TAMU

21

Defining a Type System with Informal Rules
– Example Type Check Statement

•  Skip is always well-formed

•  An assignment is well-formed if

•  its target variable is declared,

•  its source expression is well-formed, and

•  the declared type of the target variable is the same

as the type of the source expression

•  A conditional is well-formed if its test expression
has type bool, and both then and else branches
are well-formed statements

Lee CSCE 314 TAMU

22

Defining a Type System with Informal Rules
– Example Type Check Statement (Cont.)

•  A while loop is well-formed if its test

expression has type bool, and its body is a
well-formed statement

•  A block is well-formed if all of its statements
are well-formed

•  A variable declaration is well-formed if the
variable has not already been defined in the
same scope, and if the type of the initializer
expression is the same as the type of the
variable

Lee CSCE 314 TAMU

23

Defining a Type System Using Formal
Language

Common way to specify type systems is using
natural deduction style rules – “inference rules”

A1 . . . An

 B

Example:

 A ∧ B A => B A

 -------- -----------

 B B

(Do they look/sound familiar?)

Lee CSCE 314 TAMU

24

Type Rules – Example

A conditional is well-formed if its test
expression has type bool, and both then and
else branches are well-formed statements

Γ ⊢ e : bool Γ ⊢ s1 : ok Γ ⊢ s2 : ok

Γ ⊢ if e s1 s2 : ok

