
Lee CSCE 314 TAMU

1

CSCE 314

Programming Languages

Syntactic Analysis

Dr. Hyunyoung Lee

Lee CSCE 314 TAMU

2

•  Language = syntax + semantics

•  The syntax of a language is concerned with the
form of a program: how expressions, commands,
declarations etc. are put together to result in
the final program.

•  The semantics of a language is concerned with
the meaning of a program: how the programs
behave when executed on computers

•  Syntax defines the set of valid programs,
semantics how valid programs behave

What Is a Programming Language?

Lee CSCE 314 TAMU

3

•  Syntax: grammatical structure

•  lexical – how words are formed

•  phrasal – how sentences are formed from words

•  Semantics: meaning of programs

•  Informal: English documents such as reference

manuals

•  Formal:

1.  Operational semantics: execution on an abstract machine, e.g.,

<x:=c,s>->[s[x -> s(c)]]

2.  Denotational semantics: meaning defined as a mathematical

function from input to output, definition compositional, e.g.,
[[x:=c]](s)->s[x -> [[c]]s]

3.  Axiomatic semantics: each construct is defined by pre- and
post- conditions, e.g., {y≤x} z:=x; z:=z+1 {y<z}

Programming Language Definition

Lee CSCE 314 TAMU

4

•  Defines legal programs:

programs that can be executed by machine

•  Defined by grammar rules

Define how to make “sentences” out of “words”

•  For programming languages

•  Sentences are called statements, expressions, terms,

commands, and so on

•  Words are called tokens

•  Grammar rules describe both tokens and statements

•  Often, grammars alone cannot capture exactly the set
of valid programs. Grammars combined with additional
rules are a common approach.

Language Syntax

Lee CSCE 314 TAMU

5

•  Statement is a sequence of tokens

•  Token is a sequence of characters

•  Lexical analyzer

produces a sequence of tokens from a
character sequence

•  Parser

produces a statement representation
from the token sequence

•  Statements are represented as
parse trees (abstract syntax tree)

Language Syntax (Cont.)

Syntax

Language Syntax

Statement is a sequence of tokens
Token is a sequence of characters
Lexical analyzer:

produces a token sequence from a
character sequence

Parser
produces a statement representation
from a token sequence

Statements are represented as parse
trees (abstract syntax trees)

Lexical Analyzer

Parser

characters

tokens

sentences

8 / 33

Lee CSCE 314 TAMU

6

•  BNF is a common notation to define programming
language grammars

•  A BNF grammar G = (N, T, P, S)

•  A set of non-terminal symbols N

•  A set of terminal symbols T (tokens)

•  A set of grammar rules P

•  A start symbol S

•  Grammar rule form (describe context-free
grammars):

 <non-terminal>

 ::= <sequence of terminals and non-terminals>

Backus-Naur Form (BNF)

Lee CSCE 314 TAMU

7

•  BNF rules for robot commands

A robot arm accepts any command from the set

{up, down, left, right}

•  Rules:

<move> ::= <command> | <command> <move>

<command> ::= up

<command> ::= down

<command> ::= left

<command> ::= right

•  Examples of accepted sequences

•  up

•  down left up up right

Examples of BNF

Lee CSCE 314 TAMU

8

•  From left to right

•  Generates the following sequence

•  Each terminal symbol is added to the sequence

•  Each non-terminal is replaced by its definition

•  For each |, pick any of the alternatives

•  Note that a grammar can be used to both
generate a statement, and verify that a
statement is legal

•  The latter is the task of parsing – find out if a
sentence (program) is in a language, and how
the grammar generates the sentence

How to Read Grammar Rules

Lee CSCE 314 TAMU

9

•  Constructs and notation:

<x> nonterminal x

<x> ::= Body <x> is defined by Body

<x> <y> the sequence <x> followed by <y>

{<x>} the sequence of zero or more occurrences of <x>

{<x>}+ the sequence of one or more occurrences of <x>

[<x>] zero or one occurrence of <x>

•  Example

<expression> ::= <variable> | <integer>
<expression> ::= <expression> + <expression> | ...
<statement> ::= if <expression> then <statement>
 { elseif <expression> then <statement> }+
 [else <statement>] end | ...
<statement> ::= <expression> | return <expression> | ...

Extended BNF

Lee CSCE 314 TAMU

10

Example Grammar Rules (Part of C++ Grammar)

expression-statement:
 expressionopt ;
compound-statement:
 { statement-seqopt }
statement-seq:
 statement
 statement-seq statement

A.5 Statements
statement:
 labeled-statement
 expression-statement
 compound-statement
 selection-statement
 iteration-statement
 jump-statement
 declaration-statement
 try-block
labeled-statement:
 identifier : statement
 case constant-expression : statement
 default : statement

selection-statement:
 if (condition) statement
 if (condition) statement else statement
 switch (condition) statement
condition:
 expression
 type-specifier-seq declarator = assignment-expression
iteration-statement:
 while (condition) statement
 do statement while (expression) ;
 for (for-init-statement ; conditionopt ; expressionopt)
 statement
for-init-statement:
 expression-statement
 simple-declaration
jump-statement:
 break ;
 continue ;
 return expressionopt ;
 goto identifier ;
declaration-statement:
 block-declaration

Lee CSCE 314 TAMU

11

•  A grammar G = (N, T, S, P) with the set of alphabet V
is called context free if and only if all productions in P
are of the form

 A -> B

 where A is a single nonterminal symbol and B is in V*.

•  The reason this is called “context free” is that the
production A -> B can be applied whenever the symbol
A occurs in the string, no matter what else is in the
string.

•  Example: The grammar G = ({S}, {a,b}, S, P)

 where P = { S -> ab | aSb } is context free.

 The language generated by G is L(G) = { anbn | n >= 1}.

Context Free Grammars

Lee CSCE 314 TAMU

12

•  Concrete syntax tree

•  Result of using a PL grammar to parse a program is

a parse tree

•  Contains every symbol in the input program, and all

non-terminals used in the program’s derivation

•  Abstract syntax tree (AST)

•  Many symbols in input text are uninteresting

(punctuation, such as commas in parameter lists,
etc.)

•  AST only contains “meaningful” information

•  Other simplifications can also be made, e.g., getting

rid of syntactic sugar, removing intermediate non-
terminals, etc.

Concrete vs. Abstract Syntax

Lee CSCE 314 TAMU

13

•  A grammar is ambiguous if there exists a string which
gives rise to more than one parse tree

•  E.g., infix binary operators ‘-’

 <expr> ::= <num> | <expr> ‘-’ <expr>

•  Now parse 1 – 2 - 3

Ambiguity (1)

As (1-2)-3
 As 1-(2-3)

Parsing

Parse 1

As (1 - 2) - 3:

<expr>

'-'<expr> <expr>

'-'

<num>

<expr>

2

<expr> <num>

3

1

<num>

20 / 33

Parsing

Parse 2

As 1 - (2 - 3):

<expr>

'-' <expr><expr>

'-'

<num>

<expr>

3

<expr><num>

1

2

<num>

21 / 33

Lee CSCE 314 TAMU

14

•  E.g., infix binary operators ‘+’ and ‘*’

 <expr> ::= <num> | <expr> + <expr> | <expr> * <expr>

 | <expr> == <expr>

•  Now parse 1 + 2 * 3

Ambiguity (2)

As (1+2)*3
 As 1+(2*3)

Parsing

Ambiguity (precedence rules)

Example: ambiguous BNF grammar
<expr> ::= <num> | <expr> + <expr> | <expr> * <expr> | <expr> = <

expr>

<expr>

*<expr> <expr>

+

<num>

<expr>

2

<expr> <num>

3

1

<num>

<expr>

+ <expr><expr>

*

<num>

<expr>

3

<expr><num>

1

2

<num>

(1 + 2) * 3 1 + (2 * 3)

1 + 2 * 3

24 / 33

Parsing

Ambiguity (precedence rules)

Example: ambiguous BNF grammar
<expr> ::= <num> | <expr> + <expr> | <expr> * <expr> | <expr> = <

expr>

<expr>

*<expr> <expr>

+

<num>

<expr>

2

<expr> <num>

3

1

<num>

<expr>

+ <expr><expr>

*

<num>

<expr>

3

<expr><num>

1

2

<num>

(1 + 2) * 3 1 + (2 * 3)

1 + 2 * 3

24 / 33

Lee CSCE 314 TAMU

15

1.  Between two calls to the same binary operator

•  Associativity rules

•  left-associative: a op b op c parsed as (a op b) op c

•  right-associative: a op b op c parsed as a op (b op c)

•  By disambiguating the grammar

 <expr> ::= <num> | <expr> ‘-’ <expr>

 vs.

 <expr> ::= <num> | <expr> ‘-’ <num>

2.  Between two calls to different binary operator

•  Precedence rules

•  if op1 has higher-precedence than op2 then

 a op1 b op2 c => (a op1 b) op2 c

•  if op2 has higher-precedence than op1 then

 a op1 b op2 c => a op1 (b op2 c)

Resolving Ambiguities

Lee CSCE 314 TAMU

16

•  Rewriting the ambiguous grammar:

 <expr> ::= <num> | <expr> + <expr>

 | <expr> * <expr>

 | <expr> == <expr>

•  Let us give * the highest precedence, + the next highest,

and == the lowest

 <expr> ::= <sum> { == <sum> }

 <sum> ::= <term> | <sum> + <term>

 <term> ::= <num> | <term> * <num>

Resolving Ambiguities (Cont.)

Lee CSCE 314 TAMU

17

•  Ambiguity in grammar is not a problem occurring only with
binary operators

•  For example,

 <S> ::= if <E> then <S> |

 if <E> then <S> else <S>

•  Now consider the string:

 if A then if B then X else Y

1.  if A then (if B then X else Y) ?

2.  if A then (if B then X) else Y ?

Dangling-Else Ambiguity

Lee CSCE 314 TAMU

18

Four classes of grammars that define particular classes of
languages

1.  Regular grammars

2. Context free grammars

3. Context sensitive

 grammars

4.  Phrase-structure

 (unrestricted) grammars

•  Ordered from less

 expressive to more

 expressive (but faster to slower to parse)

•  Regular grammars and CF grammars are of interest in

theory of programming languages

Chomsky Hierarchy

Type 0 – Phrase-structure Grammars

Type 1 –
Context-Sensitive

Type 2 –
Context-Free

Type 3 –
Regular

Lee CSCE 314 TAMU

19

•  Productions are of the form

 A -> aB or

 A -> a

 where A, B are nonterminal symbols and a is a terminal

 symbol. Can contain S -> λ.

•  Example regular grammar G = ({A, S}, {a, b, c}, S, P),
where P consists of the following productions:

 S -> aA

 A -> bA | cA | a

•  G generates the following words

 aa, aba, aca, abba, abca, acca, abbba, abbca, abcba, …

•  The language L(G) in regular expression: a(b+c)*a

Regular Grammar

Lee CSCE 314 TAMU

20

The following three formalisms all express the same set of
(regular) languages:

1.  Regular grammars

2.  Regular expressions

3.  Finite state automata

Not very expressive. For example, the language

 L = { anbn | n >= 1 }

 is not regular.

Question: Can you relate this language L to parsing
programming languages?

Answer: balancing parentheses

Regular Languages

Lee CSCE 314 TAMU

21

A finite state automaton M=(S, I, f, s0, F) consists of:

•  a finite set S of states

•  a finite set of input alphabet I

•  a transition function f: SxI -> S that assigns to a

given current state and input the next state of the
automaton

•  an initial state s0, and

•  a subset F of S consisting of accepting (or final) states

Example:

1.  Regular grammar 3. FSA

S -> aA

A -> bA | cA | a

2. Regular expression

a(b+c)*a

Finite State Automata

S
 F
A
a

b

c

a

Lee CSCE 314 TAMU

22

•  Regular languages are not sufficient for
expressing the syntax of practical programming
languages, so why use them?

•  Simpler (and faster) implementation of the
tedious (and potentially slow) “character-by-
character” processing: DFA gives a direct
implementation strategy

•  Separation of concerns – deal with low level
issues (tabs, linebreaks, token positions) in
isolation: grammars for parsers need not go
below token level

Why a Separate Lexer?

Lee CSCE 314 TAMU

23

1. Phrase-structure (unrestricted) grammars

 A -> B where A is string in V* containing at least one

 nonterminal symbol, and B is a string in V*.

2. Context sensitive grammars

 lAr -> lwr where A is a nonterminal symbol, and w a

 nonempty string in V*. Can contain S ->λ if S does not

 occur on RHS of any production.

3. Context free grammars

 A -> B where A is a nonterminal symbol.

4. Regular grammars

 A -> aB or A -> a where A, B are nonterminal symbols

 and a is a terminal symbol. Can contain S -> λ.

Summary of the Productions

