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Reference: https://www.haskell.org/tutorial/modules.html

https://www.haskell.org/tutorial/modules.html
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• A Haskell program consists of a collection of modules.  
The purposes of using a module are:
1. To control namespaces.
2. To create abstract data types.

• A module contains various declarations: First, import 
declarations, and then, data and type declarations, class 
and instance declarations, type signatures, function 
definitions, and so on (in any order)

• Module names must begin with an uppercase letter

• One module per file

Modules 



Lee CSCE 314 TAMU

3

Example of a Module
module Tree ( Tree(Leaf,Branch), fringe ) where
data Tree a = Leaf a | Branch (Tree a) (Tree a)
fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right

❚ A module declaration begins with the keyword  module
❚ The module name may be the same as that of the type
❚ Same indentation rules as with other declarations apply
❚ The type name and its constructors need be grouped together, as in 

Tree(Leaf,Branch); short-hand possible, Tree(..)
❚ Now, the Tree module may be imported:

module Main (main) where
import Tree ( Tree(Leaf,Branch), fringe )
main = print (fringe (Branch (Leaf 1) (Leaf 2)))

export list

import list: 
omitting it will 

cause all entities
exported from Tree 

to be imported
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Qualified Names
module Fringe(fringe) where
import Tree( Tree(..) )
fringe :: Tree a -> [a] -- A different definition of fringe
fringe (Leaf x) = [x]
fringe (Branch x y) = fringe x

module Main (main) where
import Tree ( Tree(Leaf,Branch), fringe )
import qualified Fringe ( fringe )

main = do print (fringe (Branch (Leaf 1) (Leaf 2)))
print (Fringe.fringe (Branch (Leaf 1) (Leaf 2)))

❚ Qualifiers are used to resolve conflicts between different 
entities with the same name

imported names 
are prefixed by 
the name of the 
module imported

shortcut for 
Tree(Leaf,Branch)
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• Entities can be hidden in the import declaration. For 
example, the following explicit import of the Prelude:

import Prelude hiding (length, sum)

will not import length and sum from the Standard
Prelude.

• Entities can be renamed with as.  Used to shorten long 
names:

import AnExtremelyLongModuleName as A
myFun n = A.foo n

• or to easily adapt to a change in module name without 
changing all qualifiers (the following is possible if there 
are no name conflicts):

import Module1 as M
import Module2 as M

More Features
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Modules are Haskell’s mechanism to build abstract data types (ADTs). 
For example, an ADT for the Tree type might include the following 
operations (interfaces):

A module supporting this is:

Abstract Data Types – Tree (1)

data Tree a -- just the type name
leaf :: a -> Tree a  -- construct a leaf
branch :: a -> Tree a -> Tree a -> Tree a  -- construct a branch
cell :: Tree a -> a  -- return a value of the tree
left, right :: Tree a -> Tree a  -- return left or right subtree
isLeaf :: Tree a -> Bool    -- check is a leaf

module TreeADT (Tree, leaf, branch, cell, left, right, isLeaf) where
data Tree a = Leaf a | Branch a (Tree a) (Tree a)
leaf = Leaf
branch = Branch
cell (Leaf a)       = a
cell  (Branch a _ _) = a
left  (Branch _ l _) = l
right (Branch _ _ r) = r
isLeaf  (Leaf _)     = True
isLeaf  _            = False

Leaf and Branch are not exported 
– information hiding (at a later 
time the representation type 
could be changed without 

affecting users of the type)
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An ADT for the Tree type:

Another module supporting this is:

Abstract Data Types – Tree (2)

module TreeADT (Tree, leaf, branch, cell, left, right, isLeaf) where
data Tree a = Tnil | Node a (Tree a) (Tree a)
leaf = \x -> (Node x Tnil Tnil)
branch = Node
cell (Node a Tnil Tnil)   = a
cell  (Node _ l Tnil)      = cell l
cell  (Node _ Tnil r)      = cell r
left  (Node _ l _) = l
right (Node _ _ r) = r
isLeaf  (Node _ Tnil Tnil) = True
isLeaf  _                  = False

data Tree a -- just the type name
leaf :: a -> Tree a  -- construct a leaf
branch :: a -> Tree a -> Tree a -> Tree a  -- construct a branch
cell :: Tree a -> a  -- return a value of the tree
left, right :: Tree a -> Tree a  -- return left or right subtree
isLeaf :: Tree a -> Bool    -- check is a leaf
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Another Example ADT - Stack
module Stack ( StkType, push, pop, top, empty ) where

data StkType a  = EmptyStk | Stk a (StkType a)
push x s        = Stk x s
pop (Stk _ s)   = s
top (Stk x _)   = x
empty           = EmptyStk

module Stack ( StkType, push, pop, top, empty ) where

newtype StkType a  = Stk [a]
push x (Stk xs)    = Stk (x:xs)
pop (Stk (_:xs))   = Stk xs
top (Stk (x:_))    = x
empty              = Stk []

module Main where
import Stack
myStk = push 3 . push 4 . push 2 $ empty


