Lee CSCE 314 TAMU

CSCE 314
Programming Languages

Haskell: The Module System

Dr. Hyunyoung Lee

Reference: https://www.haskell.org/tutorial/modules.html

https://www.haskell.org/tutorial/modules.html

Modules

* A Haskell program consists of a collection of modules.
The purposes of using a module are:

1. To control namespaces.
2. To create abstract data types.

* A module contains various declarations: First, import
declarations, and then, data and type declarations, class
and instance declarations, type signatures, function
definitions, and so on (in any order)

* Module names must begin with an uppercase letter

* One module per file

Lee CSCE 314 TAMU

Example OF a MOdUIe gexpor’r list]

module Tree (Tree(Leaf,Branch), fringe ffwhere

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a -> [a]

fringe (Leaf x) = [x]

fringe (Branch left right) = fringe left ++ fringe right

B A module declaration begins with the keyword module
B The module name may be the same as that of the type
I Same indentation rules as with other declarations apply
I The type name and its constructors need be grouped together, as in

Tree(Leaf,Branch); short-hand possible, Tree (.1 jroort ist: N
I Now, the Tree module may be imported: omitting it will
cause all entities
module Main (main) where exPO"Ib'ef! from Tree
import Tree (Tree(Leaf,Branch), fringe) to be imported)
main = print (fringe (Branch (Leaf 1) (Leaf 2)))

3

Lee CSCE 314 TAMU

Qualified Names

[

A\
module Fringe(fringe):ﬂfﬂji’//,,,J . STTﬁ?;;forh)J
import Tree(Tree(..)) . reeledr,branc
fringe :: Tree a -> [a] -- A different definition of fringe

fringe (Leaf x) = [x]
fringe (Branch x y) = fringe x

imported names
are prefixed by
the name of the
module imported

main = do print (fringe (Branch at 1) (Leaf 2)))
print (Fringe.fringe (Branch (Leaf 1) (Leaf 2)))

module Main (main) where
import Tree (Tree(Leaf,Branch), fringe)
import qualified Fringe (fringe)

)

I Qualifiers are used to resolve conflicts between different
entities with the same name

More Features

* Entities can be hidden in the import declaration. For
example, the following explicit import of the Prelude:

import Prelude hiding (length, sum)

will not import lTength and sum from the Standard
Prelude.

* Enftities can be renamed with as. Used to shorten long

names:

import AnExtremelylLongModuleName as A
myFun n = A.foo n

* or fo easily adapt to a change in module name without
changing all qualifiers (the following is possible if there

are no name conflicts):
import Modulel as M
import Module?2 as M

Lee CSCE 314 TAMU

Abstract Data Types - Tree (1)

Modules are Haskells mechanism to build abstract data types (ADTSs).
For example, an ADT for the Tree type might include the following
operations (interfaces):

data Tree a -- just the type name

Teaf :: a -> Tree a -- construct a leaf

branch ::a -> Tree a -> Tree a -> Tree a -- construct a branch
cell :: Tree a -> a -- return a value of the tree

left, right :: Tree a -> Tree a -- return left or right subtree
isLeaf :: Tree a -> Bool -- check is a Teaf

A module supporting this is:

module TreeADT (Tree, leaf, branch, cell, left, right, isLeaf) where
data Tree a = Leaf a ranch a (Tree a) (Tree a)

lTeaf = Leaf

branch = Branch N\
cell (Leaf a) - 3 Leaf and Branch are not exported
cell (Branch a _) = a - information hiding (at a later
left (Branch _ 1) =1 time the representation type
right (Branch _ _ r) = r could be changed without
isLeaf (Leaf) - True affecting users of the type) Y
isLeaf = False

Lee CSCE 314 TAMU

Abstract Data Types - Tree (2)

An ADT for the Tree type:

data Tree a -- just the type name

lTeaf ::a > Tree a -- construct a leaf

branch ::a -> Tree a -> Tree a -> Tree a -- construct a branch
cell :: Tree a -> a -- return a value of the tree

left, right :: Tree a -> Tree a -- return left or right subtree
isLeaf :: Tree a -> Bool -- check is a leaf

Another module supporting this is:

module TreeADT (Tree, leaf, branch, cell, left, right, isLeaf) where
data Tree a = Tnil | Node a (Tree a) (Tree a)

leaf = \x -> (Node x Tnil Tnil)

branch = Node

cell (Node a Tnil Tnil) = a

cell (Node _ 1 Tnil) = cell 1
cell (Node _ Tnil r) = cell r
left (Node _ 1 _) =1

right (Node _ _r) =r

isLeaf (Node _ Tnil Tnil) = True
isLeaf = False

Lee CSCE 314 TAMU

Another Example ADT - Stack

module Stack (StkType, push, pop, top, empty) where

data StkType a = EmptyStk | Stk a (StkType a)

push x s = Stk x s
pop (Stk _ s) =S

top (Stk x _) = X

empty = EmptyStk

module Stack (StkType, push, pop, top, empty) where
newtype StkType a = Stk [a]

push x (Stk xs) = Stk (x:xs)
pop (Stk (_:xs)) = Stk xs

top (Stk (x:_)) = X

empty = Stk []

module Main where
import Stack
myStk = push 3 . push 4 . push 2 $ empty

