
Lee CSCE 314 TAMU

1

CSCE 314
Programming Languages
Haskell: The Module System

Dr. Hyunyoung Lee

Reference: https://www.haskell.org/tutorial/modules.html

https://www.haskell.org/tutorial/modules.html

Lee CSCE 314 TAMU

2

• A Haskell program consists of a collection of modules.
The purposes of using a module are:
1. To control namespaces.
2. To create abstract data types.

• A module contains various declarations: First, import
declarations, and then, data and type declarations, class
and instance declarations, type signatures, function
definitions, and so on (in any order)

• Module names must begin with an uppercase letter

• One module per file

Modules

Lee CSCE 314 TAMU

3

Example of a Module
module Tree (Tree(Leaf,Branch), fringe) where
data Tree a = Leaf a | Branch (Tree a) (Tree a)
fringe :: Tree a -> [a]
fringe (Leaf x) = [x]
fringe (Branch left right) = fringe left ++ fringe right

❚ A module declaration begins with the keyword module
❚ The module name may be the same as that of the type
❚ Same indentation rules as with other declarations apply
❚ The type name and its constructors need be grouped together, as in

Tree(Leaf,Branch); short-hand possible, Tree(..)
❚ Now, the Tree module may be imported:

module Main (main) where
import Tree (Tree(Leaf,Branch), fringe)
main = print (fringe (Branch (Leaf 1) (Leaf 2)))

export list

import list:
omitting it will

cause all entities
exported from Tree

to be imported

Lee CSCE 314 TAMU

4

Qualified Names
module Fringe(fringe) where
import Tree(Tree(..))
fringe :: Tree a -> [a] -- A different definition of fringe
fringe (Leaf x) = [x]
fringe (Branch x y) = fringe x

module Main (main) where
import Tree (Tree(Leaf,Branch), fringe)
import qualified Fringe (fringe)

main = do print (fringe (Branch (Leaf 1) (Leaf 2)))
print (Fringe.fringe (Branch (Leaf 1) (Leaf 2)))

❚ Qualifiers are used to resolve conflicts between different
entities with the same name

imported names
are prefixed by
the name of the
module imported

shortcut for
Tree(Leaf,Branch)

Lee CSCE 314 TAMU

5

• Entities can be hidden in the import declaration. For
example, the following explicit import of the Prelude:

import Prelude hiding (length, sum)

will not import length and sum from the Standard
Prelude.

• Entities can be renamed with as. Used to shorten long
names:

import AnExtremelyLongModuleName as A
myFun n = A.foo n

• or to easily adapt to a change in module name without
changing all qualifiers (the following is possible if there
are no name conflicts):

import Module1 as M
import Module2 as M

More Features

Lee CSCE 314 TAMU

6

Modules are Haskell’s mechanism to build abstract data types (ADTs).
For example, an ADT for the Tree type might include the following
operations (interfaces):

A module supporting this is:

Abstract Data Types – Tree (1)

data Tree a -- just the type name
leaf :: a -> Tree a -- construct a leaf
branch :: a -> Tree a -> Tree a -> Tree a -- construct a branch
cell :: Tree a -> a -- return a value of the tree
left, right :: Tree a -> Tree a -- return left or right subtree
isLeaf :: Tree a -> Bool -- check is a leaf

module TreeADT (Tree, leaf, branch, cell, left, right, isLeaf) where
data Tree a = Leaf a | Branch a (Tree a) (Tree a)
leaf = Leaf
branch = Branch
cell (Leaf a) = a
cell (Branch a _ _) = a
left (Branch _ l _) = l
right (Branch _ _ r) = r
isLeaf (Leaf _) = True
isLeaf _ = False

Leaf and Branch are not exported
– information hiding (at a later
time the representation type
could be changed without

affecting users of the type)

Lee CSCE 314 TAMU

7

An ADT for the Tree type:

Another module supporting this is:

Abstract Data Types – Tree (2)

module TreeADT (Tree, leaf, branch, cell, left, right, isLeaf) where
data Tree a = Tnil | Node a (Tree a) (Tree a)
leaf = \x -> (Node x Tnil Tnil)
branch = Node
cell (Node a Tnil Tnil) = a
cell (Node _ l Tnil) = cell l
cell (Node _ Tnil r) = cell r
left (Node _ l _) = l
right (Node _ _ r) = r
isLeaf (Node _ Tnil Tnil) = True
isLeaf _ = False

data Tree a -- just the type name
leaf :: a -> Tree a -- construct a leaf
branch :: a -> Tree a -> Tree a -> Tree a -- construct a branch
cell :: Tree a -> a -- return a value of the tree
left, right :: Tree a -> Tree a -- return left or right subtree
isLeaf :: Tree a -> Bool -- check is a leaf

Lee CSCE 314 TAMU

8

Another Example ADT - Stack
module Stack (StkType, push, pop, top, empty) where

data StkType a = EmptyStk | Stk a (StkType a)
push x s = Stk x s
pop (Stk _ s) = s
top (Stk x _) = x
empty = EmptyStk

module Stack (StkType, push, pop, top, empty) where

newtype StkType a = Stk [a]
push x (Stk xs) = Stk (x:xs)
pop (Stk (_:xs)) = Stk xs
top (Stk (x:_)) = x
empty = Stk []

module Main where
import Stack
myStk = push 3 . push 4 . push 2 $ empty

